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Epidemic analysis of the second-order transition in the Ziff-Gulari-Barshad
surface-reaction model
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~Received 22 August 1997!

We study the dynamic behavior of the Ziff-Gulari-Barshad irreversible surface-reaction model around its
kinetic second-order phase transition, using both epidemic and poisoning-time analyses. We find that the
critical point is given byp150.387 368 260.000 001 5, which is lower than the previously determined value.
We also obtain precise values of the dynamical critical exponentsz, d, andh, which provide further numeri-
cal evidence that this transition is in the same universality class as directed percolation.
@S1063-651X~97!51812-5#

PACS number~s!: 05.70.Ln, 82.20.Mj, 82.65.Jv
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There has been a great deal of interest surrounding
critical behavior of nonequilibrium kinetic models, includin
directed percolation~DP! @1,2#, the contact process@3#, and
various surface-reaction or catalysis models~for review see
@4#!. These models all contain a similar continuous~second-
order! phase transition from an adsorbing to a vacuum s
@5,6#.

It has been shown that many of these transitions behav
a universal manner even though the systems abide by di
ent local rules and are inherently modeling different physi
systems. Grassberger@1# and Janssen@8# postulated that all
single-component continuous transitions fall into the rob
DP or Reggeon field theory class, and many numerical si
lations have supported this hypothesis~i.e., @6,7,9#!. Grin-
stein, Lai, and Browne@5# were the first to hypothesize tha
the specific oxygen-poisoning~second-order! transition of
the Ziff-Gulari-Barshad~ZGB! surface reaction model@11#
falls into this class of models, and Jensen, Fogedby
Dickman ran simulations which support this conclusion@7#.
In this communication, we report on new, very extens
simulations that provide further support for this hypothes
and correct an apparent error in the reported value of
location of that transition. Assuming the identification of t
ZGB model with the DP class to be exact, our results g
the most accurate values of the DP dynamical critical ex
nents to date.

The ZGB model is a simplified model for the irreversib
reaction of CO (A) and O2 (B2) catalytic reaction on a P
surface. The simulation involves the adsorption and reac
of species on a square lattice and proceeds via the Langm
Hinchelwood mechanism, in which all molecules must a
sorb before they can react. The following kinetic scheme
employed:

A1*→A* , ~1!

B21*→2B* , ~2!

A* 1B*→AB12*, ~3!

where * refers to a lattice site. A Monte Carlo algorithm
employed where a site is randomly chosen. If the site
empty, anA will adsorb with probabilityp. With probability
561063-651X/97/56~6!/6241~4!/$10.00
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12p, aB2 is adsorbed and instantly dissociates onto that
and a randomly chosen neighboring site if the latter is emp
When a species adsorbs, it checks for adjacent neighbo
the opposite species. If one is present, the two react im
diately, implying an infinite reaction rate as compared to
adsorption rate. There are two transition points in this s
tem. At p2, there is a first-order~discontinuous! transition to
an A-poisoned~saturated! state, and atp1 there is a second
order~continuous! transition to aB-poisoned state. Betwee
these points exists a reactive window where the system
reach a steady state and react indefinitely.~For a phase dia-
gram, see@11#.! Even within the window, for finite systems
the system is only metastable as it can, in principle, poi
by a statistical fluctuation to a nonreactive state. Howev
here the average time to poisontp grows exponentially with
lattice sizeL, the signature of a reactive steady state@12#.
The value of p2 has been accurately determined to
0.525 6060.000 01 @10# using the constant-coverage e
semble algorithm. This algorithm, however, is only app
cable to finding the location of the first-order transition.

Because the second-order transition is a continuous on
a single adsorbing state, it is expected to fall into the
class@6#. Indeed, while the ZGB model involves three com
ponents (A,B, and vacant sites!, at the second-order trans
tion, there are rarelyA molecules at the surface, so it
essentially a two-species model like other members of
DP class. The value of its transition pointp1 was first em-
pirically observed to be 0.38960.005 @11#. A more precise
value 0.390 6560.000 10 was obtained by Jensen, Foged
and Dickman using an epidemic analysis@7#. However,
while recently performing some other investigations@13#, we
found that this value appears to be somewhat high. Thus
carried out new simulations, using the epidemic procedur
well as a poisoning-time analysis, to reexamine the value
p1 and the related dynamic critical exponents.

The epidemic method was initially used to study the co
tact process@3# and has been successfully applied to det
mine the critical exponents and the critical point for DP@1#.
To run the epidemic analysis, we started with a large (10
31024) system completely saturated withB except for a
single vacant site in the center. A large system is neces
so that the reactive region never hits the boundary. The si
R6241 © 1997 The American Physical Society
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lation was run at a set value ofp and a reactive cluster wa
grown and watched until the system reverted to a nonreac
adsorbate state, or a maximum cutoff time was reached.

The vacant sites~numberingnv) were kept on a list tha
was randomly accessed for each adsorption trial, increm
ing the timet by 1/nv . As each cluster grew, the quantitie
of interest were recorded in log2 bins of time. Since only
approximately 3% of all clusters grown reached the last b
it was necessary to make numerous runs order to obtain
isfactory statistics. For the valuesp50.387 36 and 0.387 37
83107 clusters (N) were grown up to 21358192 time steps,
requiring a total of 200 days of computational time on a H
9000 series UNIX platform. In the work of@7# in contrast,
only 100 000 to 250 000 clusters were grown up to 10
time steps. Although we could pinpointp1 to four significant
figures in just a few hours, we decided to carry out extens
runs in order to findp1 to six significant digits and to deter
mine the dynamical critical exponents precisely.

We measured the three quantities introduced by Gr
berger and de la Torre@3#: the survival probabilityP(t), the
mean number of vacancies~averaged overN) n(t), and the
mean-square radius of gyration of vacant sites~averaged
over N alive at t), R2(t). At the critical point, these are
hypothesized to follow the asymptotic power laws,

P~ t !;t2d, ~4!

n~ t !;th, ~5!

R2~ t !;tz. ~6!

These exponents follow the hyperscaling relation@3#,

dz52h14d, ~7!

whered is the spatial dimension. These relationships prov
a powerful method to determinep1 by evaluating the effects
of slightly noncritical values ofp, in which case the resulting
behavior deviates from~4!–~6! for large t. An example of
this is shown in Fig. 1, wheren(t) is plotted for p

FIG. 1. The behavior of the number of vacant sitesn as plotted
against timet, for p50.390 65, 0.387 368 2, and 0.384 07~top to
bottom!. The upper value isp1 from @7#, and the center is for the
value found here.
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50.390 65, 0.387 368 2, and 0.384 07. The upper curve
for the value ofp1 reported in@7#, while the central curve is
for the value we find below.

In order to find the exponents accurately, we consider
local slopes, which are defined as

2d~ t !5 ln@P~ t !/P~ t/2!#/ ln2, ~8!

and similarly forh(t) andz(t). ~Here we used a factor of 2
rather than 5 or 8 of previous work@2,7#, which we could do
because of our higher statistics.! These are all graphed in Fig
2 for p50.387 36 and 0.387 37. The local slopes can

FIG. 2. The three critical exponents derived from our epidem
analysis:d ~a!, h ~b!, and z ~c!. These values show supercritica
(L: p50.387 37) and subcritical (n: p50.387 36) behavior. Each
of these lines represents the average of 3.53107 runs. The actual
value of p1 falls between these lines and can be determined
linear interpolation as in Fig. 4.
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expanded as@3#

d~ t !5d1
a

t
1

b

td8
. ~9!

If the nonanalytic corrections were negligible, then it wou
be easy to extrapolate the critical exponents as a functio
1/t as discussed by Grassberger. However, these correc
are rather large and, therefore, hinder a direct linear extra
lation. In order to overcome this problem, we grew over
3108 clusters to 29 time steps so that we could better follo
the nonanalytical trajectory of each curve. Extrapolat
these results tot→`, we find

d50.450560.001, h50.229560.001, z51.132560.001,
~10!

consistent withd50.45260.008,h50.22460.010, andz
51.13360.002 found in@7#.

For comparison, the updated values recently found
Grassberger and Zhang@2# for DP are

d50.45160.003,h50.22960.003,z51.13360.002.
~11!

The precise agreement between Eqs.~10! and ~11! leaves
little doubt that the ZGB model is included in the DP class
predicted by Grinsteinet al. @5#.

For p away fromp1 , n(t) follows the scaling behavio
@3#

n~ t !;t2hf@~p2p1!t1/n i#, ~12!

and similarly forP(t) andR2(t). It follows from this equa-
tion that

dlnn

dlnpU p5p1
}t1/n i, ~13!

wheren i is the time-domain correlation length exponent.
Fig. 3, we plot the quantity on the left-hand side of the eq
tion above, calculated by taking the difference ofn(t) for

FIG. 3. Plot to determinen i from Eq.~13! by using the values of
p50.387 36 and 0.387 37. The line is forn i51.295 as determined
by Grassberger for DP. It can be seen that the ZGB data are
sistent with this value.
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p50.387 36 and 0.387 37, vs. lnt. This plot shows that
Grassberger’s value for DPn i51.29560.006 @2# is com-
pletely consistent with our data.

To determine the precise value ofp1, we expand the scal
ing functionf as

P~ t !'t2d@a1b~p2p1!t1/n i1•••#. ~14!

This equation implies that a plot ofP(t)td vs. t1/n i for values
p close top1 should yield straight lines and that a dire
linear interpolation of the data from different values ofp can
be used to findp1 ~which corresponds to a horizontal line i
this plot! ~Fig. 4!. There is an initial curvature that is to b
expected for small clusters due to finite-cluster effects.
minimize this effect, we have added a constantc to the time
that effectively allows for a higher-order analytic correctio
term:

~ t1c!2d't2dS 12
dc

t D , ~15!

wherec'1.7 was found to give the best results. The resu
ing plot of our data is shown in Fig. 4. The statistical flu
tuations in each bin are given by

ANbin~Ntotal2Nbin!

Ntotal
, ~16!

which implies that the largest bins that have the most ac
rate data also have the greatest error~least precision!. Inter-
polating the two data curves in Fig. 4, we deduce thatp1 is
given by

p150.387 368 260.000 001 5. ~17!

This result is nearly two orders of magnitude more prec
than the result of@7#, 0.390 6560.000 10, and more than 3
combined error bars lower. We believe that some error m
have occurred in the simulations or analysis of@7,15#.

n-

FIG. 4. Plot allowing a linear interpolation forp1 as expressed
in Eq. ~14!. The lines for 0.387 36 (n) and 0.387 37 (s) represent
the subcritical and supercritical behavior, respectively. The b
line represents the interpolation for the value,p150.387 368 2. The
error bars were calculated as in Eq.~16!. Here, t is offset by an
additive constant 1.7 to improve small-time behavior.
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To confirm our value forp1, we also ran a poisoning-tim
analysis@13# of the system at its critical point. Similar meth
ods have been applied to other problems including the qu
tification of finite lattice effects@12,8,14#. To do this, we
essentially run the opposite dynamic algorithm performed
the epidemic analysis. We start with a small lattice in a fu
reactive state~all vacant sites! and set the value ofp at our
determinedp1. Periodic boundary conditions are applied a
the system is allowed to run until the adsorbateB saturates or
poisons the system, causing a global nonreactive state. W
the value ofp is at p1, it is expected that the dependence
tp on L will be power-law, and whenpÞp1, the dependence
will be exponential @12,14#. We ran this simulation for
square lattices of powers of 2 in sizes from 838 to 64364
for roughly 105 runs each. Here, a time step is defined asL2

adsorption trials. Figure 5 shows the results of our analy
and it was found that atp1, the relationship is indeed

tp;Lw ~18!

with w51.7760.02. In @13#, we observed thatw52/z
5n i /n' , indicating that the time to expand a reactive st
scales as the time to contract. Thez implied by this result is
consistent with the value determined above. While t
method is evidently less efficient than the epidemic analy
it provides a useful confirmation our results forp1 andz.

In conclusion, we have provided improved numerical e
dence that the ZGB oxygen-poisoning transition falls into
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larger DP class of nonequilibrium models. Accepting th
that hypothesis is true, which seems certain, our expon
represent the most accurate values of the DP dynamic cri
exponents to date~by a factor of about 2!. We also indepen-
dently confirm that the value ofn i for the ZGB model falls
into the DP class and use it to find a highly accurate a
corrected value ofp1.

This material is based upon work supported by the U
National Science Foundation Grant No. DMR-9520700.

FIG. 5. Results of our poisoning-time analysis for the sa
values ofp displayed in Fig. 1 (n, 0.390 65;s, 0.387 368 2;L,
0.384 07!. This plot demonstrates that the expected power-law
havior obtains when our value ofp1 is used.
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