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Epidemic analysis of the second-order transition in the Ziff-Gulari-Barshad
surface-reaction model
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We study the dynamic behavior of the Ziff-Gulari-Barshad irreversible surface-reaction model around its
kinetic second-order phase transition, using both epidemic and poisoning-time analyses. We find that the
critical point is given byp,=0.387 368 2-0.000 001 5, which is lower than the previously determined value.
We also obtain precise values of the dynamical critical exporgents, and », which provide further numeri-
cal evidence that this transition is in the same universality class as directed percolation.
[S1063-651%97)51812-5

PACS numbg(s): 05.70.Ln, 82.20.Mj, 82.65.Jv

There has been a great deal of interest surrounding the&—p, aB, is adsorbed and instantly dissociates onto that site
critical behavior of nonequilibrium kinetic models, including and a randomly chosen neighboring site if the latter is empty.
directed percolatiodDP) [1,2], the contact proced$], and  When a species adsorbs, it checks for adjacent neighbors of
various surface-reaction or catalysis modéts review see  the opposite species. If one is present, the two react imme-
[4]). These models all contain a similar continudescond-  diately, implying an infinite reaction rate as compared to the
ordep phase transition from an adsorbing to a vacuum stat@dsorption rate. There are two transition points in this sys-
[5.6. . tem. At p,, there is a first-ordefdiscontinuoustransition to

It has been shown that many of these transitions behave ig, A-poisoned(saturateil state, and ap, there is a second-

a L:r;werlsallmanngr evgnhthou%h the dsyl_sterg_sffabm? b%’ d'.ﬁetirder(continuou$ transition to aB-poisoned state. Between
ent focal rules and are inherently modeling difierént physicag, ;o points exists a reactive window where the system can

systems. GrassbergEI]_and Jansse[ﬁ] postulz_ated that all {each a steady state and react indefinitdhor a phase dia-
single-component continuous transitions fall into the robus

DP or Reggeon field theory class, and many numerical simugram see{l;].) Even within the W|r!dow, f(.)r f|n_|te _system;,
lations have supported this hypothegi®., [6,7,9)). Grin- the syste_m_|s only met_astable as it can, in principle, poison
stein, Lai, and Browné5] were the first to hypothesize that by a statistical flugtuatlon tq a nonreactive statg. Hovyever,
the specific oxygen-poisoningsecond-order transition of ~ here the average time to poisgngrows exponentially with
the Ziff-Gulari-BarshadZGB) surface reaction modglL1]  lattice sizel, the signature of a reactive steady stgt&].
falls into this class of models, and Jensen, Fogedby andhe value ofp, has been accurately determined to be
Dickman ran simulations which support this conclusfgh ~ 0.525 6G-0.000 01 [10] using the constant-coverage en-
In this communication, we report on new, very extensivesemble algorithm. This algorithm, however, is only appli-
simulations that provide further support for this hypothesiscable to finding the location of the first-order transition.
and correct an apparent error in the reported value of the Because the second-order transition is a continuous one to
location of that transition. Assuming the identification of the@ single adsorbing state, it is expected to fall into the DP
ZGB model with the DP class to be exact, our results giveclass[6]. Indeed, while the ZGB model involves three com-
the most accurate values of the DP dynamical critical expoPonents ,B, and vacant sitgsat the second-order transi-
nents to date. tion, there are rarehA molecules at the surface, so it is
The ZGB model is a simplified model for the irreversible e€ssentially a two-species model like other members of the
reaction of CO A) and O, (B,) catalytic reaction on a Pt DP class. The value of its transition poipt was first em-
surface. The simulation involves the adsorption and reactioRirically observed to be 0.3890.005[11]. A more precise
of species on a square lattice and proceeds via the Langmuiyalue 0.390 65 0.000 10 was obtained by Jensen, Fogedby,
Hinchelwood mechanism, in which all molecules must ad-and Dickman using an epidemic analygig]. However,
sorb before they can react. The following kinetic scheme igvhile recently performing some other investigatiohs], we
employed: found that this value appears to be somewhat high. Thus, we
carried out new simulations, using the epidemic procedure as
A+* —A*, (1)  well as a poisoning-time analysis, to reexamine the value of
p; and the related dynamic critical exponents.
B,+*—2B*, 2 The epidemic method was initially used to study the con-
tact proces$3] and has been successfully applied to deter-
A* +B* - AB+2*, (3)  mine the critical exponents and the critical point for Q.
To run the epidemic analysis, we started with a large (1024
where * refers to a lattice site. A Monte Carlo algorithm is X1024) system completely saturated wihexcept for a
employed where a site is randomly chosen. If the site isingle vacant site in the center. A large system is necessary
empty, anA will adsorb with probabilityp. With probability ~ so that the reactive region never hits the boundary. The simu-
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FIG. 1. The behavior of the number of vacant sitesas plotted [
against timet, for p=0.390 65, 0.387 368 2, and 0.384 (@p to L
bottom). The upper value ip, from [7], and the center is for the 0.23
value found here. —_— [
=
lation was run at a set value pfand a reactive cluster was 0.22 [
grown and watched until the system reverted to a nonreactive -
adsorbate state, or a maximum cutoff time was reached. r
The vacant sitesnumberingn,) were kept on a list that
was randomly accessed for each adsorption trial, increment- 0.29 H———— e
ing the timet by 1/, . As each cluster grew, the quantities 0 0.005 0.01 0.015 0.02
of interest were recorded in lggbins of time. Since only (b) 1/t
approximately 3% of all clusters grown reached the last bin, 116
it was necessary to make numerous runs order to obtain sat- -
isfactory statistics. For the valugs=0.387 36 and 0.387 37, i
8x 10’ clusters () were grown up to ¥=8192 time steps, 1.15 |
requiring a total of 200 days of computational time on a HP -
9000 series UNIX platform. In the work gf7] in contrast, ~11a
only 100 000 to 250 000 clusters were grown up to 1000 *= """ |
time steps. Although we could pinpoipt to four significant N I
figures in just a few hours, we decided to carry out extensive 1.13 F
runs in order to findp, to six significant digits and to deter- B
mine the dynamical critical exponents precisely. X
We measured the three quantities introduced by Grass- L —
berger and de la Tori&]: the survival probabilityP(t), the 0 0.005 0.01  0.015  0.02
mean number of vacanciéaveraged oveN) n(t), and the (c) 1/t

mean-square radius of gyration of vacant sitaseraged
over N alive att), R?(t). At the critical point, these are
hypothesized to follow the asymptotic power laws,

FIG. 2. The three critical exponents derived from our epidemic
analysis:é (a), n (b), andz (c). These values show supercritical
(¢ : p=0.387 37) and subcritical{: p=0.387 36) behavior. Each
of these lines represents the average of<3.6 runs. The actual

P(t)~t ’ 4) value of p; falls between these lines and can be determined by
linear interpolation as in Fig. 4.
n(t)~t7, ©)
=0.390 65, 0.387 368 2, and 0.384 07. The upper curve is
R2(t)~t2 (6) for the value ofp; reported in[7], while the central curve is
for the value we find below.
These exponents follow the hyperscaling relafidh In order to find the exponents accurately, we consider the
local slopes, which are defined as
dz=27n+456, (7)

= 8(t)=In[P(t)/P(t/2)]/In2, (8)
whered is the spatial dimension. These relationships provide
a powerful method to determing by evaluating the effects and similarly forz(t) andz(t). (Here we used a factor of 2
of slightly noncritical values op, in which case the resulting rather than 5 or 8 of previous wofR,7], which we could do
behavior deviates fronf4)—(6) for larget. An example of because of our higher statistic¥hese are all graphed in Fig.
this is shown in Fig. 1, wheren(t) is plotted for p 2 for p=0.387 36 and 0.387 37. The local slopes can be



RAPID COMMUNICATIONS

56 EPIDEMIC ANALYSIS OF THE SECOND-ORDER ... R6243
6.5 1.795
[ %
[ 1.79
6 -
B <
1.785
oda o
g<=5.5 = 1.78
Tl T | ]
i > I
c
= L 1.77
5 : s
[ ¢ 1.77
4.5 [ 1 1 il 'l 1 1 1 1 1 765 ) . . . . . . . . \
6.75 7.75 8.75 ’
0 500 1000
Int tiva

FIG. 3. Plot to determine from Eq.(13) by using the values of

p=0.387 36 and 0.387 37. The line is for=1.295 as determined FIG. 4. Plot allowing a linear interpolation fgr, as expressed
! in Eq. (14). The lines for 0.387 364 ) and 0.387 37 Q) represent

the subcritical and supercritical behavior, respectively. The bold
line represents the interpolation for the valpe=0.387 368 2. The
error bars were calculated as in E46). Here,t is offset by an
additive constant 1.7 to improve small-time behavior.

sistent with this value.

expanded ag3]

a b
5(t)=5+?+ > (99 p=0.38736 and 0.387 37, vs. InThis plot shows that
t Grassberger’s value for DP|=1.295+0.006 [2] is com-
pletely consistent with our data.

If the nonanalytic corrections were negligible, then it would X .
4 g9 To determine the precise value pf, we expand the scal-

be easy to extrapolate the critical exponents as a function of X
14 as discussed by Grassberger. However, these correctiol¥ function ¢ as
are rather large and, therefore, hinder a direct linear extrapo- P(t)~t~a+b(p—p)tHi+---]. (14)
lation. In order to overcome this problem, we grew over 5
x 10 clusters to 2 time steps so that we could better follow This equation implies that a plot &f(t)t? vs. t*"I for values
the nonanalytical trajectory of each curve. Extrapolatingp close top, should yield straight lines and that a direct
these results to— o, we find linear interpolation of the data from different valuespofan
be used to fing,; (which corresponds to a horizontal line in

6=0.4505-0.001, 7=0.2295-0.001, z=1.1325-0.001, ;¢ plot (Fig.qA)f)l. There is an iﬁitial curvature that is to be

(10 expected for small clusters due to finite-cluster effects. To
consistent with=0.452+0.008, =0.224+0.010, andz ~ Minimize this effect, we have added a constaumo the time
=1.133+0.002 found in[7]. that effectively allows for a higher-order analytic correction

For comparison, the updated values recently found byerm:
Grassberger and Zhang] for DP are

(t+c) o=~t™? :

oc
5=0.451+0.003, =0.229*+ 0.003, z= 1.133+ 0.002. 1= _) ’ (13

11

a1 wherec~1.7 was found to give the best results. The result-
The precise agreement between E(@€) and (11) leaves ing plot of our data is shown in Fig. 4. The statistical fluc-
little doubt that the ZGB model is included in the DP class astuations in each bin are given by
predicted by Grinsteirt al. [5].

For p away fromp,, n(t) follows the scaling behavior Nipin( Ntotar— Npin)

total

n(t)~t~ "¢ (p—pyt*], (120 which implies that the largest bins that have the most accu-
rate data also have the greatest effteast precision Inter-
polating the two data curves in Fig. 4, we deduce thais
given by

and similarly forP(t) andR?(t). It follows from this equa-
tion that

dinn —
dinp p:plmtllvl\, (13) p,;=0.387 368 2-0.000 001 5. (17)
This result is nearly two orders of magnitude more precise
where is the time-domain correlation length exponent. Inthan the result of7], 0.390 65-0.000 10, and more than 30
Fig. 3, we plot the quantity on the left-hand side of the equa€ombined error bars lower. We believe that some error must
tion above, calculated by taking the differencengt) for  have occurred in the simulations or analysiq BfL5].
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To confirm our value fop,;, we also ran a poisoning-time 11
analysig 13] of the system at its critical point. Similar meth-
ods have been applied to other problems including the quan- [
tification of finite lattice effectd12,8,14. To do this, we 9 |
essentially run the opposite dynamic algorithm performed by o
the epidemic analysis. We start with a small lattice in a fully -
reactive statdall vacant sitesand set the value gb at our £
determinedp;. Periodic boundary conditions are applied and
the system is allowed to run until the adsorbBtsaturates or
poisons the system, causing a global nonreactive state. When 5
the value ofp is atpy, it is expected that the dependence of
t, onL will be power-law, and whep# p,, the dependence
will be exponential[12,14. We ran this simulation for
square lattices of powers of 2 in sizes fronx 8 to 64X 64 1 2 3 4
for roughly 1@ runs each. Here, a time step is defined.as InL
adsorption trials. Figure 5 shows the results of our analysis
and it was found that gb,, the relationship is indeed

7

FIG. 5. Results of our poisoning-time analysis for the same
values ofp displayed in Fig. 1 £\, 0.390 65;0, 0.387 368 2;0,
0.384 07. This plot demonstrates that the expected power-law be-

to~L" (18 havior obtains when our value @f is used.

larger DP class of nonequilibrium models. Accepting that

with w=1.77+0.02. In [13], we observed thaw=2/z  that hypothesis is true, which seems certain, our exponents
= /v, , indicating that the time to expand a reactive state’epresent the most accurate values of the DP dyr_1am|c critical
scales as the time to contract. Thémplied by this resultis &XPonents to dateny a factor of about 2 We also indepen-
consistent with the value determined above. While thisdently confirm that the value of) for the ZGB model falls
method is evidently less efficient than the epidemic analysisnt® the DP class and use it to find a highly accurate and
it provides a useful confirmation our results foy andz. Corrected value op,.

In conclusion, we have provided improved numerical evi- This material is based upon work supported by the U.S.
dence that the ZGB oxygen-poisoning transition falls into theNational Science Foundation Grant No. DMR-9520700.
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