
·- DRAFT 
PROJECT MAC 

Computer Systems Research Division 

May 4, 1973 

Request for Comments NoJ9 

MEASUREMENTS OF HARDWARE SPEED OF THE 6180 

by J. H. Saltzer 

In comparing the performance of the 6180 Multics system with that 

of the 645 Multics, there are several changes in environment, each of 

which can be expected to affect performance. If one expresses the per­

formance of the new system as a ratio relative to the old, it is then 

appropriate to separate out each of the environmental changes as a factor 

contributing to this ratio. Thus if we designate the overall performance 

improvement by F, we have 

F = fl . f2 . f3 . f4 

where fl = performance improvement due to speed up of the raw 
hardware 

f2 = performance improvement due to addition of ring crossing 
hardware 

f3 = performance improvement due to addition of EIS instructions 

f4 = performance improvement due to replacement of firehose 
drum with bulk store. 

Such a separation of effects is useful, since it is probably possible to 

separately measure each of the effects, as well as the overall performance 

improvement, and thereby gain a cross-check as to whether or not the overall 

performance is correctly understood. 

This memo reports an intensive series of measurements recently under­

taken on the MIT 6180 to estimate the value of f 1, the effect of the raw 

hardware speed. In summary, these measurements indicate that: 

1. When running a typical mix of Multics programs, the 6180 

processor will run about 1.8 times as fast as the 645. 

2. When running 6070 (non-EIS) programs, the 6180 processor will 

run about 95% as fast as a 6080 processor. Some EIS instructions 

are currently slower. 

3. The instruction execution rate of the 6180, when running Multics 

programs, will be about .66 million instructions per second. 

This note is an informal working paper of the Project MAC Computer Systems 
Research Division. It should not be reproduced without the author's per­
mission, and it should not be referencmin other publications. 



-2-

It should be noted that the MIT 6180 is operating under an intentional, but 

temporary, speed handicap estimated to be about 10%, in order to reduce the 

chance of associative memory errors (which are exceptionally hard to 

diagnose) during initial hardware shakedown. The numbers quoted above are 

predictions of the speed after the handicap is removed. Currently measured 

numbers are about 10% ~maller. 

The measurements 

The basic measurements were made using an assembly language program 

and the microsecond calendar clock. The clock was read, a sequence of 

instructions executed, and the clock read again. The number of instructions 

between clock readings was adjusted to require between 500 and 600 micro­

seconds of execution time, so that the measurements would be precise to 

within 1 part in 500, or 0.2%, on both the 645 and the 6180. After some 

initial measurements, it became apparent that different classes of instruc­

tions had been affected differently in the move from the 645 to the 6180, so 

a series of measurements on individual pure instruction classes was under­

taken. In general, these were accomplished by placing 28 identical instruc­

tions in a sequence, then adding a loop index and a conditional transfer back 

at the end, and loading an index register with an appropriate value before 

entering the sequence. Thus a typical test run consisted of 

load index register one 

read clock 

28 identical instructions 

eaxl -1,1 

tnz -29,ic 

read clock 

The test sequence was repeated 10,000 or 20,000 times, and the smallest 

observed running time of the sequence was taken to represent the maximum 

speed of the processor in executing the sequence. 

Using this technique, the instruction execution times of table I 

were observed. The first column of numbers is simply the measured instruc­

tion time, in nanoseconds, on the 645. The second column is the corres­

ponding number for the MIT 6180. The third column is obtained from the 

second column by subtracting 100 nanoseconds, an estimate of the amount of 

associative memory slow down. (The value of 100 nanoseconds was picked 



ada 

sta 

eapbp 

eapbp* 

stpbp 

sarl 

larl 

current 
645 
time 

1920 

2250 

2970 

5320 

2870 

current 
6180 
time 

832 

1140 

1505 

2960 

2230 

2230 

1990 

-3-

adjusted 
6180 
time 

735 

1038 

1408 

2763 

2133 

2130 

1893 

book 
6080 
time 

700 

1000 

1660 

1660 

adjusted 
645/6180 
ratio 

2.62 

2.17 

2.11 

1. 93 

1.35 

adjusted 
6080/6180 

ratio 

0.95 

0.96 

.77 

.87 

TABLE I: Instruction timings for 645, 6180, and 6080. 
All times in nanoseconds. 

* With indirect address. Adjusted 6180 time assumes two 100 nanosecond 
delays are removed. 

since it results in an ada speed which is 95% of that of the 6080, which 

is the target value.) The fourth column contains the "book" time for the 

6080, for which the ada and larl instruction times were verified on a 6080. 

The fifth column reports the speed ratio of the 645 compared with the 

(adjusted) 6180. The last column reports the 6080 to 6180 speed ratio. 

As is apparent, not all instructions have been sped up by the 

same amount. The primary reason for the difference seems to be that although 

the nominal memory speed of the 6180 (SOOns) is half that of the 645 (lOOOns)~ 

the data access times observed inside the processor, after cable propagation 

and settling time, are 660 and llOOns, respectively. Thus, although much 

of the basic CPU logic is more than twice as fast as the 645, the memory 

access time is only 1.7 times as fast. The effect of the memory access time 

is especially apparent on those instructions for which execution is not 

overlapped with address preparation for the next instructionJ and also those 

using indirect addressing. Apparently, as a design simplification, all 

instructions which load or store the pointer registers have address prepara­

tion overlap inhibited. 



-4-

A special mystery surrounds the timing of the stpbp and sarl 

instructions. They have not sped up significantly from the 645, yet 

they run 77% of the 6080 speed, which means that both the 6080 and the 

6180 provide a slow implementation. The time of the 6080 sarl instruction 

is exactly that of an sta instruction (lOOOns) with address preparation 

overlap inhibited (addition of 660ns). On the other hand, the 645 stp 

instruction time (2870ns) is much less than an sta instruction (2250ns) 

with address preparation overlap (addition of llOOns) inhibited. Thus 

apparently the 645 uses some trick to obtain some address preparation 

overlap on the stp instruction. There are actually two mysteries: 

1. Why does the 6080 perform sarl instructions in 73% of the 

time of the 6180, even after compensation for the 6180 

associative memory slowdown? (About 470 nanoseconds in the 

6180 time are unexplained.) 

2. Why does the 645 perform stpbp instructions so rapidly? 

(A store with address preparation inhibited should take about 

480 nanoseconds longer than measured.) 

If the 6180 were first brought up to the 6080 speed, and the 645 speed up 

trick were then applied, the resulting stpbp instruction time should be 

around 1450 nanoseconds, which would produce a 645/6180 ratio of about 2.0 

rather than 1.35. 

Effect on Multics 

To estimate the overall effect on Multics and its users, one must 

have some idea of the relative frequency of occurrence of the different types 

of instructions. Two different experiments were performed: 

1. Call-save-return speed. The time to perform a PL/I call-save­

return sequence with no arguments on the two machines was com­

pared. Currently, the two instruction sequences are essentially 

the same. (The only difference is that the register store instruc­

tions of the 645 sequence have been removed, and also the 6180 entry 

sequence has been slightly lengthened, changes which should almost 

balance out.) The times were 170 ~sec on the 645, and 110 ~sec on 

the 6180. The speedup is 170/110, or 1.54. Examination of the 

51-instruction sequence established that 39 of the instructions are 



-5-

of the type for which address preparation of the next instruction 

is inhibited, 12 are pointer store instructions, and 13 have 

indirect addresses. Thus, the standard call-save-return sequence 

is a heavy user of instructions which, relatively, have not been 

sped up very much. 

2. "Nothing" loop. A library program named "nothing", which when 

called does nothing but return, was called as a user command. 

The CPU ttlme used to read the command line, decode it, locate 

the command, call it, and then print a report of time used was 

measured. Since the 6180/IOM system uses different channel con­

trol software then the 645/GIOC system, the experiment was per­

formed by having I/O directed at a file rather than the typewriter. 

The following times were measured: 

645: 

6180: 
25ms l 
14ms 

total "nothing" time 

a ratio of 1.8. In both cases, there were no page faults. Since 

this "nothing" loop includes one wall-crossing, wall-crossing was 

measured. Because of the ring hardware, it is much smaller on 

the 6180: 

645: 

6180: 
3.3ms} 

• 4ms 
wall-crossing time with 
three arguments • 

To determine the speedup of the "nothing" loop apart from 

wall-crossings, we subtract the measured cost of a wall-crossing 

from each: 

645: 25- 3.3 = 21.7ms 

6180: 14 - 0.4 = 13.6ms 
"nothing" time 
without wall-crossings 

Thus the ratio of 6180/645 in the "nothing" loop with wall-crossings 

discounted is 1.6. The effect of wall-crossings on the running 

system lies somewhere between these extremes -- the average program 

is probably affected about 1/3 as much as the "nothing" loop. 

Except for its higher than average use of wall-crossings, the 

"nothing" loop is probably representative of most system and 

library code. 



-6-

Effect of the lOOns associative memory delay ~ Multics 

From the figures in Table I, we may estimate the removal of the 

lOOns associative memory delay will speed up the 6180 by about 10%. After 

a 10% adjustment, the "nothing" loop would run about 1.8 times as fast as 

on the 645. 

Conclusions 

The primary conclusion is that since Multics makes very frequent use 

of a set of instructions which have not been speeded up very much, the 6180 

does not provide nearly as much performance improvement over the 645 as was 

anticipated. Instead of the factor of 2.5 quoted for GCOS on the 6080 when 

compared with the 635 (and which will apparently be achieved by the 6180 

ada-sequence when the speed handicap is removed), we seem to be dealing with 

an average factor closer to 1.8. Predictions as to the maximum number of users 

must be scaled down 30% below their former values, and predictions of cost 

per unit operation must be scaled up about 40%. 

Recommendations 

There are at least three obvious directions worth studying: 

1. Examine the 6180 design to discover why the store pointer 

instructions speed up by less than a factor of 1.7 compared with 

the 645. Since the memory speed was up by 1.7, memory speed cannot 

be the limiting factor on those instructions. Some attention 

should be focused on understanding why the 6080 has EIS register 

instructions which execute much more rapidly than the correspond­

ing 6180 instructions. Finally, the 645 design should be reviewed 

to discover why its store pointer instruction is so fast, and 

whether or not the same technique could be adapted for the 6180. 

2. Since address preparation overlap is defeated on so large a frac­

tion of instructions used by Multics, schemes for speeding up the 

memory should provide more leverage than in the 6080/GCOS system. 

For example, a buffer memory installed in each CPU which reduced 

average memory access times to, say, 70nsec. would be very effec­

tive. In the call-save-return sequence, for example, there are 39 

inhibitions of address preparation overlap and 13 indirect addresses 

each of which add two memory cycle times. Thus a savings of 

590 nsec. would be realized 65 times, for a total of 38 ~sec. in 



-7-

a sequence currently requiring 110 ~sec. The call-save-return 

sequence would thus run 1.5 times as rapidly as it does at present. 

3. As soon as possible, remove the 10% speed handicap in the M.I.T. 

6180, so as to determine that it is actually 10%. 

Acknowledgements 

Mike Schroeder, Rich Feiertag, and Dave Gifford did much of the work 

of measurement. Helpful discussions were provided by F.J. Corbato and 

Riley Doberstein. 




