
Computer Systems Research Division Request for Comments No. 106

ON THE MODELING OF PAGING ALGORITHMS

by J. H. Saltzer

 At the recent ACM 5th Symposium on Operating Systems Principles

(November, 1975, in Austin, Texas) quite a bit of public and private dis-

cussion centered on the value of continued research in certain theoretical

areas. One of the areas questioned was the mathematical modeling of page

replacement algorithms. The skepticism ranged from vague uneasiness to

specific complaints, but firm conclusions never quite emerged.

 I would like to suggest that the problem is not Chat mathematical

modeling is necessarily a bad idea, but rather that some modelers have

been led astray by mathematical necessity coupled with lack of familiarity

with typical operating conditions. The combination, as would be expected,

yields results that are ignored by practical designers.

To give some specific examples:

1) In order to achieve mathematical tractability_, some paging models

assume that the available memory is firmly partitioned among the

jobs being multiprogrammed, while others treat dynamic adjustment

of partition boundaries as an explicit parameter available to the

designer of the page selection algorithm. These assumptions lead

to analysis of algorithms that; select for removal pages belonging

to the currently faulting program, or that occasionally

steal pages from other programs as a way of moving the partition

boundaries. In many real multiprogrammed systems that use paging

This note is an informal working paper of the M.I.T. Laboratory for Computer
Science, Computer Systems Research Division. It should not be reproduced
without the author's permission and it should not be referenced in other
publications.

M.I.T. Laboratory for Computer Science February 13, 1976

Originally prepared off-line, this file is the result of scan, OCR, and manual touchup, starting with a paper copy.

© ACM, 1976. This is the author's version of the work,
posted by permission of ACM. The definitive version
was published in ACM Forum, Communications of the
ACM 19, 5 (May 1976) pages 307-308.
http://doi.acm.org/10.1145/360051.360237

http://doi.acm.org/10.1145/360051.360237
http://doi.acm.org/10.1145/360051.360237

(e.g., Honeywell's Multics, BBN's TENEX, IBM'S VM/370, TSS/360,

and MVS, Michigan's M.T.S., M.l.T.'s I.T.S., Digital

Equipment's TOPS-20, Lincoln Laboratories' APEX, and

MITRE'S VENUS) memory is not so explicitly partitioned. Selection

of pages for removal in these systems is done across pages belonging

to all programs in the memory, and if any inquiry is made as to

which program owns a page, it is usually to try to avoid removing

pages of the program that had the fault. The result is an environment

for page selection based on interleaving of reference strings of

several jobs; that interleaving depends in turn on details of the

multiprogramming strategy. In some systems, the multiprogramming

strategy gives preferential attention to one program at a time; from

the point of view of the currently preferred program, it is almost

as if it had the entire memory available without competition. On

the other hand, the non-preferred programs run in an environment

consisting of "leftovers" from the preferred one. The effect of

these strategies on paging rates is not clear, but it seems that

for modeling to be useful, the model must include the multiprogramming

strategy.

2) Much modeling is based on an assumption that a program reference

string and a page selection algorithm are operating in some kind

of steady-state situation with a shortage of memory. The page

selection algorithm tries to minimize its losses by choosing, from

among pages still in use, the page not needed longest. The operating

conditions inside a typical interactive time-sharing system can be very

 -2-

different from that model. Many missing-page faults are caused

either by the initial "swapping in" of a program, or by the processing

of a stream of data by that program. Conversely, many removals

are of "dead" pages, belonging to programs no longer running, or

data streams that have been processed. Only sometimes (in the case

of Multics, something under 5% of the time) do missing pages turn

out to be re-retrievals of "live" pages recently pushed out by the

current program or one of its competitors. The proprietor of a

system that uses paging quickly learns to "tune" the system

(perhaps by adjusting the level of multiprogramming) so that extreme

scarcity of memory space is not the order of the day. Otherwise

much of the system's resources would be used up pushing out, and

then re-retrieving, still useful pages. It is this combination of

phenomena that most probably accounts for the Lack of a sharp "knee"

in the plot of observations of mean running time between page faults,

versus main memory size, reported for Multics.

3) Some models do not take into account the time spent executing the

page selection algorithm itself, and they take as their measure

of excellence the smallness of the number of missing page faults

obtained in processing a given memory reference string. Under

real operating conditions these two assumptions can be counter-

productive. Real memory size is probably best chosen to be large enough

that multiprogramming can just use up the capacity of the processors.

At that point, the total time spent executing me page selection algorithm

is typically quite a bit greater than the unusable idle time after

multiprogramming; in such a situation a simpler algorithm that takes

 -3-

significantly less computation time (while making a less accurate

choice of pages to remove, causing more missing-page faults and

increased idle time) may improve overall system performance. In

systems where the time penalty for a missing page is small, as in

a cache memory, a faster algorithm that causes a few more cache

misses may again result in higher performance. The observation

earlier that many page replacements are of "dead" pages further

suggests that precise choices may not be important; the computa-

tionally fastest algorithm may do almost as well as the optimum

and release some processor time to customers as well.

 The ardent defender of paging algorithm modeling research will be able

immediately to quote examples of data from real systems that actually

do operate in the regions and under the conditions typically assumed in

modeling research (small cache memories may be an example), and that defender

will be correct. The issue is not whether the models ever hold, but why

there is increasing uneasiness that the models are not having very wide

practical impact. I think that engineers faced with practical decisions

find a fairly large gap between their perception of the problems and the

theoretical models, and it is for reasons like the ones listed above. Consider

the likely impact of a paper in the field of management, entitled "How to

minimize your losses while running an unprofitable business." The businessman

hopes to operate under different, more interesting conditions, and can not be

expected to pay much attention to theoretical analyses of the arrival rate of

bankruptcy. Similarly, the system designer can not be expected to pay much

attention to theoretical analyses of systems operating under unrealistic

conditions.

 -4-

 Finally, one of the reasons modelers sometimes assume unrealistic con-

ditions must be the shortage of published reports describing how real paging

and multiprogramming algorithms work and what operating conditions those

algorithms are typically observed to create. As far as I have been able

to determine, not one of the systems mentioned in point one, above, has had

documented its paging and multiprogramming algorithms in, sufficient detail,

or has had reported enough statistics of typical operating conditions, to

allow an isolated reader of the published literature to discover any of the

three points mentioned.

 My conclusion is that a prerequisite to further progress in page replace-

ment modeling must be much more publication of observations of successful

paging systems operating under realistic loads. Research-supporting agencies

should note these issues and act accordingly.

 -5-

