. MASSACHUSETTS
[LABORATORY FOR ﬁ% \11 ;E;;;tru'n; OF
COMPUTER SCIENCE TECHNOLOGY

{formerly Projec: MAC)

(w R

MIT/LCS/TM-87

ANCILLARY REPORTS: KERNEL DESIGN PROJECT

Davip D, CLARK, EDITOR

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

MIT/LCS/T™ -87

ANCILLARY REPORTS: KERNEL DESIGN PROJECT

David D. Clark, editor

June 30, 1977

The research reported here Was sponsored in part by Honeywell
Information Systems Inc., and in part by the Air Force Information
Systems Technology Applications Office (ISTAD), and by the Advanced
Research Projects Agency (ARPA) of the Department of Defense under
ARPA order No. 2641 which was monitored by ISTAO under contract

No. F19628-74-C-0193,

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LABORATORY FOR COMPUTER SCIENCE
(formerly Project MAC)

CAMBRIDGE MASSACHUSETTS 02139

FOREWORD

For the past three years, the Computer Systems Research Division of
the Laboratory for Computer Science has performed a series of engineering
studies on the Multics operating system. The goal was to demonstrate the
feasibility of producing a version of a full function general purpose
operating system with a "security kernel" simple enough that its correct
operating can be certified by some form of auditing. During this project,
several results of an interim nature were published as internal group
memos, and were never subsequently published in any publicly available
form. This memo contains seven such reports that contain interesting
results not otherwise reported. These seven reports deal with four areas:

= Analysis of bugs discovered in the Multics system.
= Survey of the initial size of the Multics kernel.

L]

Detailed design specification of two level process manager.
= Performance evaluation of the multi-process page manager.

D. D. Clark

ii

TABLE OF CORTENTS

mﬂ R e R AR e e RS R RS R e e ii

mm ﬂF mm lllllllll L e R e e R R R E e e iii

1.

2,

Repaired Security Bugs in Multics (2/7/73)
b, J'Hl- saltze-r. WSS EE s SR E e 1

A Census of Ring 0 (9/5/73)
b? v.L! vn?dmk R R R EE R EE R R E R e eE e - s e 5

Some Multics Security Holes which were Closed by 6180
Hardware (1/28/74)
by J.H. Saltzer, P.A. Janson, D.H. BUDt .cescosssesssans 24

Some Recently Repaired Security Holes of Multics (1/28/74)
by JiHI Slltzer, DlHl Bunt 8RR SRR SRR R e 23

Patterns of Security Violations: Multiple References to
Arguments (11/8/74)
by H.C. Forsdick, D.P. RBeed ..vuscecscas P e e es 34

A Two-level Implementatlion of Processes for Multies
(9/8/76)
br R.H. Frimkibill scicsvrsssssinrniinsntsrtnennssanaanssn: S0

Further Results with Multi-Process Page Control (2/9/77)
b? RQF. m.bue R R R AR R R SRR e E e R R R RS E R E R R R e R R 9-5

iii

REFPAIRED SECURITY BUGS IN MULTICS
by J. H. Saltzer

A short time ago I began to compile a list of all known ways in which
a user may brezk down or circumvent the protection mechanisms of Multics.
The list is quite interesting, and available for individual study, but until
the problems are repaired, it does not seem wise to distribute it widely.
On the other hand, it would be wise to promote discussion of the topic, so
as problems are fixed, I will publish their descriptions.

Examining post-mortems of fixed bugs may initially strike one as unre-
warding, but there are some potential payoffs. Since one of our objectives
is to discover how to construct a simple, auditable supervisor which has a
very low probability of such errors, the following questions seem worthy of
discussion about each bug:

1. How did it get in to the system? What design decisions helped create
an environment in which the error was made?

2. Why was it not detected immediately, at checkout time or during
system installation? What better auditing tools might have resulted
in earlier detection?

3, Was a design principle violated, thereby leading to the error?

Is this bug a member of a class of errors, of which there may be more
examples in Multics? What design principle or auditing technique
might be useful in eliminating all such related errors?

By way of definition, let us use the following arbitrary definition of
security-related problems: those which permit

1) unauthorized disclosure of information.

2) unauthorized changing of information,

3) denial of accessibility to authorized users.
A bug which may be exploited to force a system crash is considered to be in
the third category. To constrain our area of concern, only security-related
problems which are part of operating system design or implementation are

-3

of interest. For example, the practice of leaving the door to the machine

room unlocked is not of interest to us. (Unless the cause is a bad design

feature of the operating system which prevents convenient system operation
inside locked doors.)

Recently Repaired Security Bugs

Several problems were fixed in the installation of system 18.0

which simplified the access control strategy of the system:

1.

The CACL ring brackets trap. Before system 18.0, every ACL and CACL
entry contained its own separate ring bracket specification, leading
to great ease in slipping up, especially if one creates a segment in

a strange directory without first checking its CACL. This trap was
fallen into by the linker in the following way: if a user in ring &
called a ring 1 entry for the first time, the linker tried to create

a new combined linkage section for ring 1 in the process directory.

If the user had previously planted a link with the name "combined link-
age 1.01" in his process directory, the combined linkage segment would
actually be created wherever he wished -- in some other directory, for
example. Although the linker carefully set the ACL of the new segment
to permit ring-one access only, the CACL of the target directory could

give access in higher rings to other users,

Since 18.0 fixed this problem by making the ring bracket specification
a property of the segment, as specified by the creator, rather tham a
property of the individual ACL or CACL entry.

It should be noted that a contribution to this trap was made by the

automatic system feature of allowing segments to be created through

links, It would perhaps make sense to allow protected subsystems to
specify that they do not want this feature, so that when they create
a segment by name, it is created exactly where they expect.

Security Principle: If the protection status of a segment depends on
its position in the naming hierarchy, the creator of a segment nust be
given complete control of that position; no one else may be allowed to

influence its position.

-3

This principle is currently at odds with two system deficiencies,
both of which lead to desire to put links in the process directory:

a) an inflexible process directory record quota scheme, which
leads to the need te place some system segments in other
directories.

b) the automatic discarding of a process directory contents
upon accidental process termination, which leads to a need
to place some system segments elsewhere so that they may be
examined to discover the reason for the process termination,

It seems quite clear that solutions to these two practical problems
must be found before the basic security principle can be followed.

AST overflow bug. Before system 18.0 was installed, there was a re-
quirement that whenever a segment is active, all directories superior
to the segment must also be active. If a user created a directory
tree deeper than the AST size, he could overflow the AST with unre-

movable entries. This would cause a system crash.

Although this method of systematically crashing the system has now
been fixed by 18.0, which does not require that superior directories
be active, it illustrates another unfollowed security principle:
table overflows and other unexpected (impossible) events must be
handled gracefully without crashing the system, since the assumption
that the overflow (or whatever) cannot be systematically produced by
an attacker is hard to verify; worse, a system change elsewhere later
may render the assumption incorrect.

Blank names bug. If a directory contained an entry for a segment with
an all-blank name, deletion of that directory would cause a system crash.
System 18.0 fixed this bug, which again was based on assumption that the
user could not force an impossible condition to occur, so no recovery

for the impossible condition was provided.

fs_get bug. Entry fs_get$ref name failed to initialize its error
handler, so when it got an error return from kst man (e.g., KST

has overflowed) it attempted to reset a lock it never set, crashing
the system., This one seems to be a simple programming error, since
setting up the error handler fixed the trouble. Some technique of
auditing which detects this class of bug is needed.

One other bug has been recently fixed, in system 17.11:

5.

Argument validation bug. The software validation of arguments on
cross-ring calls permitted pointers with indirect modifiers to be

used, but it did not follow the indirect chain to see where it led,

A user could supply an indirect argument pointer in a call to a super-
visor entry which writes into an argument, and thrreby redirect the
writing back into a supervisor database. This bug was fixed by changing
the software validation to forbid indirect modifiers in argument pointers.

This bug has some aspects similar to those of bug number 1, above, in

that unexpected indirection can easily be overlooked.

This bug would have been automatically fixed by the 6180 argument
validation hardware, which will also automatically take care of about
30 other argument address validation troubles which have been uncovered

by systematically auditing the supervisor entries.

A CENSUS OF RING O

by Victor L. Voydock

Introduction

A major research area of the Computer Systems Research Group is to
investigate the problem of producing a certifiable computer operating sys-
tem, The first approach to this problem could have been to attempt to audit
the Multics ring O supervisor as it then existed, That is, to read all of the
programs which comprised the ring O supervisor and determine whether or not
they did what they were supposed to do., It was clear that this was not a
practical approach due to the size and complexity of ring O and the lack of
a precise (or even imprecise) specification of its functionms,

An approach which immediately suggested itself was to simplify ring O
so that it could be audited, Before this coudd be done in any organized
way it was necessary to have a clearer idea of what was in ring 0, so it was

decided to take a census of ring 0. This document reports the results of
that census.

&Egrnaches

The census analyzes ring O from various points of view:

A notebook of ring O interfaces,
A functional breakdown of hcs_ entries,

A functional breakdown of all ring O segments,

n.u .M -'-.

A breakdown of all ring O segments by source language,

The notebook of interfaces describes every way that ring O can be entered

by means of a call. It is a first (albeit crude) attempt to provide a
functional specification of ring 0, 1t is available for study to anyone

who {8 interested, The functional breakdown of hcs_ entries will be des-

cribed in a later RFC, The rest of this document deals with approaches
3 and &,

Method of Census Tnkin_g

The information in Tables I-VI was gathered from the two directories
which contain copies of all ring O object segments: >ldd>hard>bc and
>ldd>hard>o. The information describes system 20,102, a 6180 system in-
stalled on 8/15/73, The text section sizes were obtained from the object
maps, The segment count indicates the number of separately translated pjl
and ALM segments, The entry point count includes segdefs, as well as stand-
dard entry points, Thus this count is slightly inaccurate since a few pro-
cedure segments (such as the FIM) have data segdefs imbedded in them, (There
is no way to distinguish a data segdef from a procedure entry point segdef)
The translator names were obtained from the object segments using object info .

The functional categories (a :nmpleé; liet appears in Table II) are
somewhat arbitrary. Any attempt to put labels on thing®s is bound to distort
reality somewhat. Comments on ma jor classification flaws are welcome,

Most of the categories are self-explanatory, (Table VI has a list of
all segments in each category.) Physical Storage Management consists of
everything which is used to manage the physical storage of segments (core

control, page comtrol, bulk store control, etc.), Error Handling and Tracing

contains all error handlers not local to one major category (e g, syserr,
verify lock)., Major categories are listed in Table I, Utility'(Internal)

contains utility segments which are not local to one major category (e.g.
privileged mode ut), Utility (Shared with other rings) contains utility
programs which are also used by rings other than zero (e.g. clock , signal ,

-

pil_operators_), (Obsolete contains segments which exist only for compatibility
(either with other parts of the system or with user programs), and transfer
vectors which can be thrown away when the appropriate procedures are converted
to version 2 pil, All obsolete segments can (eventually) be removed from

ring O without affecting users,

General Observations

Finally, some general observations should be made,
First, ring O is much smaller than expected - about 157,000 words of

text section (executable code and read only data), A large but not mon-

Strous amount of code, For example, the bare bones of the pil compiler

(parse, semantic translator and code generator) take up 118,000 words of

text and this figure more than doubles if pil IO, the file manager and the

pil runtime library are included, Why then is ring O so complex and hard to

understand? Another measure of complexity is the number of distinet func-

tional units - procedure entry points in pil terminology, Ring O contains

1201 entry points, (The bare bones pLL compiler in contrast, contains 325

entry points,) A large number of entry points ican.be a symptom rather than

a cause of complexity (when it is either) - reducing the number of entry points

will not necessarily result in a simpler system, But, nevertheless, an in-

vestigation should be made to determine why there are so many entry points

and to what extent they cuntribufe to the complexity of Ring 0, This investi-

gation might provide insight into how the system might be more simply organized,
The second observation is that the amount of assembly language generated

code in ring O is larger than expected, 12.4% of non-obsolete ring O pro-

cedure text is ALM generated, If one views pil operators_ as an extension
of every object segment and excludes it from the total, the figure drops to
about 10%, This is still quite high, If, as a very rough estimate, one as-
sumes an average of 5 words of text section per pil source statement, our re-
sults indicate (see Table IV) that ring O consists of about 29,000 lines of
pll source and about 15,000 lines of ALM source.

Fortunately, the amount of ALM can ﬁfubably be reduced significantly.
All 64 non-obsolete ALM procedure Segmeats in ring O (see Table V), have less
than 2000 words of text section each and all but 9 have less than 400 words
of text section each, A cursory study has uncovered 13 segments which can be
immediately converted to pil with no loss of system efficiency and additional
study will undoubtably uncover others, Dave Reed is currently investigating
this area,

Finally, Tables I, II and VI suggest a number of areas in which simpli-
fication might yield a significant reduction in the size of ring 0O:

initialization - One of the oldest parts of the system, Can probably
be reorganized and simplified

salvager - Its size indicates that either it is a collection of
ad hoc methods or that the system data bases are not
well organized with respect to salvagability.

tty dim and

ARPA network - Duplicate functions should be merged, An investigation
should also be made into why the ttydim is so large,

interrupt

handling - Rich Feiertag”s work on simplifying the way interrupts
are handled should greatly reduce the complexity, if not
the size of the IO system and of Physical Storage. Manage-
ment,

linker,

search rules - Phil Jansen's work on removing the linker from ring 0

will remove 2 complicated function from ring O but will
not greatly reduce the size of ring 0O (about 3%},

5 Final Comment

Through the use of binding, the actual number of free standing proce-
dure segments in ring 0 is 50 (instead of 305), and the number of accessible
entry points is 909 (instead of 1201), A more judicious choice of binding
might further reduce the number of accessible entires, Some accessible
entries implement primitives used by outer rings and some functionmal areas
span more than one segment, Nevertheless, the number of accessible entires
is a rough measure of the connectivity of the various functional areas of
ring 0. A study of the interrelations of the 50 free standing procedure

segments may lead to insights into the overall structure of ring 0,

Table I: Breakdown by Major Categories

(System 20, 10a)

Category

File System/Virtual Memory

Initialization/Reconfiguation/
Shutdown

I0 System

ARPA Network

Ueility

Obsolete

Process Management

Interrupt /Fault Dispatching

Other (Put in ring O for no
good reason,)

Total

Total (minus obsolete)

4 of
total

36,7

15.4
13,
12,1
9
5.3
5

1

il

Words of
text section

37727

24312
23602
19143
14269
8400
7809
1966

353

157581
149181

Number
of segments

a3

56
33
34
38
16
26

8

305
289

Number
of entries

476

102
117
158
122
71
95
29

1201
1130

Table II:

s10=

More Detailed Breakdown

(System 20, 10a)

Category

I,

II;

Hw P

III.

IV.

VI.

VII.

MW

VIII,

REoRpp

File System/Virtual Memory

File System

Salvager

Linker/Search Rulesy
Working Directory

Segment Control

Physical Storage Management
Other (Fhings which overlap

categories)

Initialization/Reconfiguras
fion/Shotdown
Initialiézation/Shutdown
Reconfiguration
Other (Things which overlap
categories)

I0 System

10M/335

Typewriter Control
TOAM

Printer Control
Tape Control

ARPA Network

Utility
Error Handling and
Tracing
Utility (Internal)
Utility (Shared with other
rings)

Obsolete

Process Management
Process Creation/Status/
Destruction
Inter-Process Communication
Traffic Control
Timers/ips masking

Interrupt /Fault Dispatching

Words of Number Number
text section of segments of entries
57727 93 476

18111 24 125
11840 15 41
4572 i1 30
7069 13 29
11719 21 209
4416 9 42
24312 36 102
19501 46 81
3207 4 7
1604 6 14
23602 33 117
4533 13 38
11558 7 25
2963 B 3
2247 4 9
2301 3 14
19143 33. 158
14269 37 122
3431 11 28
1923 7 41
8915 20 53
8400 17 71
/809 26 95
4655 19 32
18388 2 11
1943 2 &0
375 3 12
19686 8 59

Table III: Breakdown by Bound Segment

=11=

(System 20, 10a)

Bound Segment Name

bound_>55_wired
bound_active_l
bound_error_active
bound_error_wired
bound_file_system
bound_gim_active
bound_init_1
bound_inft_z
bound_io_init
bound_iom_actlive
bound_iom_imp_dim_
bound_iom_Imp_status
bound_jiom _wired
bound_mseg_prim
bound_neiworku_
bound_page_control
bound_process_creation
bound_salvager
bound_sss_active_
bound_sss_wired_
bound_system_faulcs
bound_tc_wired
bound_temp_1
bound_ctemp_z
bound_tty_active

Words of

text section

luku
1lls50
le3s

liUk
224864
L2086

L2T 2
S32blk
Libs

bbb
laodk

Gozsu

LSLU
luiy
albe
Ubbs
?JLU
dlwoe
Yoas
23206
lilze
1hoe
bSso
blhe

Julu

Words of

linkage
"pection

b

4b

low
- 17

Lib
112
204
200
1Ly
2lu
27U
J L0
Ly
ob

1éu
2LO
4lu
FL
[-X-]

ik

bivw
loeg
L1é
luy
liu

Number
of entries

15
1z
L
1y
11iu
1s
14
7
pe |
Lu
3%
L2
24
7
Fan
7.
27
25
4o
1ls
111
lu
ud
5
21

12«

Table IV: Breakdown by Language
(System 20 10a)

4 of Words of Text Number of Segments
Category ALM ALM PL/I ALM PL/T
Interrupt /fFault Dispatching 70,2 1381 585 7 1
Utility 41,4 5907 8362 15 23
Obsolete 35.5 2989 5411 9 7
Process Management 23,6 1842 5967 4 22
Initialization/Configura-
tion/Shutdown 14, 3406 20906 10 46
File System/Virtual Memory 7.4 4273 53454 19 74
10 System 6.9 1628 21974 8 25
ARFPA Network .5 a2 19051 1 33
Other 0, 0 353 0 1
Total 13,6 21488 136093 73 232
Total (minus obsolete) 12,4 18529 130652 64 225

Total (minus obsolete and
pil operators) 10,1 14711 130652 63 225

«13=
Table V: List of ALM Procedure Segments by Category

Words of Words of Number of

Category Language text linkage entry points Segment Name

1-§1 alm 116 56 0 bootstrap?

1-5 alm 1712 8 t] bootstrapl

1-51 alm 202 8 0 slt_manager

1-51 alm 262 8 1 pre_link_2

1-51 aln 272 8 1 pre_link_1

1=-51 alm 30 22 1 build_template_pds
1-S1 alm 38 10 1 shutdown_switch
1-51 alm 382 36 [tape_reader

1-51 alm Gl 14 3 privileged_mode_init
1-51,RC alm 288 76 5 init_processor
2=-1D0 alm 220 52 b signaller

2-1D alni 240 g0 21 wired_fim

2-1D alm 272 18 1 fault_error

2-1D alm 28 8 3 parity_check
2-1D alm 247 102 15 ii

2=-1D alm 320 74 g fim

2-1D alm L 8 2 return_to_ring_0_
3=-F5,5C,S alm 58 B 2 hash_index

3-L alm 172 14 2 get_defptr

3=-L alm 62 8 1 datmk_util_

3=-L alm 46 g 3 lot_maintainer
3-S5 alm 154 20 G salv_free_store
3=SC alm L 10 2 kst_man

3-5C,SSM alm 80 12 5 get_ptrs_

3=-55M alm 104 G0 20 page

3=5S5M alm 1300 142 21 page_fault

3=-S5M alm 136 12 6 device_control
3=-5SM alm 142 36 7 free_store

3=55M alm 218 52 5 bulk_store_control
3=-5SSM alm 220 3b 1y pc_trace

3=5SM alm 220 5b 20 master_pxss_page
3=-S5M alm 234 L2 2 pre_page

3-SSM alm 33b 36 15 pd_util

3=5SM alm 52 16 7 meter_disk
53=55M alm 563 12 19 page_error

3=5S5M alm 80 24 5 page_util

L=pPC alm 34 16 2 Tevel

k=PC alm b 8 1 gate_init

4=T alm 28 18 3 vclock

L=TC alm 1774 l4u 39 pPXS5

5=1 alm 12 12 1 ioam_check

e=1 alm 38 B 1 call_detacher
5-10C alm 22 8 & dn355_util

5=10C alm 511 24 g iom_manager
5=10C alm 8 10 1 dstint

5=P alm L3D] 1 prt_300_conv
5-P alm 587 10 1 prt_ccnv

5-TP alm 20 g 1 tape_checksum_

ks

Table V - page 2

Words of Words of Number of

Category Language text linkage entry points Segment MName

b-E alm 10u 56 3 emergency_shutdown
b-E alm 18 10 1 check_trailer

g alm 24 16 1 syserr

B=UI alm 158 34 5 wire_stack

b=Ul alm 22 8 1 fm_checksum_

b=Ul alm 2L 16 3 get_proc_id

L=UlI alm 501 74 18 privileged_mode_ut
b=ul alm 61 1k 1 absadr

G=-US alm 10 12 1 clock_

b=US alm 14 8 2 unwinder_util_
6-US alm 18 B 3 all_rings_util_
b=US alm 206 8 b condition_

G=-US alm 28 10 2 wired_utillity_
b=US alm 3818 L2 5 pll_operators_
b-US alm 917 8 2 formline_

7=1s alm 92 8 1 imp_status_driver
8-U alm 113 8 1 old_freen_

8-0 alm 12 16 N fast_hc_ipe_tv
8-0 alm 143 10 1 old_alloc_

£=-0 alm 2574 14 13 pll_operators

E-0 alm 30 8 1 move_

8-0 alm 50 54 23 sss_active_tv_
8-0 alm 53 8 2 old_area_

8-0U alm 4] 10 1 tty_read_tv

&-U alm 8 12 2 Lty _write_tv

3-0 pll 220 32 2 accept_alm_obj

Note: see Table VI for an explanation of category abbreviations,

=]15=

Table VI: List of Ring O Segments by Category
(System 20, 10a)

The following category abbreviations are used:

1. Tnitialization/Reconfiguration/Shutdown
RC - Reconfiguration
ST - Shutdown

[H - Tnterrupt/Fault Dispatching

3. File System/Virtual Memory
FS - File System
L - Linker/Search Rules/Working Directory
S - Salvager
SC - Segment Control
SSM - Physical Storage Management

4, Process Management
PC - Process Creation/Status/Destruction
IPC - Inter-Process Communication
T =~ Timers/ips masking
TC - Traffic Control

5, I0 System

I - IOAM
I0C - TOM/355
P - Printer Control

TP - Tape Control
IT - Typewriter Control

6, Ueility
E - Error Handling and Tracing
UI - Utility (Internal)
US - Utility (Shared with other rings)

7, N - ARPA Network
B, 0 - Obsolete

Multiple tags indicate segments which fall in multiple categories,

€.8. a tag of FS,5 indicates a Segment used both by the File System and
the Salvager,

Table VI - page 2

Category Language

L1=RC
1=-RC
L=RC
i=RC
1-S1
1=-S1I
i1-51
1=51
1-S1
1-S1
1=-S1
1-51
1-S1
1-51
1-51
1-51
1=-S1
1-51
1-S1
1=-51
1-51
1=-581
1-S1
1-S51I
1=-S1I
1=-S1I
1-51
1=-S1
1=-51
1=-S1
1=-51
1=-51
1=51
1-51
i-51
1-S1
1=-S1I
1-S1I
1=-51
1=-51
1=-S1I
1=-S1
1=-S1I
1=-S1
1-51
1-51
1-S1I
1=-51
1-51
L=SI
1-SIyRC
L=SIyRC
L=STyRC
A*SI,RC

oll
vépll
vgpll
vépll
alm
alm
alm
alm
alm
alm
aln
almn
alm
pii
pll
il
oll
cil
pll
pll
cill
pll
pll
pll
piil
pil
il
vZpill
vépll
vZolil
véoll
vZoll
vwZoll
vZoll
véoli
vépll
v2pli
vip)i
véoll
vgpli
vepll
véoll
véoll
véoll
véoll
véolli
vepll
vZpli
véplil
véplil
alm
pll
pll
veéoll

Text Size
(words)

2bb
2032
231
3138
116
iTle
242
2ee
27e
3u
jd
382
ok
1193
183
192
i54
337
+69
+743
33
a8
73
T
3B 3
32
48
1957
137
1528
153
1bw
1701
147
223
252
27
300
325
3o
382
+3h
Y
SeT
a53
i
721
727
89
3I56
283
458
G

121

= =

Linkage Size
(words)

32
L1
34
L]
50

Number
of entries

"

HEeoywd e v =N b il e s b o P b b e u o PR s U Ty e

Segment Name

dsuéli_raconfiy
reconflg
adda_memnory
deleta_od_records
pootstrans
Jootstraoni
sit_masajer
are_link_2
pre_lin<_1 .
Dulld_templaTte _pas
3nutdown_swltch
taoe_~2aier
orlvileg2a_mcae _inlt
Inltiallze_aims
syserr_Iinit
Jelete_5235
SNUTI3«N
lcag_systen
re_Inlr
segment_loacer
clock_Lnit
pulld_template_ds23s
Inltlallzer
update_sst_ol1l
initlallze_faul ts
flno_serlioheral
tc_shutgaomn
scs_Ialt
ialt_hardcore_gstses
Tty_lalt
inlt_sys_var
inltlalize_gim
Init_s~ancnhes
inlit_collections
inlt_roof_dlr
an3ss_init
lo_inlt
Wirgd_shutdown
NAKE_S5Jw
Trace_ILlnit
tape_lo

rape_Inir
inlt_str_seg
lom_dara_inlt
maka_o~anchss
ouln_store_Inirt
Inlt_sz3t
scas_Inir
prianter_lnit
1sul3d_Init
inlt_srocessor
stoo_cou

tina

ards_inlt

-17-
Table VI - page 3

Text Size Linkage Size Number

Category Language (words) (words) of entries Segment Name
1-SI,RC viplil 153 22 2 freecore
1-5I,RC véplil 333 By 2 start_cpu

2=10 alm 2210 3e + signallar

2=I0 alm 2417 a0 21 Wwired_flLm

2=1D alm 272 i8 1 fault_error
2=10 alm 24 8 3 oarlty_check
2=1D alm 297 id0e LS Ll

2=1D0 alm 320 T 3 flim

2=10 alm + 8 . refura_to_ring_J_
2=I0 vépll 585 34 4 parity_fault
3=-F5S oll 1050 5b 3 acl.

3-FS pli 163 28 1 cneck_gate_acl_
3=FS oll 1764 153 5 appand

3=F5S pli 222 34 3 ringd_Iinlt

3i=FS pll 265 30 2 ace_list_

3=-F%S pli ers 22 1 match_star_
3-FS pll 2ae 52 1 force_sccess
3=FS pll 337 40 + guotaw

3-FS pli i5 26 2 quofa_utll

I-FS pli 355 &0 3 fs_alloc

3=F3 eli 349 72 3 ringbr_

3-F5 pli 50 78 2 del_dir_tree
3=FS pli g6z 128 7 flnd_

3-FsS vZoll 10586 So 3 star_

3-F5S vgpli 1160 T 3 Jelantry

3=-FS vZpll 123 78 L5 set

3=F5S véplil 148y Bl i1 quota

3=FS vépil lép? 70 L3 status_

3=FS vépll oz B 2l 2 nake_seg

3=FS vépil 2437 10% L7 3sd_

3=FS véplil +37 3y j level _J_

3=FS vZplil 491 34 3 fs_move

3=F5 vZplil 559 By 3 chname

3=FS vépli 366 62 3 fruncste

3=FS,;5 pli 1087 52 1 acc_namne_
I=FS5,5C oll 197 30 1 move_fFflla_map
3=F5,SC ol 304 56 + dir_control_er~cr
3=F5,SC pll 337 52 2 8CCesS3_moade
3=F5,5C pill 485 78 3 sum

3=FS4SC,5 ailm S8 & 2 hash_lndex
J=FS5,5C3 pli 37 36 4 nash

3=L alm 172 1a s jet_dafotr

3=L 2im va 8 i Jatme_ut]|_

3=-L ailm 36 8 3 lot_malintalner
3=L pl1 134 2l 1 gat_dafname

3-L vaolil 1036 ba ¥ Il inx_s130

3-L vZpl L 125 20 % Jhsnap_sarvice
=L vipll 234 28 1 rest_of_datmk_
3-L vZoll 313 30 i get_dafname_

=L vaZplil 232 36 1 Inirlate_search_rulas
3=L vZolil 770 54 7 fs_saarcn

3=1 vepo il 398 bb i | ink_man

3=5 alm 154 20 3 salv_free_stora
3=-5 pll 1387 40 2 salv_cneck_threan
3=5 pll 1GB87 B0 £ salv_chack_map
3-5 pil 1207 Be 1 Salv_reouila_dirzctry
3=-5 pli 1408 al 1 salvage_antry
3=5 pli 19y 3e 1 salw_clean_ast
3=3 pill 1979 160 3 salvage_dlrectory

Table VI - page 4

Text Size
Category Language {words)
3-5 pll 27
3-5 pll 369
3-S5 pll 37
3=-5 pll 421
3-5 pli 51k
3=-5 pll 397
3-s pli 7l
3=5 veépll 1441
I-SC alm +b
3-S5C pll 115
3=5C oll 373
3=-5C pll +36
3-5C pll +i4d
3=-SC pli 249
3=SC véplil 104k
3=5C vépll 580
3=SC vaéoli o5
3=5C vZoll oB7
3-SC véoll 249
3=-5C véolil 720
3-35C véolil 732
3=S5CyL vépll 1296
3=SCySSH alnm 30
3=554 alm 104
3=-554 alm 1300
3=-55M alm 1386
3-S5 alm 142
3=-5S5SM alm 213
3-554 alm 220
3=554 alm 220
3=-55M alm 234
3-554 alm 33b
3-55HM alm 52
I=55M aim 263
3-354 alm 50
3-554 pll 123
3=55HM pll 2490
3-554 pll 338
3-554 pll +210
3=-554 pll +37
3-554 pll T2
3=354 veépl i 1548
3-554 vZpll 1847
3-554 vipll 2259
4=1PC pll icd
k=1PC vZoll +68
4=PC alm 34
+=PC alm B
+=PC pll 132
4=PC pll ibl
+=PC pil 24
+=PC pli 2kl
+=PC pll 261
4=PC pll 283
w=PC pil 371
+=PC plil 4 HS
4+=PC pll [41]
+=PC pll 30
+=PC vépli 1250

-18-

Linkage Size
(words)

+0
58
54
%8
54
34
4B
a8
10
3
30
4
34
4y
76
bl
ol
62
5b
54
+L
bo
12
el
142
re
36
52
36
28
4
36
it
12
2k
32
BY
58
58
52
78
53
5
gz
ol
94
ib
q
42
48
2
LA
S8
48
BU
34
0
2b
1.

Number
of entries

4

- O

il

alr

i

P T el el T R el el b Tl o ST s LY OO e i o P e Y T i O o VI AP N T WY LY L WO WU ol LV S P R W o VIR ST I oY B e e AV AV S R TRV o FR VT
L v] it &

Segment Name

salv_tTruncate
salv_name
salv_gelate_dgir
salv_arint
salv_checr_gptr
salv_rebullu_names
salv_reoulld_azl
on_liva_salvagsr
KSsT_man
<st_antry_chec«
activate
setfaul ts
<stsrzh

updatao
MaKaunknIwn
sounifaalr
deactivata
sag_tfaulrT
initliarte
Jar_sstTa
maKaxnomn
fs_g3at
Jet_optrs_

Jage

sagze_fault
devica_coantrol
free_store
sulk_store_control
oc_trace
nasts~_oxss_paga
pre_gsaje

ao util
neter_disk
gaye_arrar
sgage_utill
asslan_device
get_dlsk_meters
mova_agevice
pc_mirag
nire_aroc
ac_fraca_pli
2c_aons
dsul3t_cantrol
8

tast_hc_lpc
nec_loc

laval

gate_lnit

oclm

Ilnlt_oroc
stop_orocass
sctivate_segs
jeact_prac
Jeactivate_Seys
terminata_proc
maxestack
proc_Iinto
accass_vlol
aet_prac

Table VI - page 5

Category Language

+=PC
L=PC
4=PC
4=PC
w=PC
4=PC
a=T
=T
4+=T
4=TC
+=TC
5=1
5=1
5=1
5=1
5=1
5=-1
5=102
5=1I0C
5=1I0C
5=102
5=-102
5=102
s5=-10C
5=-10C
5=102
5=10C
5=-10C
>=10C
5=102
5=p
5=P
5=P
5=P
5=TP
5=TP
5=TP
5=TT
5=TT
5=TT7
5=TT7
5=TT
5=TT
5=TT
a=E
o=E
o=-E
6=E
6=£
a=E
a=E
o=~E
o=E
b=E
b=E
6=-Ul
e=uUl
6=-Ul
6-UT

véoll
vaolil
véoli
vépli
vépll
véoll
alm
vépli
veoll
alm
pll
alm
alm
pll
pll
pll
vépil
alm
alm
alm
vépll
v2pli
vépli
vepll
veépll
vépll
vepli
violl
vépli
veplii
alm
alm
vépll
vépli
alm
veoll
vepli
pli
pll
pll
pll
vZoli
vépli
véoll
alm
alm
alm
pil
pll
pll
vépll
viéolil
véplilil
véoll
vZolil
alm
alm
alm
aln

Text Size
{words)

134
175
175
21
ob’?
73
28
258
83
1774
169
12
38
ib1l
198
n38
14556
22
511
3
lbs
lol6
173
2110
32
3188
333
a4
878
34

587
2w2
388
2l
1792
+83
116
+153
w74
576
1883
2133
2156
106
14
24
103
2l
20
1030
19
253
obi
333
L3R
22

ra

3

201

-19-

Linkage Size
(words)

2o
2o
38
12
4B
20
is8
30
i}
19z
30
12
A
34
56
52
7b
8
ek
i1d
13
5o
18
30
14
32
32
i8
72
i8
3
10
20
86
8
By
3e
28
283
24
La
30
3u
ol
5k
1u
ib
2d
2
L1
52
in
22
12s
e
34
8
i6
74

Number
of entries

s - it w e P m e s P W a N GE NP R RO FREE DR RN e ws PO ~Nwk e b W e e

Segment Name

oroc_lat_handler
outwara_call_nhandler
~ing_alarm
get_paje_tTrace
inltlallze_kst
JET _2"23CaS85_USege
vclocx
set_alarn_timer
los_

DXSS5

Wired _olm
loam_znechk
call_d=ztacnher
ioam_util

dstn_

loam_ut

Lloam_

An355_atil
lom_mana jer
istint

;1M1

1n3355

jloc_star
3im_atloc
channgl|

Jim3

Jiml

CNEcKk

Jilm_azz i n

Jame
ort_3Jd_cenv
ort_csnv
oprinter_status
arinter_Jdcm
tape_CcheCKsum_
tdcm

racm_status
tTty_Jtrlock
tty_Ilnter
tty_con

Tty_frae
Tty..read
Tty_wa~lta
try_lndex
emargency_shutdaonwn
chack_traller
syserr
Jedbug_chack
zall_poas
ring_0_p2ex
capoy_fdumo
ring_zaro_cleanuo
verlfy_lacn
fraca
Syserr_r=al
wlre_stack
tm_chacksum_
3et_prac_dd
srivilegaa_moge_ur

Table VI - page 6

Category Language

a=Ul
b=Ul
B=UI
B=US
B=US
5=US
o=US
a=US
a=Us
o=US
a=UJS
a=dJs
8=USs
o=UsS
o=US
b=US
o=US
a=US
B=US
o~US
a=UsS
a=US
T=i
=N
7=N
T=N
T=N
T=N
T=N
7=N
T=M
=N
=N
7=N
=N
7=N
T=N
=N
=N
T=N
T=N
7=N
7=N
=N
T=N
7=N
T=N

alm
ocli
véol L
alm
alm
alm
alm
alm
alm
alm
oli
pli
pli
oill
pll
pill
vZoll
vapll
vapll
v2pli
véoll
véolil
alm
pli
ol
pll
pll
pll
oll
pli
pii
oll
pll
pli
oill
pll
ol
pli
pll
ell
pll
pll
ol
olil
plt
plt
il
ol
oll
pll
pli
pil
pil
pli
pli
pil

Text Sigze
(words)

51
183
132
i0
1w
14
206
28
jais
417
L21
139
243
+9
385
i3a
13e
2d2
355
363
227
Fi
32
101
103
118
1238
1288
lso
L1769
182
133
134
134
2ud
211
222
229
2535
2713
274
277
2939
3309
317
32
+08
5331
949
212
a57
f2e
Twl
173
-1-74
a7

-20-

Linkage Size
(words)
1o
32
52
iz
8
a
8
10
Le
8
24
32
3z
2&
5u
&40
14
12
20
i6
18
20
8
Iy
24
32
132
Ly
2is
i73
ol
3u
Kt}
“h
30
-1
Wl
244
bu
wl?
38
356
42
58
54
26
56
52
a8
132
56
74
154
7e
-§-]
30

Number
of entries Segment Name
L absSadr
thraag
l ock
clocwm_
Unwlnger_util_
all_rlnqs_ufll_
=anditilon_
wirad_utilirty_
211 _302rators_
tormillas_
cv_oln_
uﬂlau!_Cﬁjrs_
Swv_dac_
Jynhlaua_olrts_
Juf&_t lma_
Jplect_info_
araa_asslan_
fregn_
alloc_
irea_
slgnal _
try_to_unlock_locx
Imp_status_driver
Ilmo_get_out fer
imp_3lobal_status
lom_Imo_Jdcm_read
lom_lno_3ca_init
nco_maln_
imp_tnreaa
a"Co_
Imo_wa<euo
lom_imo_dcm_writ=
imo_utll_wirea
Imo_utii
imo_wrlita_service
imu_service
nep_ring_
lom_imp_status
ilmp_misc
ACo_toap_
imo_j2t_alreo_puffa~
Ilmo_3lo0al_gueue
Ilmo_mark_nost
imo_reau
Imp_loack
imo_cl2anup
Imp_mrita
Impo_lnout_procassur
imp_injt
1 imp_srreor
imp_order
ncp_utl |l _
TCco_status,_
;mn_lnnur_procasaor_inr
inp_attach
lmn_rettase_n1re}_qurar

H

I e ok e = o b o e b e e I e e B = =

= o+

e W o e e W P S FE R B sk e wk eke i B b R N e e i P e

2ts
Table VI - page 7
Text Size Linkage Size Number
Category Language (words) (words) of entries Segment Name

6=0 alm 11> b 1 old_rreen_
e=U alm ié iuw [fast_hc;ipchnv
o=~0 alm 4o iu i old_alloc_
u=0 alm FEY " ls 1> pll_ouperators
w=0 alm U o i move_
v=0 alm U o P 555_active_tv_
o= alm 22 [£ old_area_
o=-0 alm u il 4 Lty_read_tv
e=U alm ¢ de £ Liy_write_cv
o=U pla LU b u dsercode
o=U pla dio] b 1 de_pack
o=0 pla “il e < accept_alm_ohj
=0 pll «9b 4o 4 list_cir
o=0 pli £ba 4y i stalus
o=U Vipll ded Ly i Eel_entry_name
v=0 vepl i 4530 7y 5 ex_arl
b=U vipli l7us oL L acl
Uther vepla 333 4 i date_name_

=22~

SOME MULTICS SECURITY HOLES WHICH WERE CLOSED BY 6180 HARDWARE
by J. H. Saltzer, Phillippe Janson, and Douglas Hunt

This note is the second of a series™ which describes design and imple-
mentation errors in Multics which affect its ability to protect information and
provide service. The purpose of the series is to try to discuss what incorrectly

laid groundwork permitted each trouble to creep in.

It is interesting (and comforting) to note that no security problem vet
discovered has required any change in the originmal ovarnl]hdesigu of Multics;
the problems have universally been at the level of detailed design errors or
implementation slipups; the repairs have been conceptually simple readjustments
to bring the design or implementation back to the originally intended one.

A fairly large number of security problems were fixed automatically by
conversion from the Honeywell 645 to the Honeywell 6180, which has built-in
argument validation hardware. As will be seen, replacement of a complex soft-
ware package with a relatively simple hardware mechanism was remarkably effec-
tive, suggesting that it was a move in the right direction.

Unvalidated Gates

In the 645, the following gates to ring zero had no validation of

arguments at all:

absentee test_ (all entries)
hphes (all entries)
phes_ (all entries)
phnxhes (all entries)

admin gate $guaranteed eligibilicy off
admin gate Sguaranteed eligibility on

Argument validation comsists of checking each argument to a gate entry to be

sure it refers to an address to which the caller is permitted access. For ex-
ample, if the ring zero program intends to write into the argument (e.g., an out-
put value) then the caller of the entry should specify an address in which he is
permitted to write. Failure to perform argument validation would mean that the
caller could specify an address somewhere inside ring zero; if he did, the ring
zerp program could be used for unauthorized patching of the supervisor. It is

slightly harder but still possible to exploit a gate which only reads its arguments.

* Previously issued memo in the series: see page 1 of this memo.

-2

The unvalidated gates had one thing in common: they were all con-
trolled by access control lists which limit their use to supposedly respon-
sible individuals. This control was probably the chief rationalization for
not putting in the extra effort required to specify the argument validation.

On the 6180, all arguments are automatically validated by hardware
checks on the ring of origin of every argument. This approach eliminates
both the extra (and sometimes neglected) effort needed to specify validation,
and also any possibility of errors in that specification.

Incorrectly validated arguments

In the following entries, some argument was validated with more
leniency than appropriate, permitting the user, typically, to cause the super-
visor teo write into an area in which the user has no access.

hes_Sget_seg count
hes_$get entry name
hes_$get_dbrs
hes_Sassign_channel
hes_$check device
hcs_$get_search rule

last argument unvalidated.

argument validated for wrong type.
argument validated for wrong usage.

lst argument validated for wrong usage.
Znd argument validated for wrong usage.
argument validated for wrong usage.

hcs_S$get count_linkage
hes_$ipc init
hes_$list_dir
hes_Smake ptr
hes_$list dir acl
hes_Sset_dtd

2nd argument validated
argument valudated for
2nd argument validated
lst argument validated
3rd argument validated
3rd argument validated

for wrong usage.
WIONng usage.

for wrong usage.
for wrong usage.
for wrong usage.
for wrong usage.

hes_$status entire argument spec is wrong.
imp dim gate $imp read order 3rd argument validated for wrong usage.
imp dim gate $imp write order 3rd argument validated for wrong usage.

netp_$ncp_priv_status 3rd argument validated for wrong usage.
netp Sncp priv_order 3rd argument validated for wrong usage.
net_ $ncp status 3rd argument validated for wrong usage.
net_Sncp order 3rd argument validated for wrong usage.
hcs_$acl_list 5th argument validated for wrong usage.

This list represents the accumulation of errors over several years of
specifying argument validation for about 150 user-callable gates. When an
argument is validated for "wrong usage" it typically means that the gate
specification says that the gate only reads the argument, when the gate
actually writes into it. Thus, the validator checks only to make sure that
the user can read data at the specified address. 1If the user provides a
pointer, say, to some location in the "sys_info" segment, in which he has
read-only permission, the gate, which can write into "sys_info" by virtue of

its ring-zero location, would then overwrite some item there.

SOk

Again, the value of the automatic hardware argument validation feature of

the 6180 is clear: the opportunity for an incorrect software-declared speci-
fication is completely eliminated,

Unvalidatable arguments

In the following entries, some entry could not be checked by the
automatic validator, since the correct method of validation depends on the

value of some other argument.

hes_$Sacl list 3rd argument used as both input and
output.

hes_$éx acl list 3rd argument used as both input and
output.

hes_$Sex acl delete Jrd argument meaning depends on
4th argument.

hes_$initiate seg count bth argument meaning depends on another
argument.

hes _$list dir acl 4,5th arguments meaning depend on the
value of 3rd argument.

hes_Sreplace sall 3rd argument unvalidatable.

hes_S$replace_dall 3rd argument unvalidatable.

The problem in each case here was deeper than in the previous one: the
particular choice of arguments lead to impossiblity of wvalidatiom, and
therefore to no validation at all. For example, suppose that the third
argument is an input argument for some values of the first argument, but is an
output value for others. Then a protection specification which says that
the third argument must be writable would cause some correct programs, which
intentionally provided & read-only third argument, to be declared illegal.
1f, when these entries were first introduced, their documentation had speci-
fied that the argument in question must be writable whether or not it is
actually written into by the supervisor, then the trouble could have been
avoided (at the cost of an additional obscurity in the user interface).
Unfortunately, an after-the-fact change to require writeability might cause
some correct user programs to stop working, so compatibility prevents

correction.

Again, the automatic argument validation hardware of the 6180 provides
a solution., Since every reference to an argument is separately checked, only
if the argument is actually used as an output argument will it be checked for

writeability.

-25=

EPL argument validation trap

The argument validator did not completely check out some of the more
complex specifiers of arguments provided by EPL (the first Multies PL/I
compiler) programs. Thus, a user could construct an argument descriptor
which indicated that an EPL specifier was in use, and thereby induce the
argument validator to allow the call to go unchecked. This problem was
basically one of historical compatibility: the EPL specifier format and
organization was designed before the implications of argument validation
had been considered. When it became clear that certain argument types were
hopelessly complex to validate, an attempt was made to prohibit (by edict)
the use of those types of arguments in supervisor entries. After the later
PL/I compiler eliminated the need for a restriction, some gates were installed
which utilized the forbidden argument types. The argument validator, unfor-
tunately, provided a default of "acceptable" for EPL arguments of unvalidatable
type, so it turned out that one could call the new entries with programs
written in EPL, which was still an available compiler. The alternatives of
changing the default to "unacceptable" would have effectively denied access
to the new gates for those users not yet ready to rely upon a new unseasoned,
PL/I compiler. Thus, through a series of design slipups, errors in judge-
ment, and bad practices, this protection bypass got into the system.

The 6180 argument validation hardware again automatically performs
the appropriate access checking at argument usage time, independent of the

format of the structure passed as an argument.

ECT terminate bug

The design of the Inter Process Communication (IPC) event channel
table (ECT) had the following flaw: when the user-ring IPC created an ECT,
it then called a ring-zero entry to inform the ring-zero part of IPC of the
location of the ECT. The pointer in question was stored by the ring-zero part
of IPC in a ring-zero data base, for future use in passing IPC messages back
to the user. The user could now terminate the segment containing the ECT,
and initiate some other segment (to which he had only redd access in the user
ring) with the same segment number as the former ECT. Then, the ring zero
part of the IPC, using its stored pointer, would write the user's messages in

@ place the user had no business writing into.

-26~

With the 6180 hardware, the pointer passed by the user to the ring-
zero part of the IPC facility, and stored there, contains the ring number of
the user's ring. Thus all reference made by ring-zero IPC using that
pointer will be validated as though they came from the user ring., If a seg-
ment for which the user did not have write access is substituted, the attempt
of the ring-zero procedure to write in it will fail.

Exploitation of user-ring master-mode procedures

The 645 processor had a "master-mode" property, which bypassed all
protection checks; certain procedures such as the fault interceptor and
signaller had to operate in master-mode, vet in the ring of the user causing
the fault or receiving the signal. To prevent exploitation, the hardware
permitted calls to a master-mode procedure only to an entry point at locationm
zero in the segment; the procedure was expected to very carefully examine the
circumstances of its entry to insure that it was not being exploited.

Upon review of the standazd entry sequence code actually being used,
it was discovered that the design did not prevent exploitation at all. Three
disténct problems were found, each of which could be exploited in several
ways. First, the entry sequence was designed on the assumption that index
register one had been set to indicate which of several actual entry points
to the segment was desired. The entry sequence correctly assumed that the
caller might place an out-of-bounds value in index register one, so it
checked to make sure that the value was within reasonable limits. Unfortu-
nately, if the value was out of bounds, it called out to the system trouble-
handling procedure, which proceeded to "crash" the system. Thus, any user
could cause a crash by transferring to location zero of the signaller, with an
appropriate value in index register one., The second problem is that the call
to the system trouble handler was done by an indirect transfer out through
the linkage section of the master-mode procedure -- but this call occurred
before verification that the linkage pointer had been set to the currect
value. Thus, the user could plant a special value in the linkage pointer,
transfer to location zero of the signaller, and cause the master-mode proce-
dure to transfer anywhere he wished =-- including into the middle of another

master-mode procedure. Again, by preparing registers #n advance, and choosing

T

carefully the code sequence to transfer into, one could develop an exploi-
tation. Finally, the third problem is that safe-storing of the processor
registers was done assuming that the register value in the stack base regis-
ter did not need to be checked, since it was locked. Unfortunately, a 1971
modification to the system resulted in the stack base register being unlocked,
so the user could, by loading the stack base register and transferring to a
legal entry point of the signaller, cause it to safe-store the processor
register almost anywhere.

Although the concept of securing a master-mode procedure still seems
viable, the implementation is apparently very fussy. By checking the Multics
System Programmers' Meanual it can be established that the first two problems
have existed at least since 1967, and probably earlier. It was precisely be-
cause of uneasiness about the securing of master-mode segments that the 6180
was designed without a master-mode, and with consistent and builtin hardware
call and fault facilities.

Execute instruction user special protection checks

On the 645 processor, the checking of permission was special cased
when an "execute" instruction was encountered, since the time of decoding
of the instruction to be executed is delayed to a time when most instructions
are in the midst of execution.

Apparently as a result of a field change, one of the special cased
checks was accidentally disabled if the execute instruction was located
in an odd location and it addressed an offset of zero in another segment,
In this situation, write permission was not checked, so one could write
into a read-only segment.

Here we have an example of the danger of special cases -- they tend
Lo cover rare occurrences, which means that routine operation does not
exercise them. It also points out the recertification problem: even if a
design is origindlly sound, every later modification should be accompanied
with a recertification.

-28a

SOME RECENTLY REPAIRED SECURITY HOLES OF MULTICS
by J. H. Saltzer and D. Hunt

This note is the third of a series® which describes design and imple-
mentation errors in Multics which affect its ability to protect information and
provide service. The purpose of the series is to try to discuss what incorrectly

laid groundwork permitted each.trouble to ecreep in.

It is interesting (and comforting) to note that no security problem yet
discovered has required any change in the original overall design of Multics;
the problems have universally been at the level of detailed design errors or
implementation slipups; the repairs have been conceptually simple readjustments

to bring the design or implementation back to the originally intended one.

Reused address

Following a system crash, the salvager may discover that a single disk
or drum page is being used by two or more page tables, a situation which should
never occur intentionally, but may appear if a crash occurs while updating a
page table wvalue. In the original design, the page im question was awarded to
the first page table encountered by the salvager, and later users of that page
were assigned new pages containing zeroes, Since there is no way to tell which
of the multiple users was the legitimate one, the present, safer design gives
all users of a reused page distinct pages of zeroes. This improved design
helps reduce the chance of one user seeing another user's data because of a sys-
tem crash. Ideally, one would make the storage space which holds a page larger
than the page itself, and store a copy of the segment unique identifier with each
page when it is assigned to & segment. Then, since pages are identifiable, lost
or multiply-used pages could be returned to their proper owners with less chance

of accidental interchange.

This problem illustrates an issue which is as yet not very systematically
approached in large systems: the initial design almost always assumes perfectly
functioning hardware and software, and as experience is gained about which

failures are most common, patches are added to protect. The design of the

% Previously issued: memos are reprinted on page 1 and 22 of this memo.

-29-

second CTSS file system included forward and backward pointers with every
record of a file; the system always checked the back pointers to see that
they contained the expected walues. As a result, parts of user files were
almost never interchanged -- a distinct improvement over the first CTSS file
system which used forward pointers alone, and in which it was a common occur-
rence to find someone else's data in your file. Unfortunately, this parti-
cular CTSS lesson did not get transferred to Multics, probably because of the
extra overhead that might have been involved in drum management.

Operator login window

Wheh bootloading Multics, the operator dialed a telephone number to
log in the "initializer" console, which controls all system operation. A
hostile user, with careful timing, could dial the number and take over the sys-
tem as it comes up. The design was adopted so that system initialization could
be performed from any available terminal; it was originally intended that the
operator supply a password, but for some reason that intent was never implemented.
The design was recently changed to permit use of a terminal which is permanently
wired to the system; security is higher, but when that terminal breaks, system

operation may be awkward. The awkwardness can be eliminated by having several
available hardwired terminals.

FSDCT update problem
The "file system device configuration table"™ (FSDCT) contains a bit

for every storage block in ewery secondary storage device. A "one" means
the block is unused, a "zewo" means it is used. If several devices become
completely used, a page of the FSDCT may become filled with zeroes. Since
it is an important table, it is frequently backed up by copying it out to
secondary storage. The procedure invoked for this copying is the standard
page removal procedure, which has been designed to discard pages of zeroces
rather than writing them out. The routines which read the FSDCT from
secondary storage at system initialization time (before the standard paging
program works) was a non-standard one which did not know that pages of zeroces
were given special treatment; a system crash resulted whenever the system
was initialized. In principle, at least, a user with a very large storage
allotment could exploit this bug by creating many segments just before a
system shutdown. The system would shut down with an FSDCT containing blank

-30-

pages, &nd all future attempts to bootload the system would fail. The bug

was fixed by revising the FSDCT reading procedure to correctly recognize the
blank pages during initializatdon.

This is a category of bug which does not permit the exploiter to
read information, but merely to deny use of the system to other legitimate
users. The particular problem illustrates the effect of first using a
special trick for efficiency, followed by later use of an old procedure

for a2 new purpose without reviewing its operation for special tricks.

Login table overflew

The list of logins during a single bootload of Multics was stored in
a single segment with no overflow procedure. A single user, by logging im
several thousand times, could overflow the segment, making further logins
by authorized users impossible.

This is another example of a "denial-of-use'" bug, but eme which
could be rapidly recowered from by reinitializing the system. Its origin
lies in the period between 1968 and 1970 when a combination of pressure to
get going and also a short average "system up" time made programmed provi-
sions for table overflow look like & non-essential luxury) It has been
long since fixed by adding an overflow procedure, but its origin is instrue-

tive since there may be yet unsuspected protection bugs with the same origin.

Page €ontrol magic number

An old hardware bug trap places magic numbers in core where a page
is to be read in, then after reading the page checks the numbers. If still
there, it assumes the page didn't come in, and reports a page read error to
the user. If a user places contrived mames containing the magic bit patterns
strategically in a directory to which he has only append access, he can

effectively delete other entries in the directory.

The trap has been left in the system, but it has been placed under
strict operations control by requiring a special "debug" card in the configur-
ation deck loaded by the system operator before lootload; operation with

the debug card in place is done only with special authorization, and leaves
an audit trail.

=

Retriever acl-setting bug

The retriever, used to obtain old copies of files from backup tapes,
used to work as follows:

1. Create a new empty segment in the user's directory, with an
access-control-list permitting access to anyone.

2. Copy the data from the tape into the new segment.
3. Read the appropriate access-control-list from the tape.

4, Replace the initial access-control-list with the one read
from the tape.

If an error of any kind occurred afiter completion of step 2, the retriever
would exit, leaving the data reloaded but unprotected; the user received no
warning of the condition. -As a result, an explorer of the directory hierarchy
would typically discover several files to which he had access but should not
have.

The problem was repaired by making the initial access-control-list
grant access to the retriever process only; any errors after that point
result in a fail-safe inaccessibility of the segment. Since the user who
requested the retrieval will usually try to immediately use his retrieved
segment, its inaccessibility will tend to be discovered quickly, and a
locksmith can be called upon to adjust the situation.

This problem is a good example of design which did not take
into account all the implications of an error encountered in an otherwise
acceptable sequence,

Process directory record overflow

If the user generates too much storage (more than 500 pages) in
his process directory, an error is signalled to him. 1In the original design,
the signaller used the wrong stack, crashing the system. This bug could be
exploited to deny service to others at the user's whim. It was repaired by
having the signaller use the correct stack. It is a good example of the
effect of complexity (the need for several possible stacks) compounded with
the difficulty of testing unused and limit conditions. Basically, the
handlers for rare and unusual conditions tend to be poorly tested simply be-

cause normal use, which uncovers most bugs in today's systems, does not
exercise them.

=32=

Locked stack base problem

In the design of the 645, a provision was made for the supervisor to
lock the value of any base register. This feature was included primarily
because it was planned to handle faults and interrupts using a stack, and it
was not certain at the time whether or not use of a stack was possible unless
the stack base register (containing the stack segment number) was locked against
user tampering. For several years, Multics operated with a locked stack base
register whose value was changed by a master-mode procedure as part of the
ring-switching operation.

The fault and interrupt interceptors were coded assuming a locked
stack base at three points, although after the ring design was complete,
it became clear that the user could, in principle, be safely allowed to
modify the stack base register.

With the evolution of the design of the PL/I caﬁ@iler, it became appar-
ent that the extra flexibility of allowing the stack base register to be user
changeable was quite handy, so the stack base register was unlocked. Unfortu-
nttély, no one followed through with the three one-line changes to the fault
and interrupt interceptors required to eliminate their dependence on a2 locked
stack base register., As a result, one could load the stack base register with
the segment numbers of one of the ring-zeroc stacks, and then wait for the
next fault or interrupt, which would go to an interceptor which incorrectly
agsumed that because the stack base register had the expected value, the
stack pointer register must also be loaded correctly. The result was

possible overwriting of a ring zero data storage area at the direction of
the user.

The problem was fixed by adding the three one-line checks mentioned.
The underlying trouble here seems to be a failure to follow through all the
implications of a change in a fundamental ground rule; clearly such changes
are dangerous and must be approached with all possible caution. (see also

REC-46, discussion of user-ring master-mode procedures.)

New ring stack bug
The system has an internal procedure, named "append branch", which
creales a new segment, and @ utility named "makeseg" which either creates

a new segment (by calling "append branch") or returms & pointer to an old

=33=

one &f it already exists. Since "append branch" requires many arguments to
describe the newly created Segment, and "makeseg" supplies useful defaults
for most of the arguments, there is a tendency among system programmers to
call "makeseg" rather than "append_branch", even when use of an old segment
would be incorrect. In the case of the procedure which creates stacks for
newly entered rings, the user could create a segment with the stack name of
& previously unused inner ring, but with ring brackets allowing him to

read and write the stack contents. Them, upon calling a procedure in the

inner ring, stack creation would be automatically triggered. The stack
creating program called "makeseg", and thus would receive a pointer to the
previously planted stack rather than an indication of an error. The inmer
ring procedure would then proceed, oblivious to the fact that its stack
was then accessible to pPrograms in outer rings.

The problem was fixed in moving to the 6180, since the stack
creation strategy had to be modified anyway; procedure append branch is now
used. We have here an example of how a particular combination of too many
conveniences in one utility program can lead to sloppy consideration of
the implications of using it,

«3li=

Patterns of Security Violatlons: Mulitiple References to
Arguments

by Harry C. Forsdick and David P. Reed

l. Introductlion

A large class of potential holes In the security of an
operating system Is characterlized by the use of an argument more
than once. On the surface, this situation appears to be
harmless: multiple references may be inefficient, but they seem
to be functionally equivalent to a single reference. But, are
they? |f the value of an argument could change between one
reference and the next, the possibllity of an error In the loglic
of the program using the argument exists. The assumption made by
the author of the program that an argument could only be altered
by the program or agents of the program is violated. How could
an argument change In this Invalid way? A simple conceptual
scheme on a multiple process system Is for one process to execute
the call, supplying the arguments and a second process which has
access to the values of the arguments, to perform, at the
appropriate time, the alteration on the arguments. Whether or
not a multiple argument reference leads to a breach of security
depends on how the information galined from each reference Is
used. |If the results of a test on one reference to an argument
determine how the Information of a second reference |s used, then
a explolitable hole in the system probably exlsts. More specific
conclusions on the correctness of multiple references to an
argument depend on the semantics of the particular program under
analyslis. Richard Bisbey of the Information Sclences Instltute
of USC brought this subject to our attention. He described the
multiple referencing of arguments as a general pattern for a
class of security holes and cited several Instances of thls
pattern in Multics.

With these Ideas as motivation, the Multics gate entrances
to ring 0 were examined to determine If such multiple references
to arguments were being made and iIf so, the Implications of such
flaws. Of the approximately 170 entrvpoints to ring 0 through
the hecs_ gate, about 50 were found to make multiple references to
thelr arguments. Nine of these Instances were potentially

serlous breaches of security In the Multlcs system. All of these
breaches are easlly fixed by copying arguments and then

=35=-

referencing the local coples,

2. How to Change the Value of an Argument

The multiple process method of changing the value of an
argument Is conceptually simple, although In practlice, It Is
necessary to coordinate the two processes so that the argument
gets changed at the proper time. This task Is often Impossible
to accomplish except by chance. A slightly more complex
mechanism however, makes the alteration of an argument trivial.
The combinatlon of [ndirect and Indexed -
addressing and the ability to cascade these modes of addressing
allows a programmer to set up an argument 1ist so that each
reference to an argument accesses a different value. On the
H6180, Indirect then Tally (IT) address modification is one of
the kinds of Indirect addressing and the Increment Address =
Decrement Tally - Continue (IDC) variatlon on the IT modifier Is
an example of Indexed - autoincrement addressing.

First, consider indirect addressing. Typlically, there Is a
fleld in an Instruction which can specify that the operand
address points to a cell (the "indlrect word") which contains the
actual address of the operand. |In addition, with cascading, a
fleld in the indirect word can specify that the Indirection
process should contlnue at least one more level. For example,
the diagram below deplicts three levels of Indlirection:

Iu;;Tuc;]gn }5;]ugI;Fc; wqrd nd Indirect word
* * e }
HN‘-Indlrect fietd—’;‘ :

14 ; 3rd Iindirect wogd DEeraEd
Lm indlrection

For the Indexed-autoincrement mode, there are two additlional
flelds in Indirect words: the Indexed-autolncrement fleld and

the count (tally). When an Indlirect word with the
indexed-autoincrement addressing mode is accessed, the count Is
added to the address and used as the effective address of the
Indirect word, |In addition, the count fleld is Incremented by 1.
Thus, each time an Indirect reference is made through an indirect
word with the Indexed-autoincrement addressing mode, the
effective address |Is one locatlon higher. This Is very useful in
accessing tables == 1in our particular case, tables of values
for a single argument. For example, the diagram below depicts
two consecutive references to an argument. The Indirect word Is
part of the argument list set up by the calllng procedure. In
the first reference, the count Is zero and thus the value
accessed is the first value In the array of values.

First Reference

‘JndlrECt ¢HIH&EIEd-EutDIHCFEMEHt
[Load [*[[O[T -i—)-
valuel

accessed value
value?

Second Reference

[load [[o+—>[TI[[o+—>»

accessed va!ule'a

The count Is automatically Incremented by one so that on the
second reference, the value accessed will be the second member on
the array.

|f arguments are accessed by Indirection (as they are In
Multics) It is quite easy for a (maliclious) programmer to set up
an argument list so that each reference to an argument accesses a
dlfferent cell. A number of machines (for example H6180, UNIVAC
1108) have the addressing features similar to the ones described
above and thus systems running on these machlnes are susceptible

to the problem of arguments changing values at unexpected but
predictable times.

3. Classes of Errors Caused by Multiple Argument References.

The last Sectlion established that multiple argument
references can cause problems., There are four types of errors
that arise from multiple references to arguments that are
characterlzed by patterns of reading and/or setting the
arguments. The illustrations below are stated In terms of double
references, although the discusslon appllies equally well to any
number of multiple references.

1. Double Reads: In this class of error, an argument Is read
twice., The value read the flrst time Is tested and the result of
that test determines how the value read the second time is used,.
The followling program fragment [llustrates this type of error:

if argument = "pds' then switch = 0;

if switch = 0 then}
else (reference to argument);

The value obtalned by the second reference to argument could very

oy

well be 'pds', a state that Is Inconsistent with the original if
statement.

2, Setting then Reading: Another common class of error occurs
when a procedure initializes an output argument to a certaln
value and then relies on the integrity of that value. The scheme
outlined in Section 2 works equally well for reading or setting
arguments. Thus, It Is possible for a user to cause a called
procedure to use a value that Is outside of Its control. The
following program fragment [l1lustrates this type of error:

a_ename = "mallbox';

call delentrys$dfile(dirname, a_ename,code);

Between the points a_ename was set and used, its value could be
changed to any value the user desired.

3. Setting twice: A slightly less obvious, yet potentially
equal ly damaging error arises when an output argument s set
twice. Damage results In situations where the value to which the
argument is first set Is to be hldden from the calling procedure
by storing the second value. Agaln, since the scheme of Section
2 works equally well for reading and writing a history of
argument values can be developed. Thls history Is a potential
privileged information leak. The following program |llustrates
this point:

argument_code = error_table$entry_not_found;

argument_code = error_table$no_access_to_flile:
/* Hide exlstance or non-existance of flle from user. * !

b, Passing an Argument: A "delaved" error can arise when an
argument to one procedure is passed directly without copving to
another procedure. This Is because the value of the argument
resides in an address space that Is not protected (the user's
address space). |In Multics, the scheme described In Sectlon 2
does not cause a problem because an entry In an argument list for
an argument to the calling procedure points directly to the value
of the argument. Thus, there can be no malliclous addressing
modifiers in the argument 1ist, The more general multiple
process scheme, however, is stll1 effective In changling the value
of the argument. For example, If procedure A Is called with
argument X by a user procedure, and A In turn calls B supplying X
(without copying) as an argument, then the value of X can be
changed by the multiple process scheme during the time B Is
running. Thls problem is made more serious by the tendency for
argument validations to be dropped (for efficiency reasons) In

-38-
procedures that are internal to the protected part of a system.

5. Multiple References to Pointer Qualiflied Arguments: Qulite
often a pointer to an argument |s passed to a procedure when the
actual argument Is a8 complex data structure, Agaln, the multiple
process scheme can cause the actual data Item to be altered
during the running of a called routine. Copying the polnter Into
a local variable and performing references through thls local
copy does not solve the problem since the actual ygluye of the
argument can be changed by the multiple process scheme.

4, Methods of Recognlzling Multiple References

In a large system It Is very difficult to discover Instances
of the errors ourlined In Section 3. Two alternative methods of
attack were taken in out study of Multics. One technique is to
perform an analysis of the text of all procedures that are
interfaces between the critlically sensitive part of the operating
system (ring 0 gates In Multlics) and user programs. This
analysis is alded by the cross reference listing produced by the
PL/| compiler. Certain patterns In the cross reference listing
for arguments Indicate that multiple references are belng made.
The main advantage to thls approach Is that If done correctly, It
will yield gll instances of multiple argument references. The
maln disadvantage is that it Is a time consuming task.

There are two defects In the cross reference technique.
Flrst, all references are listed together; thus it Is Impossible
to tell by looking at the 1ist which kind of reference (read,
write, appearance in an argument list) occurred. The Inabllity
to distingulsh In the cross reference 1isting between argument
list appearances and reads and wrltes makes the analysis more
difficult. The second defect of the cross reference technique is
more serious. The appearance of a reference to a name In the
text of a PL/| program does not guarentee that there will be a
corresponding reference to the value of the name In the
instructions emitted by the compller. There could be zero or
more references depending on optimizations performed by the
compiler and the form of the actual reference. As an example of
the last exception, the statement

x = convert(argument,z);

doesn't actually reference the value of the argument. The value
of z Is converted to a value whose type Is the same as the type
of argument and stored Into x. Simllarly, a reference to the
length of a string does not reference the string, but rather the
descriptor of the string. Thus, searching the cross reference
list for multiple references can cause false alarms. On the
other hand, the cross reference list provides no help In spotting

=30=

references to arguments that are contalned within loops.

It is conceivably possible to mechanize this process so that
multiple references to arguments could be discovered by an
automatic analysis. This task would fit in easily in the
framework of the PL/| compller since all of the necessary
information is already avallable within the compliler.

The second technique for discovering multiple argument
references involves monitoring the actual use of arguments passed
to interfaces and noting any arguments that were referenced more
than once. The mechanism used to exploit multiple references to
arguments noted 1in Section 2 can also be used to detect
multiple references to arguments at runtime. While all multiply
referenced arguments cannot be detected in thls way, many which
can be exploited via the autolincrement mechanism will be found.
Since these are particularly easy to exploit, detection of them
is qulite useful.

In order to detect these bugs, a set of speclal transfer
vectors were substlituted for the ring 0 and ring 1 gates In
several users' processes. These transfer vectors constructed a
new argument list which made use of the autolincrement features
of Multics Indirect addressing to keep 2 count of references to
arguments via the pointers 1In the argument 1ist. This argument
list, which ultimately referenced the original argument 1ist via
a series of Indirections, was passed to the real ring 0 or ring
1 gate. Upon return, the transfer vector code observed the
number of references to each argument, and recorded the maximum
number of argument references In any call in a metering data base
which had one entry per argument per entry point.

For those interested, the argument 1ist constructed |s
detailed below. It should be noted that this technlque can only
work If the number of argument references can be bounded and
small (l.e., references to arguments do not appear In loops).
Unfortunately, this was not the case for tty_write, tty_read, and
tty_order. Consequently, these entry points were not measured
by this method after the Initial tests.

]addressltallg|*[
/Z Tally Word
i

| P
Ide] - . ';, : '\
. * / Its
Constructed '3 *
Argument A B * ;ﬁ
List -y f3 User's Argument

List

There are several deflclencies 1In using this scheme to
detect multiple references. Flrst of all, it 1Is necessary to
exercise all possible control paths of the system procedure in
order to find all of the cases of mulitiple references (so some
holes may pass unnoticed), Secondly, this technlque produces
many false alarms, since the code produced by the PL/I

~4Q-

compiler may produce multiple Indirections through the argument
for one logical reference (this may or may not be a bug).
Also, structure or array arguments may have subparts, all of
which are singly referenced, but through the same argument
pointer. Another problem is that PL/| sometimes coples argument
pointers by indirection upon entry to a multiple entry polnt
procedure (the case occurs If the same name appears In different
positions in several formal parameter lists). This results in
only a single reference being detected by this technique, even
though multiple references may be made. The last problem is
that arguments which are passed on to Internal routines will not
be caught, since PL/l Indlirects through the argument 1ist once
to get the address of the argument which is passed on. Even if
the argument Is referenced multiply by the Iinternal routine
which receives it, this will not be done via the indlirect chain
provided to the external routine by the transfer vector, and
will not be counted by this technique.

Most of the bugs which were found In the current system by
the auditing method were also found by the monitoring method.
This suggests that the latter technique might be useful In
attempting to prevent possible bugs Iin the system from belng
explolited, by crashing the user's process if an argument is
referenced more than once. (This could be accomplished by
causing a fault on the second reference by using a fault tag 3
indlirect word as the second entry in a two element array of
indirect words referenced by the Idc autoincrement mode.)
Certainly, such a firewall has its costs, both in runtime
efficiency, and in the fact that all innocent multliple argument
references must be purged from the system, as well as the
security holes, in order for the firewall to work. Nevertheless,
this may well be worthwhile In attempting to prevent
retrogression In the securlity of the system for some users with
high security requlirements.

5. The Semantics of Multiple References

Once multliple references to arguments have been dlscovered,
there is a final step needed to determine if a potentlal breach
of the security of the system exlsts. Thls requires matching the
information about multiple references galned from the essentially
syntactlc check on the program with the semantlics of the program
in relation to the rest of the system and the basic assumption
that arguments can change at any moment. This step is quite
difficult, To be complete, a similar effort would be required to
justify that a multiple reference doesn't cause a security hole
as to justify that the program is secure, But, shortcuts can be
taken: knowledge of the meaning asslfned to arguments helps in
Isolating serious problems from harmless mistakes,

Of all of the steps In the technique for discoverling errors
due to multiple argument references, thls is the most difflicult
step to mechanize. A very large amount of knowledge about the
operation of the system must be used to determine whether or not

iyl

a multiple reference 1Is a serious error. The major benifit of
searching for the pattern of multiple references 1Is that areas
of the program text which deserve close analysis are Isolated.

6. Results of Applying this Approach to Multics.

An analysis of the Multlcs ring 0 gate entrances was
performed. First, multiple references to arguments were
discovered using both the cross reference listing technique and
the monitor technique, Next, each entrypoint that had arguments
that were multiply referenced was analyzed to determine the
effect of the multiple reference. A list of the entry points
tested and the results of those tests are found in Appendix 1.
Numerous rmultiple argument references were uncovered., In most of
these cases we were able to conclude with a high level of
confidence that no errors result from these references. |In a
number of other cases, however, serious breaches In securlty were
di scovered.

The simplest and most glaring error was due to a multiple
argument reference In "stop_process." By exploliting the multiple
reference in the manner previously described, any process in the
system could be stopped (including the Initlalizer process). A
less selective denial of service existed In "status_" and

"status_long"; by setting up a certain form of argument 1ist,
these routines could be made to lock a lock that would never be
unlocked, This would eventually cause the system to crash. It
is possible to direct "tty_write" to send an unending stream of
characters to a terminal. Thils has the effect of tyling up the
entire system and causing the appearance of a crash.

Other errors were found that were elther deemed less serious
or less obvious how to explolt. Because of a multiple reference
to an argument in "add_inacl_entries" It Is possible for a user
to specify the initial access control 1ist for any ring on any
directorles that he may create. This seems like a serlous errur,
but it is difficult to see how to exploit it. In "printer_dem"
it seems possible, once a prlnter has been selzed, to address any
other printer. In "tdcm_message", multiple argumEnt references

make it possible to print Inconslistent messages on the operator's
console. Finally, assuming that it Is possible to get past the
"hphes_" gate, It appears possible to set up Inconslstent
information In tables that record the state of tape drives by a
call to "tdem_add_drive".

One additional error due to a multiple argument reference is
now known. At first we had classified the entrypoint "sfblock"
as being In the class of entrypoints that did not have multiple
references. A subsequent communication from Richard Bisbey
pointed out a fairly subtle error In this entry to the
supervisor, A portion of one of the arguments contains an Index
into a blt string stored into the PDS (an Important ring 0 data
base), and Is first vallidated to be within range. It 1s then
used to select a bit in the bit string to be set to one. |f the
second reference gives an out of bounds Index, then any bit in
the PDS may be set. Both of the multiple reference detection

=lyla

techniques had falled to find this error. The monitor technique
failed because the argument Is referenced via a generated
pointer; the auto-Iincrement technique for exploiting such holes
wlll not work for this Instance., The cross reference listing
technique probably falled due to human error.

Several direct conclusions come out of our experience with
Multics., First, each of the multiple reference detection
techniques discovered multiple references that the other did not
uncover. In addition, both missed at least one Instance of a
multiple reference. Tedlum accounted for the missed occurances
in the cross reference listing technique; an automated version of
thls method would presumably not suffer from this limlitation. In
the monlitor method, multiple references were mlssed because some
program paths were not taken, Second, even when all multiple
references have been uncovered, one must be very conservative in
analyzing programs for correctness. Further, when such programs
are modifled, there Is a strong chance that harmless multiple
references may lead to serious holes; such programs will need to
be audited on each new Installation. In many cases thls is an
extremely tedious task for which people are not well suited. To
be entlrely sure that a multiple reference Is harmless, all paths
that a program may take must be traced, Clearly there Is a need
to develop algorithms which would perform the analyslis
mechanically,.

All of the security holes reported above have been fixed in
the current Multics system,

7. Solutions to the Problem.

In the past there have been a number of different reasons
for copying arguments. Most of these are characterized by the
need to avoid a fault (directed faults: segment, page, no access,
ring violation; or Indlirect address fault: l1inkage, fl, f3,
illegal procedure) while a lock Is locked. In May, 1967 a
protocol similar to the one described below was detalled In MSPM
BD.9.02. The suggestion was made that all arguments to a
procedure be copled and that only these coples should be used In
the procedure. As varlous Improvements In the system have
occurred, some of the reasons for cooying arguments have been
el Iminated and some programmers have ceased to copy arguments.
The results of this work show that because of the difflculty In
analyzing the effect of multiple references to arguments, all
arguments should be copled and validated upon procedure
Invocation. To be entlirely safe, the following pattern of coding
should be followed for all ring 0 interfaces:

il

F: procedure(a_argl, a_arg2, ... , a_argen);

copy the values of all Input and Iinput/output arguments
into local variables,

validate local coplies with respect to semantlcs
associated with them In thls procedure,

-
-

use local coples

set output arguments to values of corresponding
local varlables,

return

end;

By using this conservative coding style, a procedure can be more
strongly Isolated from Its callers. In effect, we are making a
better (by no means perfect) simulation of separate domalns by
following suitable restrictions In programming style. |t should
be noted that there are situations where it is difficult to
adhere to this style because of efficlency considerations. For
example, It would be very inefficlient to copy an argument that Is
a large structure occupylng many words of storage. Just as there
are syntactlc patterns for recognizing bugs In programs, the
Inverses of these patterns appear to be guldes for secure
programming.

The general idea of patterns of errors seems to be a
powerful tool that can be used in an analysis of a system. In a
very short time we have discovered several serious holes In the

security of Multics. The success of thls error pattern resulted
from its simpllcity. The main obstacle In discovering other
patterns is not so much the nature of the error but rather the

suitable simple pattern for which to search. For example, one of
the recurring types of errors reported In RFC's 5, 46 and 47 and
in the Multics Change Requests is overflowing the capacity of a
table. Because of the flexibllity of the PL/| language, there
are many ways to implement tables. It would be difficult to come
up with a general pattern that matched all of these ways because
of the many degrees of freedom In the PL/| language. The
conclusion Is obvious: What we need are more highly structured
languages which require a programmer to ldentify the objects
being used (for example the language '"CLU" belng developed in the
Computation Structures Group of Project MAC at MIT). In this
way, slimple patterns for complex errors can be developed.

=Gl

Appendix

Classification of Entry Points in hes_

Of the 170-odd entrypoints In the hardcore gate hcs_, some 50
have multiply referenced arguments which were found by the
auditing and online monitoring techniques. We may classify these
further into flve classes:

1. Those which are probably not security holes. To the best of
our knowledge, wlith the way the system is currently
structured, these multiple references do not cause any
problems. Of course, we would feel even safer If all
arguments were copled and the coples referenced.

2, Multiple references which cause the procedure to be fraglle,
but which probably do not cause security violatlions. By
fragile, we are trylng to dramatlize the fact that the multiple
references to arguments cause the procedure to be very
dependent on the current order In which tasks are carried out.
Alterations In the procedure are very llkely to upset this
dellcate balance,

35, Multiple references that have not been explored to the depth
necessary to asslign them to one of the other classes.

4., Multiple references which look as If they produce holes in the
system, but we can't think of a way to explolt the hole.

5. Multiple references which cause holes which we know how to use
to penétrate the system,

The following list of entrypoints tells which arguments, If any,
are multiply referenced. The notation 'entrypoint {1,35' means
that the first and third arguments of entrypoint are referenced
more than once. |If any arguments are referenced more than once,
remarks are made about whlch of the above flve classes the
references belong to.

iy -
Summary of Results

A summary of the results obtained in our study Is presented in
the following table,

Number of entry polnts examined In hes_. 170
Number of entry points with multiple references. 51
Classification of multiple references:

Type 1 -- Probably 0.K.

Type 2 =-- Fra$lle, but probably 0.K.

Type 3 -- Don't know, lack of Information

Type 4 -- Hole without obvious exploitation

Type 5 -- Hole with known exploitation
Untested entry polnts

5]
Wl WD 00 WM 0O AW

Entrypoint -- Args referenced more than once -- Type, Remarks

accept_alm_obj (1,2 1 == Probably 0.K.
acl_add
acl_addl (3, 5) l == Probably 0.K. Arg 3 valldated

after 2nd reference, arg 5 is
an array whose elements are

referenced once each.
acl_delete

acl_list

acl_replace

add_acl_entries

add_dir_acl_entries

add_dlr_inacl_entries (5) 4 -~ Hole, without obvious
exploitation. Can operate on
any ring 1Initlal acl, since
argument [s valldated before
copying.

add_inacl_entries (5) 4 == See add_dIr_Iinacl_entrles.

append_branch

append_branchx

append_1ink

append]

assign_channel

assign_linkage (1) 1 -- Probably 0.K. This program
could run In the user ring.

block

chname

chname_flle
chname_seg
cpu_time_and_paging_
del_dir_tree
delentry_file
delentry_seg

delete_acl_entries
delete_channel
delete_dir_acl_entries
delete_dIir_Inacl_entries (5)
delete_inacl_entries (5)
ex_acl_delete

ex_acl_llIst

ex_acl_replace

=&
'
1

See add_dir_inacl_entries.
== See add_dlr_Inacl_entries.

fblock (1, 2) 2 -- Fragile, but probably 0.K.

fs_get_brackets (3) 1 == Probably 0.K. Array whose
elements are referenced once
each.

fs_get_call_name

fs_get_dlr_name

fs_get_mode

fs_get_path_name

fs_get_ref_name

fs_get_seg_ptr

fs_move_flle

fs_move_seg

fs_search_get_wdlr (1) 1 -- Probably 0.K. Referenced twice
in copy of polnter using old
version 2 pointer copy.

fs_search_set_wdir

get_alarm_timer

get_author

get_bc_author

get_count_lIinkage

get_defname_

get_dir_ring_brackets (3) 1 -- Probably 0.K. Array elements
referenced once each.

get_entry_name

get_initlal_ring

get_lps_mask

get_link_target (&) 1 == Probably 0.K. Return value,

insensitlve.

Probably 0.K.

-=- Probably 0.K.

get_linkage (2)
get_lp (Y, 23
get_max_length
get_max_length_seg
get_page_trace

ey
1
1

get_process_usage (1) l -- Probably 0.K.
get_rel_segment
get_ring_brackets (3) 1 -- Probably 0.K. Array elements

referenced once each.
get_safety_sw

get_safety_sw_seg

get_search_rules

get_seg_count

get_segment

get_usage_values

get_user_effmode (5) 1 -- Probably 0.K,
high_low_seg_count

initliate
initiate_count
initlate_search_rules

initiate_seg
initiate_seg_count
foam_11st (1)

ioam_release
foam_status
ipe_init (6)

level_get
level_set
l1ink_force
list_acl (3)

list_dir
list_dir_acl (3)

list_dir_inacl (3)
list_inacl (3)

make_ptr
make_seg (1, 2, 5)

makeunknown
mask_Iips
pre_page_Info
printer_attach (2)

printer_order
printer_write_special
printer_detach (1)

printer_write (1, 2, 3)

proc_info

quota_get (2)
quota_read

quota_move

read_events (1, 2)
replace_acl
replace_dir_acl
replace_dir_inacl (6)

(7)

o I

Probably 0.K. Twice referenced
in copy operation.

Don't know, haven't looked at
It close enough.

Probably 0.K. Twice
referenced In copy operation.

Fragile, but probably 0.K.
User can cause fault, but no
locks locked.

Fragile, but probably 0.K.
See list_acl

Fragile, but probably 0.K.
See list_acl.

Fragile, but probably 0.K.
See list_acl.

Fragile, but probably 0.K. Can

cause strange KST state with
blank name.

Hole without obvlous

exploltation. Event channel
saved In user area, then

referenced.

Not checked. No listing available.
Not checked, No listing avallable.

B oa

Hole. Can cause Inconsistent

attachment states, since
device index Is validated,

then used.

Hole. Can write on different
printer than the one assligned.

Probably D.K.

Probably 0.K.

Hole without obvious
exploitation. See

B

replace_inacl (6) b

reset_Ilps_mask
reset_workling_set
rest_of_datmk_
set_alarm
set_alarm_timer
set_automatic_Ilps_mask
set_backup_dump_time
set_backup_times
set_bc

set_bc_seg

set_copysw
set_cpu_timer
set_dates
set_dir_ring_brackets (3) 1
set_dtd

set_ips_mask

set_1lp
set_max_length
set_max_length_seg
set_pll_machine_mode
set_safety_sw
set_safety_sw_seg
set_ring_brackets (3) 1
set_timer
sfblock (1) 5
star_
gstar_list.
status
status_

(s, 5) 5

status_long (h, 5) 5
status_minf

status_mins

status_seg_activity

stop_process (1) 5

tdem_attach

tdem_detach
tdem_locall

tdcm_message (2) b

All

add_dir_inacl_entries.
Hole without obvious
exploltation. See
add_dir_inacl_entrles.

Probably 0.K. Array elements
referenced once each.

Probably 0.K. See
set_dir_ring_brackets,

Hole. Uncopled value used
when copied value avallablel!l!

Hole. User's argument controls
whether lock Is locked, and
then whether It iIs unlocked.
Can leave lock locked,

Hole, See status_.

Hole, Can stop any process.
arg used after validation.
tdcm entries use a segment as
argument. It [s not clear
whether changes to this
segment can cause problems.

Hole wlthout obvious
exploltation. Can possibly

tdcm_promote
tdem_reset_signal
tdcm_set_signal
tdem_mount_bi t_get (1)
terminate_file
terminate_name
terminate_noname
terminate_seg
total_cpu_time_
trace_marker
truncate_file
truncate_seg
try_to_unlock_lock
tty_abort (2)

tty_attach (2, 4, 5)

tty_detach (3, 4)
tty_detach_new_proc (3, 4)
tty_event (2, 3, 4)

tty_Index (4, 5)

tty_order (2, 3)

tty_read $3; 5, 6)

tty_state
tty_write 38, 5,65 T

unmask_1Iips
unsnap_service £2a X, 3)

usage_values
virtual_cpu_time_
wakeup (4)

~49-

B bt

cause message Inconsistent
with system's ldea of tape
name,

Probably 0.K.

Don't know effect of multiple
reference, Not sure whether
this Is a problem or not.
Fragile, but probably 0.K.
Finally coples second argument
inside second level call to
loam_. Other args 0.K.
Probably 0.K.

Probably 0.K.

Fraglle, but probably 0.K.
See tty_attach,

Hole, Code Is referenced
twice in dn3558get_devx.
Could return information which
might be sensitive about
allowed device id's.

Don't know whether this
multiple reference is a hole
or not.

Hole, Perhaps hard to
exploit,

Hole, Arg 3 referenced in a
loop. Can catuse the system to
appear crashed.

Probably 0.K. This program
need not be In ring 0.

Probably 0.K.

=50=

A Two-level Implementation

of Processes for
Multics.

September 8, 1976 21:23
R. Frankston

This is a description of an implementation of Multics Processes using
multiple levels of abstraction. The implementation is being done in
con junction with David Reed and is based on the model described in his

Master's Thesis titled Processor Multiplexing in a Layered Operating
System.

This draft contains many implementation details, some of which have
been modified in actually writing the code and will be described in a later
memo. Some sections are only superficial and are meant as a guide for
later revisions and extensions. Warning: Since this document is being
modified as design changes are being made without a complete rewrite
there may be inconsistencies in the descriptions.

If you have comments, suggestions or questions either see me personally or
send mail to Frankston.CompSyseMIT-Multics or RMFeMIT-MC.

=51=-

Two-level Process Implementation

Table of Contents

e 1
The Processor Assignment Manager and primitives............... 3
PANE DIBRII o1y b0 G ham s oo d b e St i s s o0 dlara e 5
IR OPERIIIS i v sian watiaa ds e R T e e s e N e e 11
IO BRI oo ecs o o v teibe s A e G R e S 13
VR O atION: o v i it o e s A e oot te aaie o 21
Modifications to page comtrol.0veieneninininnnn.. 23
T Aot MO TN .« v il b b e e s e s 25
NOUEeRtion antd BVenEE: . i s e s i e s b s b e e e b et 29
The Level Two Traffic Controller.000vuennn... 31
The Implementation of old IPCand IPS....................... 32
EIPICMCREREIAN. - i'u. 5 5 cvstiiin St e T e st s 33
RIEEERIRENEION . -v-v.o 003 iy MR A A A ST S B 34
L N PR TN W 36
e T ey T AU 38
The existing implementation,ccovvvinvninnnnnn.. 40
CIOERRY - ey o A e B e e T e 42

a5

Twor-level Process Implementation
Introduction

The description of the impiementation below is concerned with relatively narrow issues involved in
actually coding algorithms which implement the model described in David Reed's thesis. The
implementation includes some arbitrary decisions necessary for the embodiment of the algorithms.
This description assumes familiarity with the current Multics system. David Reed’s thesis should be
consulted for a fuller discussion of the issues involved. To make the document at least somewhat

readable for a wider audience as well as to reduce the problem of the proliferation of strange
abbreviations there is a glossary on page 42

The key difference between the current Multics implementation and the multilevel one is that a
distinction is made between scheduling decisions (i traffic control) that involve policy and those
that don't. For the ones that don't involve policy the decision is relatively trivial — the next
processor available to run will be run, a relatively cheap operation. In order to achieve this
simplicity the primitive level, level one, consists of a fixed number of virtual processors that are
considered at higher levels to be always assigned to a processor. In fact physical processors are a
relatively expensive and therefore scarce resource requiring the basement of the implementation to,
in fact, multiplex the virtual processors on physical processors on a first-come, first-served basis
within a predetermined priority assignment.

The advantages of the two level approach to traffic control include:

i. The system is simplified since one can view a Multics process as being
built upon the relatively simple semantics of a virtual processor as opposed
to the complex semantics of the current traffic control and interrupt
structure.

ii. The implementation of the system primitives for process coordinations can
be more efficient than the current ones because of the simplified
environment in which they run.

iii. By improving the structuring of the system, the system an become more
understandable and thereby more reliable.

iv. Robustness is enhanced by isolating Virtual Processor multiplexing within
the PAM. One can assign properties such as encachability to individual
processors, Since the PAM does all storing and restoring of physical
processor states it can be responsible for all the complexity of maintaining
such states.

v. By handling the fault within the PAM outside of the virtual processor, the
VP itself need not be capable of handling page faults thereby simplifying
the semantics and removing special restrictions which require the wiring
of the descriptor segment. Further more faults due to processor failures
can be handled by another VP that does not use the particular feature.
For example, the can be a process that does not rely on the cache so that it
can diagnose cache failures.

=53=

Two-level Process Implementation

vi. By separating processor multiplexing from scheduling the implementation
of the policy portions of the scheduler are simplified by separating them
out and are infrequent enough to remove the need for the efficiency of
assembly language programming.

The current implementation plan consists of three parts:
L. A basic level one system without paging.
2. Level one with paging.

3. A full Multics system with the second level traffic controller.

At present a basic version of level | has been debugged and run. It is described on page page 40.

Sk

Two-level Process Implementation
The Processor Assignment Manager and primitives

This basement (level zero) program (corresponding to the GPP algorithm in the thesis) is referred
to as the Processor Assignment Manager (PAM). The PAM is to be considered as part of the
physical processor - there exists one logical instance of the PAM per processor. In addition to the
function of multiplexing the physical processors, the PAM also serves to enhance the basic 68/80

processor by rationalizing its operation so as to provide a better basis for the other levels of
implementation.

The PAM is entered whenever an interrupt or fault occurs. The currently executing virtual
processor is unbound from the physical processor by saving its state in its Virtual Processor Table
Entry (VPTE). As part of saving the state of the process the metering information is updated and a
check is made to see if the process has exceeded its limit for CPU usage. The next step in
processing depends on the reason for entering the PAM.

External interrupts are transformed into events that can be serviced by processes awaiting their
occurance. If an internal interrupt (fault) can be handled by the VP itself, the fault information is
saved in a communications area in the VPTE, the VP is marked as being unable to process
further faults and its state is modified to execute its fault handler. If the fault cannot be handied
by the VP, the VP is marked as unsafe and the Virtual Processor Coordinator (described below) is
expected to do further processing. One fault is handled specially; the mme4 executed in a priviliged
segment is treated as a callp operation by the PAM and serves to extend the capabilities of the
physical processor. callp is described in more detail below. When the PAM has finished the
interrupt processing, it places the VP into a new state. If nothing that affects the ability to run the
VP has occured, it is placed in the runnable state.

The states that a VP may be in are:

running indicates that the VP state is currently being interpretted by a physical
processor and that the version in the VPTE is therefore invalid.

runnable indicates that the VP may be assigned to a physical processor as soon as
there are no higher priority runnable VPs. A VP enters the runnable state when it is
unbound from a physical processor, but may continue to execute.

unsafe indicates that the VP cannot be run without further handling by the Virtual
Processor Coordinator. A VP enters the unsafe state if it takes a fault it cannot handle
or does something the PAM does not expect. Currently this state is not used, instead
the VP is simply placed in the stopped state for examination by the level two traffic
controller.

{ For historical reasons this module is also referred to as the Processor Binding Manager (PBM).

=55=

Two-level Process Implementation

stopped Indicates that a VP is no longer runnable and will not be handled further by
the VPC. Once a VP enters this state it is eligible for unbinding by the level two
traffic controller. Furthermore that is the only operation that may be performed on it
A VP enters this state when it exceeds its resource limits, or otherwise requires higher
level processing to continue. The level two traffic controller explicitly places a VP in
this state when it wishes to unbind it so that the L2TC my modify its state. Stopped
VP’s are kept on a queue for action by the L2TC.

gwaiting is a state the VP enters when it goes blocked waiting for an eventcount to be
advanced.

V PC blocked is a special state indicating the VPC is waiting for something to do. The
Y PC may only be in this state, runnable or running.

After placing the VP in its new state the PAM can do some standard processing including
processing requests for clearing the cache and possibly deleting the CPU on which it is running.
(Some of this standard processing is done earlier in the sequence than indicated in this description
in order to minimize the time between entering the PAM and performing the function.)

Once the PAM has finished its processing, it then searches the VPT for next runnable VP. It
places the VP in the running state to indicate that no other processor may examine the VPTE
state. After checking to make sure that the VP may indeed run on the available CPU, it then
loads the VP's state in effect binding it to the processor and running the VP

The support of the virtual processors is split between the PAM and a dedicated VP; the Virtual
Processor Coordinator. This support includes the handling of faults and interrupts and mapping
them into the appropriate functions. It also includes the support of the extended operations
described in the section on VPl and on the CALLP operator. The VPC runs in a Virtual
Processor so that it may take advantage of the process environment to simplify its implementation.
The details of the VPC operation are given in a later section of this memo. The VPC is made
runnable whenever an event occurs that requires its attention. The VPC is always the highest
priority process so that it runs as soon as it is made runnable. Events requiring the VPC include
the transition of a process to the unsafe or stopped states, the occurance of an interrupt or the
transmission of a message to the VPC via callp as described below

Other dedicated VP’s perform functions such as interrupt handling and page fault handling. A
key dedicated processor is the policy module for scheduling user processes. This process is referred
to as the level two traffic controller. Because of the limited number of virtual processors the level
two scheduler must multiplex these processors. The details of this operations are not relevent for
this memo. What is important is how a user (or level two) process is bound to a virtual processor
and later unbound. This is similar to the function performed by the PAM and is done via the
VP18bind and VP1$unbind primitives.

=56=

Two-level Process Implementation

PAM Details

There are a number of details associated with actually accomplishing the functions required of the
PAM. These are discussed in the relatively unordered sections below. Detailed knowledge of the
68/80 processor is assumed. This information is contained in the GMAP manual, the 6I80
processor manual and the Multics debuggers handbook. None of them fully or accurately
described the current 68/80 processor.

General flow through the PAM.

i. The PAM is entered via the interrupt or fault vector.

ili.

iv.

Vi

Vii.

viii.

ix.

Xi.

The control unit state and processor registers are saved. The current value of the real
time clock is saved.

Any requests to clear the cache of an associative memory are honored. This is described
below under heading of connect fault processing.

Virtual CPU time is computed. If there is a process awaiting the reaitime event count, it
is is notified.

Any special processing associated with the particular fault or interrupt is done.

The virtual processor that was executing is placed in a new state. Normally it is placed
into the runnable state unless the fault handling changes the process’ characteristics. If
the resource limit for virtual CPU time has been exceeded the process is placed into the

stopped state.

If the CPU is to be deleted, it notes that it in fact has been deleted and then goes to
sleep here. The interrupt indicating that it has been added back continues from this
point after intializing the processor state.

The VPT is locked. If there is a pending wakeup for the VPC and the VPC is in the
V PC_blocked state, it is made runnable.

A virtual processor that is runnable and does not have any restriction against the current
physical processor is placed in the running state.

. The timer register is set as described below.

The state of the virtual processor is loaded into the physical processor and begins
execution.

-57=

Two-level Process Implementation

Operating Modes

Since the PAM is meant to act as an extension of the processor and form the basis for other
mechanisms it operates in absolute mode so as not to depend on the correct functioning of the
memory management software or hardware. This also removes the need to treat the descriptor
segment specially (such as wiring the zeroth page) since the PAM is even more primitive than the
levels relying on the appending hardware. When the PAM does use the appending hardware in
implementing the callp operation, it is able to take faults in the same manner that any other
hardware instruction might and processes them as if they had occured in an arbitrary hardware
instruction. Since PAM processes interrupts by simply noting that the event took place and then
restoring the processor state it operates inhibited.

Interrupt and Fault Handling

The 68/80 does not have any physical processor registers that can be used to distinguish between
physical processors when addressing memory to store the machine state when an interrupt is taken.
Furthermore there is only one address associated with each interrupt handler, without regard to the
processor on which the interrupt is taken. Because interrupts are handled by processes, the
processor need not be masked for interrupts at any time it is assigned a virtual processor.
Therefore there is no need for complex masking strategies — the processor can run with all
interrupts unmasked at all times with the PAM using the inhibit bit to prevent interrupts.

Since any interrupt can be taken on any processor it is necessary to be able to save the machine
state without regard to the processor it is taken on until sufficiently far into the PAM to enable the
program to determine which processor it is on and where the associated YPTE is for deassigning
the virtual processor. The algorithm used was inspired by Andre Bensoussan’s work and worked
out in con junction with Bob Mabee (of course Dave Reed contributed, but then his contributions
are assumed throughout). There exist two tables with enough capacity to store SCU data for each
processor that may be configured. There is a pointer with a delta modifier equal to the length of
an SCU entry. The interrupt vector is initialized to store the SCU data using an AD modifier.
Thus when the interrupt occurs an address is obtained to store the current data and the pointer is
updated in storage in an atomic operation so that if any other processor takes a fault it will not
interfere. Control is then transferred to a common disambiguating routine that operates under a
lock. The lock itself is grabbed using the sznc instruction which does not require the use of
registers. The rest of the registers are then stored, the processor id is determined and thus the per
processor storage address to which the registers are transfered. The pointer to the SCU table is
then reset to point to the beginning of the other table and the first table is scanned from its
beginning using the AD modify. Each entry is checked to see if it belongs to the currently running
physical processor. If it does, then the data is simply copied out into per processor storage. If it
does not, the data is then copied into the new table, again using an AD modifier to grab and
reserve a slot. When this processing is done, the lock is released (via an stcl) and the next
processor looping on the lock can repeat the operation with SCU tables switched.

Fault processing is similar to interrupt processing except that we can have a separate fault vector

=58=

Two-level Process Implementation

for each processor to save the need for having to determine dynamically the identity of the
processor on which the handler is running. The processing for both faults and interrupts is the
same once we have copied the machine conditions into per processor storage.

Faults while in the PAM.

When the PAM is processing a callp request or a page fault, a further fault may be taken. In
order to handle these a separate fault handler is used that assumes the fault is expected and that
the PAM is in a "good” state. The handler does not save any registers and assumes that control
registers (pointers to the VPT entry and the perprocessor information) are intact. The detailed
handling depends on the PAM state. If a callp operation is being performed then the machine
conditions are set to indicate that the fault occured while processing the callp operation itself and
the fault is processed as if it had occured at the beginning of the operation. For page faults a
message is sent to the page fault process for the fault (which must be on the descriptor segment)

and the machine conditions are set to continue with the appending cycle when the descriptor
segment becomes available.

The descriptor segment.

It should be noted that by operating in absolute mode, the PAM avoids dependence upon the
descriptor segment. Current Multics takes advantage of appending mode by using the fact that
the descriptor segment can be used to address different memory in the PRDS for each processor.
The elaborate scheme described above is complicated by not having this mechanism available but
as a consequence removes the requirement that descriptor segments be different on each processor
and allows processes to share descriptor segments. This can be of great importance in permitting
many small process with a single descriptor segment. The idle process is a simple example of a
process sharing a single descriptor segment.

Details of callp implementation.

The callp is supposed to look like a normal machine instruction that may take faults. It is first
validated to make sure that the instruction was executed in a priviliged segment (maybe just the VP
program’s segment?). If not, it is treated as a standard (mmed) fault and reflected back to the
virtual processor. If the instruction is acceptable, the pam state is set to indicate that the callp is
being processed and a copy of the machine conditions is saved. The operation number in the A-
register is then examined. If it is invalid the virtual processor is made unsafe and the VPC is
notified (this should never occur).

The specific processing is done according to the request. Typically it would involve copying the
data pointed to by pointer register 0 into VPTE or copying the data from the VPTE. The
detailed operation of each callp is described in the section on the callp operator.

When the processing Is done, the PAM continues by placing the virtual processor into the runnable
state and resetting the callp-in-progress flag. The PAM then continues as for any other fault.

«59=

Two-level Process Implementation

If a fault occurs while the callp is being processed, the fault conditions are reset to those at the
beginning of the callp instruction with the exception of the data address being referenced which
is taken from the new SCU data associated with the fault. When (and if) the callp is restarted
after the fault, it will begin from the beginning of the instruction. This allows the fault handling

program to use the callp operation itself and not have restrictions on using the communications
area in the VPTE.

Page fault processing.

The SCU data is examined to determine the type of fault. A message is sent to the page fault
process consisting of the ASTE entry pointer, a unique segment id (in case the AST entry is
deactivated), the descriptor segment AST entry pointer, the page number and a eventcounter

associated with the fault. The process is then left awaiting this event, ready to continue address
evaluation.

Processing the connect fault

The processing of the connect fault is very simple = it is ignored. Its purpose is to force a
processor to enter the PAM. It achieves its effect since whenever the PAM is entered it performs
standard housekeeping functions. In particular a connect fault is issued after a message is left
when clearing the cache or when adding/deleting a processor.

Clearing the Cache

The table of pending clears has one entry per processor. When the PAM wants to clear the cache
in other processars, it places in each table entry the appropriate instruction. It does this via a stacq
instruction to make sure that it is replacing a nop. If it does find an instruction other than a nop,
it assumes that another processor has left a instruction and loops attempting to execule the
instruction in its entry and leaving an instruction for the other processor. It makes sure the other
processor enters the PAM by issuing a connect to the other processor.

Process addition and deletion. .

When a processor is added, after some initialization, it enters the code to scan the VPT and find
work to do. When a processor is being deleted, it checks for he request immediately priori to
scanning the VPT for more work to do and disables itself. In either case an eventcount is
incremented and the VPC is notified of the change.

=-60=-

Two-level Process Implementation

Making the VPC runnable and processing the VPT

Whenever there is an event that requires the VPC's attention, a wakeup-waiting flag associated
with the VPC is set using the stcl instruction. The last part of the PAM locks the VPT. The
wakeup-waiting switch is cleared with an sznc instruction. If it was set, then the VPC is placed in
the runnable state from the ¥V PC_blocked state, using the sznc instruction.

The VPT is then scanned for the first (and therefore highest priority) process that is in the
runnable state. One will always be found since there is always a lowest priority idle process
available. When the entry is found, it is placed in the running state. A check is made to see if the
process has a restriction against the current processor and if so, makes it again runnable and
continues the scan. Otherwise the VPT is unlocked and the virtual processor is run.

Running the VP

This is the final part of processing that is done after a VP has been found in the VPTE and has
been placed into the running state. The appropriate pointers are set in the per processor tables for
storing fault data and referencing the VPTE, the clock time is saved for computing virtual CPU
time and the registers are loaded. If the VP is being run on a different processor than it had last
time, the cache for the current processor is cleared. Final processing is done with separate code per
processor so that the appropriate SCU data may be restored. The VP is then off and running.

Process Signals (IPS)

The process signalling mechanism corresponds to the current IPS mechanism. It is implemented by
setting a flag in the VPTE to indicate that an interrupt is pending. When the virtual processor is
to be run a check is made to see if the flag is set and faults are permitted. If so a fault is
simulated. If faults are not permitted, the action is deferred until the flag is reset to indicate that
it is safe for the virtual processor to take faults again. The details of using this signal are
discussed in the section on notification.

The interrupt pending flag is set by the L2TC. If a running process is to be interrupted, it is first
stopped, the flag is set and then it is rebound to a VP. The choice of this method is motivated by
a desire to minimize primitives available for accessing the VPTE. A tradeoff can be made
between number of such primitives and the frequency with which the L2TC must unbind a VP in
order to access parts of its description.

=H1=

Two-level Process Implementation

Special machine state information

This section explains how history registers, fault registers, alarm register are managed. In addition
there is software state information such as the VP state which is discussed elsewhere. This will not
be addressed at the moment since it is more a matter of retaining current Multics details without
requiring a ma jor changes for the PAM. Note, however, that since the PAM is aware of the VPs,
it is feasible, possibly, to control history register handling on a per-VP basis (and therefore on a
per process basis.

Virtual CPU time measurement and limits

Assoclated with each processor running a VP is the clock time at which the currently running
virtual processor started running (the PAM was last exited). When the PAM is entered the starting
time is subtracted from the clock time at which the virtual processor stopped (the PAM was
entered) to determine how long the VP has been executing. This value is added to the value
accumulating the in the VPTE. A check is then made against the VCPU limit for the VP. If the
limit has been exceeded, the process is stopped for deassignment by the level two traffic controller.

As a refinement to this scheme is an estimate of the overhead involved in invoking the PAM
before the clock is read on entry and after the is read on exit. This can be subtracted from the
VCPU in an attempt to isolate the charge for a processor from that of running the PAM.

Timer register setting and usage by PAM

The timer register is used to make sure that the PAM gets invoked periodically so as to enforce
quantum length restrictions (i.e. virtual time quota) and to make sure the VPC gets invoked so
that it can advance the real time eventcount. For simplicity the PAM is run at least every 50(?)
milliseconds. The alternative would be to calculate the minimum of the virtual time limit for the

process being bound and the time the VPC is to be run. This would be more complicated and the
additional resolution is not necessary.

Other processes

Proper operation of the PAM depends on two kinds of VP's. The first is the Virtual Processor
Coordinator that is described in great detail below. It is always the highest priority virtual
processor and is made runnable whenever there is something requiring its attention and therefore
run immediately. Second are the lowest priority processors —- the idle processors. There is one idle
processor for each physical processor. Since the idle VP is lowest priority it is run only if there is
nothing else for the physical processor to do. The idle processors are quite cheap since they can
share a descriptor segment or run in absolute mode without a descriptor segment. Other than that
no special consideration need be given to the idle process.

52

Two-level Process Implementation
The callp operator

As noted above the callp instruction is used to extend the operation of the virtual processor. It is
implemented within the PAM. It takes an operation number in the A-register and a data
pointer, if any, in pointer register zero. Like any other normal instruction, it may take faults.
When the fault occurs the machine conditions are set to restart the execution of the instruction
from the beginning so that there is no need to save partial state information associated with
copying information into the VPTE buffers.

The operations are:

I: AWAIT takes a list of eventcount names and values (as described below under VP1Sawait
and places the process in the ewgiring state until one of the named events is notified.
It is possible for one of the awaited events 1o be advanced while the process is being
placed in the swaiting state. It is therefore necessary to make sure that the none of the
eventcounts has passed the awaited value after the process is in the awaiting state.
Since the process is no longer considered running it is necessary that no faults occur.
In order to prevent fauls the absg is used to get the address in primary memory of the
counter value for each eventcount. A fault can occur during this operation in which
case the normal page fault processing is done and the await is restarted from the
beginning. This pointer can then be used to reference the value while the process is
awaiting. We are assured that no fault will occur since primary memory addresses are
being used for the reference and the virtual memory support is not invoked. We are
assured that the address is valid since any other processor that is updating the page
tables cannot assume all references to the page frame are completed until it receives an
acknowledgement form the other processors. The processor performing the await will
not give this acknowledgement until it finishes processing the await request

The real time clock is a special eventcount in that the minimum value of all such
events must be stored so that the timer can be set to notify the event at the specified
real time.

2: MAKE VPC is used when a change is made to a VPT entry that requires VPC attention. For
example, when a message is queued for the VPC.

3: STOP is used to forcefully stop a specified process. If a process is in an atomic operation, but
is to be stopped, a flag is set to indicate that it is to be nnpptd when the atomic
operation count reaches zero.

4: BEGIN ATOMIC OPERATION is used when a process is executing a critical section of code. It
increments an atomic operation counter in the VPTE.

=-(3=

Two-level Process Implementation

5: END ATOMIC OPERATION decrements the atomic operation counter. If the count reaches zero
and a stop is pending, the process is placed in the stopped state.

6: GET FAULT DATA copies fault data out of the process’ state into pageable storage. Note that
page faults are permitted during this operation since they are handled by another
process. Segment faults are not permitted because they are handled by the faulting
process and will require the use of the fault data area. Note that the atomic operation
counter was incremented at the time of the fault and the process was marked as not
being safe to take faults. The safe_to_take_fault_f lag is reset by this operation. The
atomic operation count must be decremented by restoring the processor state or
explicitly ending the atomic operation.

7: RESTORE PROCESSOR STATE restores the machine conditions as specified and decrements the
atomic operation counter. If this interface is not used the end atomic operation
interface must be used to decrement the counter.

8: ADD_CPU sends an ADD_CPU message to the VPC.

9: DELETE CPU sends a DELETE CPU message to the VPC.

10: CLEAR CACHE used when an object loses encachability. Its parameters consist of a
suboperation number and the page id for suboperation cache clearing by page. The
suboperations are:

. Clear PTW cache via a camp.

2. Clear SDW cache and PTW cache via cams and camp.

3. Clear PTW cache and memory cache by page - camp 4 + page id.

4. Clear memory cache, SDW cache and PTW cache with cams 4 and camp,
These are used by (1,3) page control, (2) segment control and (4) access control. They
apply to all processors. The actual method by which the processors execute the

instructions is explained in the section on PAM details.

1l: VPC BLOCK is used by the VPC so as to cause checking of the VPC's wakeup waiting
switch. It takes as a parameter the next real time before which the VPC is to be run.

b

Two-level Process Implementation

The VP1 interface

The VP1 program provides a PL/I compatable interface to the callp instruction, the VPC and the
VPT. It limits the operations the can be performed; no other interface exists. The use of the
common segment name of VP1 is primarily for convenience; the entries are essentially independent.

A basic service provided by the VP1 routine is the management of assignment of level two
processes (those managed by the level two traffic controller) to virtual processors. There are a
number of semantic models that can be associated with this operation. The primary one is that of
binding and unbinding. An alternative view is that one loads and unloads a processor state to and
from a virtual processor much as one loads and unloads a process the current Multics
implementation. A better understand of what is actually happening can be achieved by realizing
that the bind operation is really taking a processor state description maintained by the level two
TC which has no existence other than as an entry in a database and is creating a level one
processor with an initial state for execution. The unload operation destroys this processor and
returns a description of its final state. Key to the understanding is that the PAM does not enforce
any continuity between the process description returned by an unbind operation and that provided
to a bind operation. While the description is being maintained by the level two traffic controller,
the L2TC is permitted to perform arbitrary operations on its description including fabricating new
descriptions and discarding old ones.

VP1 communicates with the VPC via a communications queue. The queue is managed without the
use of explicit locks. The stacq instruction is used to perform interlocking.

The information maintained in the VPTE consists of two parts -- that which is communicated via
the VP1 interface and that which is internal to VP support. For convenience the portion that is
passed through the interface is kept in the same format by the level two traffic controller as in the
YPTE, but this is not necessary.

-65=

Two-level Process Implementation

The Process_Description portion of the description is used to store information that maintains
the identity of a Multics process as seen by the user.

declare 1 Process_Description based aligned, /% 16 words aligned! */
2 process_1id bit(36),
2 lock_id bit(36),
2 excluded_processors aligned,
3 excluded_processor(0:3) bit(1) unaligned,
3 padding bit(32) unaligned,
BAR bit(36), /% For 6080 emulation x/
DSBR bit(72), /% Descriptor Segment Base Regx/
ring_alarm_word bit{36),
PD_flags aligned,
3 safe_to_take_faults bit(1l) unaligned,
/% Fault data can be copied? =x/
3 pending_process_interrupt bit(1) unaligned,
2 resource_metering, /% Metering and limits x/
3 virtual_time_used fixed binary(71),
3 virtual_time_limit fixed binary(71),
3 memory_usage_meter_reference like meter_reference,
2 processor_state,
3 machine_conditions 1ike mc;

[BN A% I 5 S

-hG=

Two-level Process Implementation

The VP_Description contains information that is only available to the VP support and is not
passed through the VP interface.

declare 1 VP_Description based aligned,
2 next_VPTE 1ike VPT_ptr aligned,
VP_id bit(36), /% Identification of this VP =/
VP_state fixed bin, /% runnable when bound =/
VP_priority fixed binary,
last_processor fixed bin(2), /% For cache maintainance® =/
atomic_operation_count fixed bin(35), /+ Initially zero =/
padl&(10) bit(36) aligned,
fault_conditions like processor_state,
/= Communication with handler =/
/% For simplicity I am putting the awaited events
in the VPTE. Eventually they will be managed
separately by the VPC. =/
2 eventcounts,
3 number_events fixed binary,
3 event_names(4) like global_eventname aligned,
/% 4 = max_number_of_11_events x/
2 VPD_flags aligned,
3 pending_stop bit(1l) unaligned,
3 padding bit(35) unaligned,
2 pad8b(6) bit(36) aligned;

I T T T S R

declare 1 VPT_ptr based aligned, /= Pointer entry for VPT =/
2 abs_ptr bit(18) unaligned, /x For use in absolute mode =/
2 rel_ptr bit(18) unaligned; /x For use in appending mode =/

The VPTE itself contains both parts:
declare 1 VPTE based,

2 VP_info like VP_Description,
2 Process_info like Process_Description;

The awaiti

declare 1

declare 1

VP18bind

The s

callp

-E7

Two-level Process Implementation

ng_events_table is used in the interface between Vi$await and callp/await.

awaiting_events_table based,
2 number_events fixed binary,
2 events(max_number_of_11_events),
3 local_name pointer, /x Only valid in owner’s address
space %/
3 global_name 1ike global_eventname,
3 value fixed binary(35): /% Value process is awaiting =/

global_eventname based aligned,

2 segment_unigue_id bit(36) unaligned,
2 word_offset bit(18) unaligned,

2 pad bit(18) unaligned:

declare VP18bind entry (bit(36),1 like Process_Description, fixed
binary(35));

call VP18bind (VP_id, process_description, code);

emantics of the bind operation has been discussed above. The caller of VPI8bind
should set the appropriate flag in the ASTE to keep the descriptor segment of the specified
process active. It initializes the values in VP_info as part of the transformation from the
representation maintained by the L2TC and that in the VPTE. The process_state is stopped,
the last processor is "~1" (i.e. none), and the atomic operation count is zeroed. It then uses the
/10ad operation to load it into a free VPTE. The operation will fail if there are no
VPTE slots available. It would be expected, however, that the second level TC will not call

the primitive unless it knows that there is one available.

VP18unbind

The semantics of unbinding has been discussed above. It issues a callp/unload operation

declare VP18unbind entry (bit(36), 1 like Process_Description, fixed
binary(35));

call VP1Sunbind (VP_id, process_description, code);

-[8=

Two-level Process Implementation

to request the contents of an stopped VPTE be returned. When this operation has been
done the VPTE is available for a subsequent bind operation. It is expected that VPI§unbind
would be used repeatedly to unbind all stopped virtual processors so that the associated
process descriptions would be available to the level two traffic controller. Note that an
eventcount is incremented any time a process is stopped so that by awaiting that event count
the L2TC can immediately perform the unbind operation.

VP1Sstop

declare VP18stop entry (bit(36), fixed binary(35)):

call VP18stop (VP_id, code);

The stop entry is used to force a process associated with a VP to stop executing. The details
a discussed in the description of the callp/stop operation. The VPI8stop operation is used
whenever the level two traffic controller needs to manipulate the process’ description. For
example, to destroy a process, the L2TC would note that it wants a particular process
destroyed. If it already has full control over the description, i.e. the process is not bound to a
VP, it can perform the operation immediately. Otherwise it would issue a VP18stop for the
process. As soon as the process is stopped, the "stop process” eventcount would be
incremented, VP18next_stopped would locate the VP, and VP1Sunbind would copy out the
process description. For each process description returned by the VP18unbind operation the
L2TC would check the notes associated with the it and perform any necessary operations; in
this case the process would get destroyed.

VP18next stopped

declare VP18next stopped entry (bit(36), fixed binary(35)):
call VP18next_stopped (VP_id,code);

This entry is used by the L2TC to get the id of the next available stopped YP. It is
invoked in response to an advance on the stopped eventcount.

VP18run

declare VP1Srun entry (bit(36), fixed binary(35));

call VP18run (VP_id, code);

-69-

Two-level Process Implementation

This places a makes a stopped VP runnable. It is normally used after the VP18bind
operation.

VP18await

declare VP18await entry (1 (%), 2 pointer, 2 fixed binary(35), fixed
binary, fixed binary);

call VPl8await (events, number_events, advanced);
The parameters consists of a table of event names (pointers) and values to be awaited. The

number parameter specifies the number (up until the maximum value) of events that are to

be awaited. The index of the event which caused the return from awaiting is given as
"advanced”.

The table of event_counts is completed by filling the event name as derived by the VP
interface from the segment id and the word address and passed to the callp/await
operation. Note that there is a maximum for the number of entries in this table. The user
level interface to VPlSawait must permit an arbitrary number of event names to be

specified while only passing a limited number of event names to VP18await. The details of
this are described in the section on notification.

VP1l8advance

declare VP18advance entry (1 1ike awaiting_events);

call VP1Sadvance (event_table);

As with VP18await, the event_name is filled in. The await_value is, in this case also filled

in after incrementing the associated counter with the new value. The table is then passed to
callp/notify

VP1%add _cpu

declare VP1$add_cpu entry (fixed binary, fixed binary(35));
call VP18add_cpu (cpu_number, code);

This entry interfaces to callp/add_cpu.

-70-

Two-level Process Implementation

VP18delete cpu

declare VP18delete_cpu entry (fixed binary, fixed binary(35));
call VP18delete_cpu (cpu_number, code);

This entry interfaces to callp/delete_cpu.

VP18crash system

declare VPl$crash_system entry ();

call VP18crash_system ();
Deletes all physical processors from the system, and forces one of the processors to execute a
special debugging program.

VP18clear

declare VP18clear entry (fixed binary, bit(18), fixed binary(35));
call VP1Sclear (suboperation, page_id, code);

Interfaces to callp/clear_cache to clear cache the specified associative memory.

VP18begin_atomic_operation

declare VP18Sbegin_atomic_operation entry ();
call VP18begin_atomic_operation ;

Interface to callp/begin_atomic_operation.

VP18end atomic_operation

=7]=

Two-level Process Implementation

declare VP18end_atomic_operation entry ();
call VP1%end_atomic_operation

.
»

Interface to cal Ip/end_atomic_operation.

VP1Sget fault data

declare VP1Sget_fault_data entry (1 like fault_conditions);
call VPlSget_fault_data (fault_conditions);

Interface to cal Ip/get_fault_data

VP18restore processor state

declare ".FPltrestore_prucessur,state entry (1 like processor_state);
call VP1Srestore_processor_state (processor_state);

Interface to callp/restore _processor_state.

=]2=
Two-level Process Implementation

VPC Operation

As noted above, the VPC is run whenever an event occurs that needs it attention. For example, a
process leaving the runnable (or running) state, an interrupt event occuring or a message being
sent from a process. In later implementation some of these occurances might bypass the coordinator,
but for now it is assumed that all complicated low level operations involve the coordinator.

The basic operation of the VPC consists of three loops:

L Scanning for processes by state, i.e. unsafe and exceeded limits.

2. Scanning for advanced interrupt cells. This means that there is an implicit, rather than an
explicit advance done on the cells by the PAM.

3. Processing of explicit messages to the coordinator.

Note that each loop is entered only if an associated flag has been set to indicate that there may be
work of the specified type to be performed. When the processing is done the VPC unbinds a set
of physical processors so that they may ad just to the new state of the world. It is only necessary to
unbind those processors that are running the "n" lowest priority processes where "n” is the number
of processes that have been made runnable by the VPC.

In more detail, the processing consists of:

L. This loop scans the Virtual Processor Table (VPT) examining the state of each process that is
found. Each stopped VP is removed from the chain of runnable processors and an
eventcount is advanced to notify the level two traffic controlier. Note that kernel processes

should never be stopped. If an unsefe process is found, a debugging process should be
notified or the system crashed. 77?7

2. Next the interrupt and fault counters are scanned for any that have been incremented by
comparing against an earlier set stored in the VPC and the appropriate waiting processes are
notified. (For the interim implementation with a single "interrupt side” processor there is an
additional event counter to indicate that any interrupt has occured). As a special case of
interrupt handling, the system clock can be interogated and compared with the value for the
next timer event of interest.

3. Scan for messages from other processes.

I RUN. Places the specified VP into the runnable state and chains it into the queue of
runnable VP's.

il. NOTIFY notifies processors that are AWAITing that counter.

~73=

Two-level Process [Implementation

iii. DELETE CPU. Leave a note for the specified processor to deconfigure itself and then
unbind from any virtual processor it may be running it via a connect.

Iv. ADD CPU. Leave a message telling a CPU to come to life and send a connect to it
forcing it to initialize itself.

A final note on locking. Normally the VPC looks at the VPT without setting a lock because it is
the only process that may change the VPT. When it does change the VPC it loop locks to prevent
conflicts with the PAM that may be searching the chain. The VPC itself is run whenever its
wakeup-waiting switch is set by the PAM indicating that there may be work for it to do. This flag
Is reset whenever the VPC is placed in the runnable. Any events of interest that occur after this
time wiil set the VPC wakeup-waiting switch in case it hasn't done all of its processing in its
previous incarnation. Thus for example, if no paging communication buffer is available when the
VPC looks and one becomes available while the VPC is running, no race condition arises because
the VPC_run flag will be set anyway so that the VPC will be run again to make use of the buffer
immediately after it unbinds to wait.

Also some efficiency considerations. As pointed out above it is possible to bypass some of the
mechanism described above should the running of the VPC be considered too expensive. The
VPC need not be expensive. Its operations are simple and it avoids the ma jor expensive operation
in PL/I the full subroutine call. The only call it needs make is to an ALM procedure that is used

for basic utility operations. This call only involves minimal housekeeping making it more efficient
than a full PL/I call.

Pl

Two-level Process Implementation
Modifications to page control

Unlike the current Multics, a page fault is not handled by the process taking the fault. This
approach greatly simplifies the construction of a process because it removes the need to handle
“awkward” situation such as a page fault occuring when the fault handler is copying fault data out
of the VPTE. It also makes it possible to take a page fault on any page of the user's descriptor
segment removing the necessity for wiring any pages of a process since the other requirement for

wired pages — external interrupt handling, is also removed by having interrupts handled by
dedicated processes.

The page fault processing itself is simplified since the use of a process dedicated to this functions
greatly reduces the locking problems associated with page fault handling. The modifications to
page fault handling are minimal since page fault already runs in an environment that has little to
do with its host process and is thus easily decoupled. Some consideration has been given to using
the modified version of page control designed by Andy Huber and refined by Bob Mabee.

The PAM generates a message to the page fault process by extracting the relevent data from the
SCU data. Faults on page zero of the descriptor segment are permitted. The messages is placed in
a ring buffer. The format on an entry is:

declare 1 page_request based,

2 pointer fixed binary, /= In AMT or WHT =/
2 segment,

3 astep pointer, /% ASTE Entry =/

3 uid bit(36) aligned, /% To make sure still same. =/
2 eventcount_index fixed binary; /= To notify process =/

The meter pointer is discussed in more detail below in the discussion of the Active Metering Table.
When the request is queue the AMTE wire count is incremented. After the meter is incremented to
charge for the processing, the wire count is decremented to release the meter. The event count is
derived from the segment unique-id and the page number within the segment. This value is
hashed into a wired table of page events. It is the index of this entry that is placed in the page
request. The use of a preallocated table removes the problem of allocating wired storage. We can
use a small table without limiting the number of outstanding page faults by not requiring that the
assignments of eventcounts to paging operations be unique. There is no requirement that the event
be unique, it is only a matter of efficiency. At worst, a processor may get a spurious notify, attempt
to execute, and fault again.

The modifications to page control consist of:
Removal of the code that handles the fault directly as this is now done by the PAM.

Removal of the explicit interactions with pxss.

=y |
Two-level Process Implementation

Removal of the code involved in locking the page table since this process has exclusive
access 1o its databases.

Changing the references to metering data in the APT entries to use the AMT.

=-Th=

Two-level Process Implementation
The Active Metering Table

Note: The discussion of the active metering table is included for
completeness. The actual details of the mechanism are not yet fully
worked out and the implementation of a layered system need not be
dependent upon the current AMT design.

In a “real” system it is necessary to account for resource usage and to limit such usage against
predetermined limits. In the current Multics system, many of the resource measurements are
associated with processes. Since the processes are known to the lowest levels of the system, not even
deactivated, the Active Process Table {APT) has become a repository for such information, or at
least the resource measurement information.

In the multilevel system, only virtual processors exist at the lower levels. Since the processes
assigned to this virtual processors do not exhibit the continuity of the present Multics processes it
is necessary to develop a separate mechanism for measuring resource usage. Furthermore, if we
look beyond just supporting the current measurements, a restructuring of the metering would
permit the offering of improved mechanisms such as resource limits and shared meters at the base
level; mechanisms which have been proposed in the past but which have not been implemented.

There are two primary components to resource measurement -- the long term and the short term.
The long term measurements in current Multics are stored in the PDT (Project Definition Table)
and consist of dollar usage and more detailed resource usage measurements. Short term
measurements are maintained in the APT. Periodically the Answering Service copies
measurements from short term to long term storage.

In the proposed Multics a similar mechanism is used except that the choice of short term meters is
more explicit and not directly related to processes. At present we are mainly concerned with meters
that must be available to ring zero" - those that correspond to the APT information. In addition,
to simplify the design of page control, the meter (and limit) for storage system usage is also of
interest. For the duration of its existence, each such meter resides in the Active Meter Table. It is
only necessary for a meter to exist as such while the resource it is measuring may incur charges.
For example, the meter of a process’ processor usage can only be incremented while the processor is
bound to a VP. Thus the level two traffic controller can create the meter at the time that it the
process gets assigned to a VP and destroy it (after reading out the value) when the process is
deassigned”. In contrast a process can incur memory usage charges after the process has been

Need better term

® In fact, the VCPU meter is a special case and is kept in the VPTE in the current PAM design;
but could reasonably be incorperated into the AMT mechanism as soon as the operation of the
AMT is better described, i.e. when I finish writing this section

=77 =

Two-level Process Implementation

deassigned from its VP. A third example of a meter is the storage quota meter. Since this meter
must be accessible from page control when assigning additional pages to a segment, it seems logical
to associate the information with the wired AST entry. Because the meter is actually shared by
Multiple segments, it is actually kept separately in the AMT. Note that as a benefit of this
aproach the quota limit is independent of the directory hierarchy and that storage system usage can
be associated directly with accounts instead of just to superior quota.

MNote that the meters described thus far share a special property - they must be accessible without

taking a page fault; ie. they must be wired. This is accomplished by maintaining a Wired Meter
Table (WMT).

An entry in the Active Metering Table takes the form:

declare 1 AMTE based,
2 id bit(72),
2 value fixed binary(71),
2 lTimit
3 limit_set bit(l),
3 value fixed binary(71),
2 eventcount fixed binary(71),
2 wire_count fixed binary;

When a meter is to be incremented (via amtmSadd), the meter id is used to hash into the WMT
and then the AMT to find the entry. If none is found, one is created in the AMT. To make the
search more efficient, a meter_reference is used which contains a meter_index in addition to
address the table entry. When the entry is found via the index, it is checked to make sure the
meter_id in the entry matches that in the reference, if it does not, the hash search must be used
and the index is updated to make the next reference more efficient.

declare 1 meter_reference based,
2 index fixed binary, /= Index in AMT or WMT =/
2 home fixed binary(l), /= AMT or WMT */
2 id bit(72);

A meter may reside in either the AMT or the WMT, but not both in order to make limit checking
work. When the wire count changes to or from zero the entry is moved. This move is not
necessary if the meter is being created in one or the other, or is being read and cleared.

The AMT is managered by the active_meter_table_manager (amtm). The following entries
are available.

=

Two-level Process Implementation

declare amtmS$set_limit entry (1 like amte, 1 1ike meter_reference,
fixed binary(35));

call amtm8set_limit (amte, meter_reference, code):

As noted above, meter entries are created when an attempt is made to use them. For entries such
as page quotas, it is necessary to initialize the entries with a limit value. It is necessary for
programs setting and using limits to cooperate such that programs do not check limits unless the
limits have been set. For example, as part of activating a segment, a quota limit is set in the AMT.
This entry is cleared when all segments sharing that limit are deactivated.

declare amtm$read entry (1 like amte, 1 1ike meter_reference, fixed
binary(35));

call amtm8read (amte, meter_reference, code);

Returns values for the specified meter entry. If the entry does not exist, zeros are returned for the
values.

declare amtm$read_clear entry (1 Tike amte, 1 1ike meter_reference,
fixed binary(35)):

call amtmSread_clear (amte, meter_reference, code);
Same as the read entry, except clears the value. This is the entry used to read a meter out so it can
be updated in a higher level table. The AMT entry may be deleted if it is not wired and does not
have a limit set.
declare amtm$read_clear_limit entry (1 like amte, 1 like
meter_reference, fTixed
binary(35));

call amtm8read_clear_limit (amte, meter_reference, code);

This entry is similar to the previous but also clears the limit setting so that the entry may be
deleted from the AMT if not wired.

declare amtm$add entry (fixed binary{(71), 1 like meter_reference, fixed
binary(35}));

call amtm$add (value, meter_reference, code);

Adds the specified value to the given meter. A code is returned if the value exceeds the meters
limit. If the meter does not exist, it is created.

=79~

Two-level Process Implementation

declare amtm$add_conditionally entry (fixed binary(71), 1 like
meter_reference, fixed
binary(35));
call amtm$add_conditionally (value, meter_reference, code);
This is like the add entry, except the meter value is left unchanged if the limit is exceeded.
declare amtm$wire entry (1 1ike meter_reference, fixed binary(35));

call amtm8wire (meter_reference, code);

The wire count for the specified meter is incremented. If the meter is already in the AMT, it is
moved to the WMT.IF it sdoes not exist at all, it is created in the WMT.

declare amtmSunwire entry (1 like meter_reference, fixed binary(35));
call amtm$unwire (meter_reference, code);

The wire count for the specified meter is decremented. If the count reaches zero, it is moved from
the WMT to the AMT.

declare amteSunwire_read_clear entry (1 like amte, 1 like
meter_reference, fixed
binary(35)):

call amteSunwire_read_clear (value, meter_reference, code);

Combines unwire and read_clear.

=80=

Two-level Process Implementation
Notification and Events

The basic mechanism for coordinating processes in the proposed system is the event. More
precisely, event counts are used to store state information about eventsThe eventcounts are
discussed in detail in a CSR/RFC by Dave Reed and Raj Kanodia. When an event occurs the

value of the eventcount associated with the event is advanced. A process interested in the
occurance of the event can await this advance.

Eventcounts are identified by eventcount names. To the user an eventcount is simply a word in
memory and thus its name is its address. To convert this into a system-wide address the segment
number is replaced by the segment-unique id. The eventcount can then be referenced by the
system-wide name in order to do a notification. The actual reference to the value of the

eventcount within the process awaiting or advancing the primitive is done using the pointer for
efficiency.

Eventcounts form a robust mechanism because, though a process may await a transition, the
eventcounter itself always maintains its state for later examination. Since the counter is
monotonically increasing the await operation can be implemented by simply comparing the current
value of the counter with a previous value. If the previous value has not been surpassed the
process can loop waiting for the change, or can go blocked. This block is actually implemented via
the callp/await primitive described above. Complementary to going blocked is the mechanism
for getting awakened. This is the notification mechanism.

The notification is performed by the VPC as a result of a callp/notify operation. This
primitive is invoked by the VP1$advance interface. Note that only the advance interface is
available outside the PAM. While this is not strictly necessary it does preserve the semantics of
eventcounts. When the VPC gets a message to perform a notification, it scans the VPTEs which
are in the awagiting state and places them in the runnable state. For efficiency, the VPC can
actually check to make sure the value awaited has been reached since the value is copied into the
VPTE, but this is not strictly necessary since the YPC can simply compare eventcount names.

Spurious notifies are not harmful since the callp/await primitive checks the values anyway
before returning. callp/await also checks the eventcount values after putting the process into the
awaiting state to prevent any loss of notifies sent just before the process entered the awaiting state.

Eventcounts associated with interrupts and page fault processing completion must be wired and
preallocated. To simplify this a Wired Event Table is maintained. We can go further and require
that all events originating at level one be in this table. Note that, unlike current IPC, the use of a
wired table does not have the danger of overflowing since no messages are placed in the table,
eventcounts are simply incremented.

We can take advantage of the restriction on level one originated requests when implementing the

-81-

Two-level Process Implementation

level two primitive for event counts. Observe that there is a fixed maximum for the number of
events upon which a process may wait. The user interface need not, and should not, have such a
restriction. The level two traffic controller can implement its own await/notify mechanism similar

to the lower level mechanism except using virtual memory to get around the restriction on the
number of events

A level one process (i.e. a kernel process) can simply use the VP1 event count interface (advance and
notify) directly. For level 2 processes, there is a VPZ interface for these primitives. Since a level
two process may have an arbitrary large number of events and may be unbind from a VP while
awaiting, it is necessary for the level two interface to provide much of the functionality of the
interface. To aid level two a special event count is provided that is advanced whenever a level one
event count is advanced, the outward _signal counter. This is discussed in more detail in the
description of the implementation of the level two traffic controller. Other event countes used for
communicating with the level two traffic controller include the stopped event advanced whenever a
VP is stopped and the clock event that is advanced at fixed intervals.

As described above eventcounts are passive in that they don't affect a process unless the process
examines its value or qwaits an advence. This is not sufficient to implement the current IPS
mechanism. What is needed is a means of faulting a process so that it can examine eventcounts
which it thinks are important. This consists of setting a process’ pending interrupt flag while
unbound at level two. When the process is to be run, the flag is examined by the PAM which will
cause a fault to be simulated. Note that the fault itself doesn't tell the process what has happened;
the process is simply told that something of immediate interest has occured. To give the effect of
current IPS, there would be an eventcounter associated with the terminal I/O channel for quits, the
real time clock and the virtual clock.

-82-

Two-level Process Implementation
The Level Two Traffic Controller

The lowest levels of Multics described above do not provide all of the functionality of the current
system. The implementation requires a second level of control that multiplexes the virtual
processors among user processes. T his second level is conceptually much like the lower level in that
it multiplexes a limited number of processors to give the effect of a larger number. While the first
level emphasises simplicity, the second level emphasises function. The second level removes
restrictions on the number of processors provided and the number of events that can be observed.
It is able to do so because it can make use of the virtual memory mechanisms for managing its
databases. Note that the term process is used in the conventional Multics sense, of a user's address
space and control point. The level two process is representation of the logical processor that
executes a user's instructions.

=f3=
Two-level Process Implementation

The Implementation of old IPC and IPS

Basic to the design of any change to Multics is the requirement that the new mechanism provide
an external interface that is compatable to any preexisting interface. The Interprocess
Communications Mechanism of Muitics is basic to many programs and must be supported.

IPC is relatively simple to implement and offers a subset of the facilities of the eventcount
mechanism. Most significantly IPC lacks the access controls afforded by using normal memory
words a means of communications and coordination. To implement IPC a per-process segment of
eventcounts associated with IPC channels can be maintained. In addition a per-system segment
could be used to transmit messages between users. An alternative is to provide each process with a
segment for receiving its messages so that the access control can be used.

Much of the complexity of IPC comes from the requirements of wired programs and programs
requiring a very high degree of efficiency. Since the wired programs will be converted to use
eventcounts, the IPC implementation is greatly simplified. Similarly for programs using fast IPC
channels, they can be converted to use eventcounts, though they can still operate using IPC during
a transition period.

The implementation of IPS has been discussed in the section on notification. The mechanism has
been generalized to separate the occurance of the signal from the message associated with it. Thus
one is not limited to the signals currently defined in the APT entry. For example, the quit signal
can be associated with the terminal as an 1/O device without requiring that it have special
significance as the process' controlling terminal.

The IPC facility offers an ability not offered by event counts alone -- the sending of mesages in

addition to the wakeup. This can be accomplished by using the message segment facility
accompanied by eventcounts within the message segments.

Bl
Two-level Process Implementation

Implementation

Both top-down and bottom-up views of the implementation of the layered system are applicable.
The top-down views entails examining the existing Multics implementation and determining what
one must change to retain is functionality. The section on initialization examines the
implementation from the bottom-up view. The following section on transition examines the
implementation from the view of modifying and preserving the existing Multics system.

-85-
Two-level Process Implementation

Initialization

The bottom-up view begins by recognizing that level one of the layered Multics is sufficient for
supporting a simple operating system directly without the features provided by level two. In fact
this is an environment that is much more sophisticated than BOS in that it permits the use of
processes and programming in PL/L.

By making the first stage of implementation the programming of an environment consisting of
just level 1 primitives. An environment can be brought up without requiring the modification of
the existing Multics. Most importantly, such an implementation result in a running system that
can support a set of debugging tools for the later software, The psychological value of having a
completely running piece of software should not be ignored. The level implementation also
provides a starting point for the initialization of Multics itself and is thus a necessary first step.

The level one implementation consists of relatively few programs:

l. A program to initialize the level one system within collection one. Associated with this is a
program [o generate a relocation dictionary for the PAM. In addition to initializing the

PAM tables, the program also creates processes for the VPC, the idles processes and an
interrupt side process.

2. The PAM.

3. The VPC.

4. An interrupt side process. In order to simplify implementation 1/O programs will continue to
run much as they do now except all programs that normally run in response to interrupts

will run in a single processes in response to the correspond eventcount being advanced. The
old interrupt handlers themselves should be able to run unchanged.

5. A debugger.

That is all that is strictly necessary. An additional nicety might be to implement the existing BOS
within a process so that its functions can slowly be spread to multiple processes without the need to

continue to support a second 68/80 operating system and without the alternative of rewriting all of
the code from scratch.

Initialization consists of loading the kernel processes necessary to support the full level one
environment and then the ones needed for level two. There is a discussion on page 39 of creating

VP's as necessary as part of the operation. To fill out the level one environment the following
functionality must be brought up:

I. Disk Control

-86=
Two-level Process Implementation

2. Segment Control
3. Page Control
4. The Level 2 Traffic Controller
Once the level 2 traffic controller is brought up Multics is essentially running. An answering

service process can be created to create user processes. Given that processes can be created easily,
the answering service does not need the primacy it currently en joys.

=37 =
Twao-level Process Implementation

Transition

One question that must be considered if the implementation of the two level traffic controller is to
be taken seriously is that of how to get from the current implementation of Multics to the new one.
The difficulty is that a complete transition is necessary. This is not an insurmountable obstacle in
that we have had such transitions in the past as in the case of the new storage system and earlier
file system flag days. While the need to convert over completely is present, the difficulty is not
comparable to that of a major change to the file system. Most of the Multics system will continue
to operate as it presently does. The changes consist of

L. Changes requiring new software
I. A level one initialization program must be written.

2. The basic mechanisms of the PAM, VP1 and VPC must be implemented. The VPC
would be implemented in PL/L

3. The initialization path must be modified to build up a system from one running at
unadorned level one to a full Multics environment.

4. The level two traffic controller must be implemented While it must acquire all of the
functionality of pxss, the level two traffic controller function is less critical -- the vast
ma jority of the scheduling decisions are made by the PAM and the VPC. Thus the
initial implementation need not be highly optimized for demonstration of its feasibility.

5. A primitive version of the amtm must be implemented to support basic accounting
functions.

IL. Modifications to existing software
l. A replacement must be provided for IPC using events.

2. Page control must be removed to its own process. Much of the work has been done
already. This task is simplified by the fact that the page control environment is already
very constrained so as not to be dependent upon the process in which it is a parasite.
This is discussed in detail on page 23,

3. The interrupt handlers must be moved to their own processes. As with page control,
they aiready operate in a constrained environment and thus providing them with their
own process will not deprive them of features and will simplify them by the removal of
the need to do direct interrupt handling and will remove the need for separate interrupt
side and user side components. As an interim implementation all interrupt side programs

-88-

Two-level Process Implementation

can be written unchanged within a single processes with only iom_manager begin
modified.

4. pxss would simply be removed from the system.

5. System initialization must be modified and possibly redone. Much of the existing
software can be used. For example disk support must still be initialized. The
initialization would, however, be done as part of setting up the disk control process.

6. Present H-Procs could be simplified by replacing them with kernel processors.

7. The accounting software must be supported.

-89~
Twao-level Process Implementation

Extensions

The thesis has been concerned mainly with presenting a clean model processor multiplexing. In
actual implementation some additional issues can be considered. Some of this are simple extensions
and others represent a different point of view on the part of the implementor.

I. Robustness

The layered implementation provides a much cleaner structure than the current Multics
system. This structuring provides an environment in which the implementation of features
to make the higher levels more robust by providing a low level in which the implementation
of such support facilities is simplified

l. A Level | debugging process.

2. Ability to recover from trouble faults -- spare repair processes.
3. Ease of timeouts and error recovery by 1/O processes.

4. Daemon kernel processes.

IL. Taking advantage of the implementation

This section lists some ways of taking advantage of the existing software in implementing
facilities on Multics.

. Waiting on messages.

One can associate an event counter with each message segment (or mailbox) that gets
advanced whenever a message gets placed in it. This is an effective and much more
powerful replacement for IPC. Some of the advantages include the ability to have
InterProcess (message) Communication with access control. There is also no limit to the
number of processes that can be awaiting the message. Since the transmission of the.
message is via a segment in the hierarchy the problem of setting up and communicating IPC
channel numbers is eliminated. One final advantage of the proposed implementation is that

any process with access to await a message can specify immediate attention (i.e. an interrupt)
when the value is changed.

These facilities can provide a basis for a number of features. It is possible to implement

notification upon the receipt of mail. Alternatively a server can be awaiting messages and
then create processes the handle them (i.e. potential processes).

III. Changes to the model

-90-
Two-level Process Implementation

l. One of the basic assumptions in the model is that Virtual Processors at level | are
neither created or destroyed. This assumption actually complicates the system by
requiring that all uses of kernel processes be predetermined. In particular the
initialization of the system must be carefully planned with respect to the use of VP's.
This is similar to requiring that all Multics tables used in managing the system such as

the AST be determined when the system is generated, as opposed to during initialization
as is presently done.

The reason for the restriction on VP's comes from two primary sources: the need for
simplicity and the attempt to carefully structure management of memory. The simplicity
argument is not one of absolute simplicity but a choice of what to simplify. One must
pay the price of carefully preplanning use of these processors. In particular when one
dynamically reconfigures the system to add a new device (logical or physical) and one
needs to dedicate a virtual processor to its management, one cannot tolerate the lack of
availability of such a processor, nor can one reduce the number of virtual processors

managed by level 2 since that would change the level of multiprogramming of the
system.

While the requirement of a program that is able to assign primary memory addressable
by the PAM might add additional complexity to the system, it does not affect the
layering of memory memory management since it is not dependent the management of
virtual memory. In fact in an ideal processor such a mechanism would be simply
structured such that it can be shared by both the page frame allocation mechanism and
the primary memory allocation interface. The 68/80 processor is a little more complicated
in that the PAM is unable to easily address more than the first 256K of memory. But
this requirement is already present for 1/O buffer management. To summarize, this
mechanism must exist anyway for performing I/O and fits within the structure of the
memory management hierarchy so that it does not really add complexity to the system.

Thus the ability to dynamically create virtual processors would simplify the
implementation without affecting the layered model of the system.

-9]-

Two-level Process Implementation
The existing implementation

A test implementation of the basic level one portion of the two level system has been completed. It
supports the functions of level | with the exception of paging and the handling of faults reflected
to user processes.
It is a modification of collection one of Multics initialization. Interrupt and fault processing have
been replaced by the PAM and the VPC. The VPI interfaces for “run”, "await”, "advance”,
"crash_system” and "clear_cache” are supported. The system spawns kernel processors (including
the VPC and the idle processors).
The only 1/O device supported is the console typewriter. The interrupt side processing for the I/O
is performed in a processor dedicated to that function. The stopped (to indicate a processor
entering the stopped state) and the clock events are supported. The idle processes share a
descriptor segment.
The following changes were made to the system:
l. The PAM was implemented to handle all faults and interrupts.
2. The VPC was implemented to:
a. Convert interrupts (as noted by the PAM) into notified events.
b. Manage the clock event.
¢. Advance the stopped event when a VPT stops.

d. Process run and notify messages.

3. init_collections was modified to call init_basic_11 and not to call
initialize_faults. PVT initialization and tape initialization was also eliminated.

4. init_basic_11 was implemented to initialize the PAM and the VPT. It spawns the
VPC and idle processors.

5. create_kernel_process was implemented to initialize a VPT entry.

6. init_11_get_segment was implemented to create segments for processes’ dsescriptor
segment and pds.

7. The prds was eliminated.

o

10.

IL

12.

13.

14.

15.

16.

17.

9%

Two-level Process Implementation
privileged_master_mode_ut was modified to use the pam for entering BOS and for
clearing the cache and associative memories.

init_sst (and the sst) was modified to remove masks was for inhibiting and
generating interrupts.

pxss was eliminated. So was tc_data.

The fim and ii were replaced by stubs since at this point the system is unable to
handle reflected faults. These routines will have to be redone. The same goes for
emergency_shutdown and related programs.

The pds was cleaned up to remove unneeded storage for fault data in the header.

VPl and VP_util were implemented to interface to the pam and to support the idle
process.

run_basic_11 was implemented as a process to give periodic status messages. The
moritician was implemented in a similar manner to monitor stopped processors. It
uses status_report which, in turn, uses octal for typeouts.
interrupt_process_driver was implemented to manage the interrupt side process.

ocdcm_ was modified to use eventcounts to govern contention on locks.

A pxss was implemented to provide a write-around to addevent and notify primitives.

15

>
-

>
L]

>
=

o
=}
w

|

i E

[1]
2]

Ll

[
0

LI- '

v
=

|

o
=

«93=

Two-level Process Implementation
Glossary

Some suffixes are commonly associated with abbreviations. "E" is used to indicaté an
entry in table and "p" is used to designate a pointer.

The Add Delta modifier causes the effect address to be computed using an indirect
word and increments the value of the word by a specified amount. It is of interest
because it is atomic with respect to other instructions using the modifier.

Active Meter Table.

Active Meter Table Manager.

Active Process Table. The APT in current Multics would be replaced by three
darabases. At levels zero and one there is the VPT. The level two traffic controller
maintains the APT, and for efficiency, an IPT.

Active Segment Table,

Basic Operating System. This is a standalone operating system for the H68/80. It
provides utility functions when the full Multics environment is not available. Such as
when actually bootloading or debugging Muitics.

"Call Processor”, an instruction implemented using the faulting mme4 and interpretted
by the PAM.

Clear Associative Memory PTWs,
Clear Associative Memory SDWs.
Inactive Process Table. This is maintained by the level two traffic controller and
corresponds to the APT, except that for reasons of locality the entries that are

referenced infrequently are moved into the IPT.

Level Two Traffic Controller.

The Master Mode Entry 4 instruction simply causes a fault. The fault handler will
interpret this to be a callp operation if the fault is taken while executing in a
priviliged segment.

Processor Assignment Manager.

Processor Binding Manager; older term for PAM.

<
"

-l
1
0

<
1
-]

=
1
|

|

=
=
-

wBh

Two-level Process Implementation

Project Definition Table.
Page Table Word

Segment Descriptor Word

Store Instruction Counter plus one. This instruction is used to set a flag to be tested

with sznc. It is of interest because it does not affect registers, is atomic with respect to
sznc and stores a nonzero value.

Set Zero Negative and Clear. This instruction is used to test a flag set by stcl. It does
not affect registers and rests the flag after test Since it is atomic with respect to stcl it
is good for low level synchronization primitives.

Virtual Central Processing Usage. A measure of the time assigned and executing.

Virtual Processor.

The procedure that interfaces to the callp instruction.
Virtual Processor Coordinator,

Virtual Processor Table.

Wired Event Table

Wired Meter table

=05=

FURTHER RESULTS WITH MULTI-PROCESS PAGE CONTROL

by R. F. Mabee

This memo updates performance measurements reported by Andy Huber
in his recent thesis "A Multi-process Design of a Paging System", now
available as MAC-TR 17l. The PL/I code is brought up to date with
NSS, and improved by removing many external subroutine calls from the
critical page fault paths. This gives a performance improvement of
about 30%. Many detailed measurements have been made; the results are
used to determine where time is spent in both this and the standard
page control.

This should be the final report on this project, as no further

development is expected.

=06~
I. Review

In one chapter of his thesis, "A Multi-process Design of a Paging
System", Andy Huber reports measurements made on two versions of
Multics, one using his multi-process page control (MPPC) and the other
using the standard page control. The former has two H-procs (fast
system processes) that run the resource freeing functions of page
control, and perform some operations for segment control (typically
truncating a page table). Most of the code was rewrittem in PL/I,
except for the bulk store DIM, a piece of the fault handler, and the
system interrupt handler, which are essentially unchanged. The
results show comparatively peoor performance by the MPPC in two
respects:

1) The number of page faults (during a standardized
benchmark run) is much higher.

2) The CPU time spent by the PC processes 1is excessive,
doubling the time per page fault.

The increase in page faults can be attributed to the reduced size
of the paging pool, The wired stacks, the RWS buffer, the increased
size of the PL/I code, and the free core list reduce the paging pool
by 10 to 20 pages. This could be cut in half by careful tuning of the
algorithm, and becomes unimportant in systems with larger memory.
Huber also points out that MPPC disconnects pages before writing them,
while the standard PC leaves modified pages connected for an extra
lap. 1f modified pages are more likely to be referenced than
unmodified pages, then the standard PC will have fewer page faults.

The increased paging isn’t very interesting, because it’s readily

explained and wouldn’t much matter in more reasonable configurations.

=07 =

For comparisons of CPU time, we adjust the sizes of the paging pools
so that the metering run takes about the same number of page faults
with each version of PC.

There are two special processes in MPPC: the core manager and the
paging device (PD) manager. They perform functions that are mostly
done at page fault time in the standard PC, so the MPPC should spend
much less time in the page fault handler. Instead, the time is
slightly higher (3%). This 1s the effect of using PL/I. Huber
predicts a 407 improvement by replacing external calls with internal

calls, with the resulting times shown in the last column of the table.

Standard PC MPPC Predicted
Page fault handler 1973 2043 1226
PC processes - 2641 1585

Table I. usec per fault. Adapted from Huber.

Three modifications should be made to these numbers for more
ccurate comparison. In both versions of PC, the fault time meter is
updated about 500 usec too soon, before the bulk store read (if any)
is posted. There is no question that the time should be accounted to
the page fault handler; it’s just a bug. Also, the time spent by the
PC processes on operations other than page faults (primarily
truncation) should be subtracted from the totals; by reasonable
extrapolation from more recent measurements this amounts to 336 usec
per fault, Thirdly, the cost of interrupt handling and of
inter-process swapping (getwork time) should be included; again, these
numbers are taken from recent runs. The corrected figures appear in
the next table, Comparing the total times, we find MPPC just under

twice as expensive,

-98-

Standard PC MPPC Predicted

Page fault handler 2473 2543 1726
PC processes - 2305 1383
Interrupts and getwork 445 684 B84
2918 5532 3824

Table II. wusec per fault. Approximate corrections added.

II. BRecent changes

For this new series of experiments I used version 28-10 of
Multics, with both standard and MP page control subsystems. Among
other changes since Huber”s experiments was the introduction of NS§
(New Storage System), with many consequent effects in page control,
NS5 resulted in a 200 usec improvement in page fault times for the
standard PC, although no corresponding improvement was observed in
MPPC. I believe this shows the benefit of the long, careful tuning
process applied to standard PC; MPPC must compete without such tuning.

Page faults in the IPC benchmark have increased by 10% during
this time, probably due mostly to online changes and only somewhat to
reduced paging pool. As before, timing measurements are made with
paging pools adjusted so the two versions of PC handle about the same
number of faults during a standard metering run.

The final version of MPPC is optimized by embedding subroutines
as internal procedures of the page fault and core manager programs Sso
that most external calls and redundant assignments (i.e. "sstp = addr
(sst5);") are avoided. If all of the external calls could have been
removed, then the predictions in Table II would be realized. However,
the ecalls to ALM subroutines (such as the bulk store DIM) couldnt be

removed. Moreover, some of the calls that Huber counted to make his

-99-

predictions are executed only once in several page faults; in that
case the cost per fault is proportionally lower, reducing possible
optimization.

Six external calls were removed from page fault, leaving only
four calls, all involving ALM. Seven external calls were removed from
core manager, leaving four to or from ALM. However, three of the
calls removed were executed only half the time (when a page must be
written). 1f each external call costs 70 usec, the net gain is only
800 usec, or 14%. The rarer cases aren’t optimized, on the grounds
that a small improvement in an unusual case wouldn“t affect the
average times very much. Specifically, only PD reads, page creations,
virtual writes, and PD writes not requiring PD allocation are
optimized. This handles B4X of the cases.

As another optimization, the core manager page removal algorithm
is made more efficient, although complex, by starting writes for

several pages before waiting on any. The overall results are shown in

Table II1I.
28-10 Original Predicted Observed
Standard MPEC by Huber by me
Fault handler 2531 2543 1756 2162
Core manager -_— 1985 1191 1272
PD manager - 320 192 312
Interrupts and getwork 445 684 684 684
2976 5532 3823 4430

Table III. wusec per fault. Results of optimizations.

III. Where the time goes

It is possible to attribute the total CPU time spent on a page
fault to the various functions performed. The bulk store DIM alone

accounts for about 500 usec per read or write in both systems, which

=100~

is surprisingly high. This apparently indicates that the I/0 greatly
slows the CPU by competing for memory cycles. Of course, this
behavior should be unique to the test configuration combining MOS
memory with bulk store. Depending on whether the CPU is locked out
entirely or just slowed down, this effect may also be slowing down the
rest of PC. Another 500 usec is spent (mostly by pageSdone) to report
completion of the I/0. In the following table, the measured time for
the standard PC page fault is arbitrarily divided between freeing core
and real page fault in the proportion measured for the MPPC system.

The wunusual cases of page creation or forced write to disk are

ignored.
28-10 28-10 MPPC MPPC
us/event us/ fault us/event us/ fault
Real page fault 482 482 1162 1162
Getwork awaiting core — - 637 54
DIM and pageSdone 1000 1000 l1oo00 1000
Getwork awaiting disk 692 69 637 ba
Interrupts, disk read 1921 192 2102 210
Getwork for pre-empt 692 69 637 50
Freeing core frame 297 297 715 715
DIM if must write 1000 557 1000 557
Getwork by core manager = = 637 124
Freeing PD record 580 B3 1400 200
DIM if must RWS 2000 112 2000 112
Getwork by pd manager e i 637 56
Interrupts, RWS 1921 115 2102 126
2976 4430

Table IV. Detailed breakdown of page fault cost.

The total CPU time per fault for MPPC is 1454 wusec longer, or
about 49%. Approximately 230 usec of the excess is spent in getwork
when any process has to wait for a PC process to refill some free

list, or when the PC process is done and goes to sleep. Perhaps an

-101-

equal amount (unmeasured) 1is spent in calls to perform the
inter-process communication required for the PC processes. An
estimated 300 usec represents the effect of less common paths that I
didn“t bother to optimize, and the cost of putting free frames on a
separate list, and the cost of the extra metering done in this
version. The rest of the excess (estimated at 700 usec) is directly
caused by using PL/I to express the algorithms, which apparently
increases the execution time of comparable operations by about 80%.
(Note that Huber chose PL/I for ease of implementation, and not for
performance.)

One important factor adding to the cost of PL/I is the frequent
use of the pointer built-in function (to follow the many threads used
by PC). In the ALM version this is done by one instruction, loading
an index register. The PL/I compiler optimizes to shorten the
generated code; this is not always best for execution speed.
Furthermore, the ALM wversion optimizes register usage over a much
larger scope. Mostly these are problems inherent in the use of PL/I,
so (unless some gross bug is found) the best performance that might be
achieved must still be 20% poorer (in total CPU time per fault) than
the standard PC. 1It"s worth noting that the interrupt times for MPPC
are only slightly higher (181 usec). The system interrupt handler and
disk DIM (both unchanged) use most of the time; the difference is in
pageSdone, a very short procedure converted to PL/I for MPPC. TIts
execution time 1s around 400 usec, so the 80% PL/I overhead is still
consistent,

In the test configuration, the page fault rate is somewhat less

than 100 per second. Since the excess time for MPPC is 1454 usec per

~-102~

fault, it should cost less than 145400 usec per second, or only l4% of
the elapsed time for any run. However, overall system performance is
not that much worse. In faet, the faulting process is delayed 369
usec less by the fault (from Table III), so it seems to run faster,
and can respond to interactions faster (if it needs only a few new
pages).

The PC processes sometimes run during time that would otherwise
be idle. The benchmark results show this effect clearly if the
working set estimator is enabled —— that reduces multiprogramming and
increases idle time, so the MPPC system completes the benchmark in
just BX more elapsed time. (Tuning parameters: WSF = 1, Max Elig = 4;
about 150 pages; 23% idle with standard PC.) The MPPC will provide
faster service than the standard PC if there is enough idle time. If
the PC processes always take what would otherwise be idle time, the
page fault costs 369 usec less; if they never do, the fault costs 14534
usec more. At a point in between, the extra cost of MPPC is zero;
this happens if the PC processes take idle time 80% of the time. Thus
MPPC performs better than the standard PC if there 1is at least B80%
idle time.

The paging function is exercised so heavily in the tiny test
configuration that its cost is exaggerated in importance. A system
with muech larger main memory and no bulk store, which seems to be the
right approach for Multics, might, for example, take only ten page
faults per second per CPU. 1In this environment MPPC (minus the PD
process) would cost only 4% of the total time, versus 2.B% for the
standard PC. The reduction in the paging pool caused by maintaining a

free list (in MPPC) would also be unimportant in such a configuration.

-103-

Since choosing the right page to evict would become relatively more
important than doing it fast, alternative strategies should be tried,

and for such experiments the modularity, readability, and PL/I-ness of

MPEC make it ideal.

IV. Conclusions

First, the negative recommendations: MPPC as coded is not
suitable for installation on a thrashing system like MIT-Multics. It
is not ready for use anywhere because of glossed-over NS5 issues,
incomplete error handling, and just plain bugs. I have no intentiom
of updating the code to more recent Multiecs releases than 28-10.

There are many positive results. The cost of the inter-process
communication and swapping is not too bad (400 usec per fault?), and
it could be made much lower by making the free lists longer. (The
measurement runs were made with a maximum of 12 free cmes on the list.
Because of the interaction with paging rate this size free list would
be used only with paging pools from 500-1000.) The delay seen by a
process when it faults is slightly reduced. The PL/I version of page
control is available as a better base for experimentation and metering
than the ALM version.

It turms out that the cost of using general-purpose processes and
inter-process communication facilities, while small, 1is intrinsic.
This cost would probably not be much reduced using another
implementation of the process, such as Dave Reed’s Virtual Processor,
since a lot of the cost {s in unavoidable overhead of process
switching or of calls to perform IPC. Many of the IPC operations

either implement a cross-process call to a specific routine, or merely

=104=-
indicate that (say) the core_manager should be run sometime soon to
free up more core frames. The latter function could be more cheaply
implemented, at the cxpense of modularity, 1f the scheduler called the
core manager directly iust before going idle. Of course, if the
core manager isn’t a real process, it loses the ability to wait on I/0
or on a lock.

By far and away, the biggest performance problem is the use of
PL/I. It has already forced a non-modular design for the main
programs, by imposing a stiff penalty for good design; it also handles
the list-structured objects of page control very poorly. In order to
obtain better performance, I would have to rewrite the programs to use
constructs for which the code is known to be particularly good; that
means picking out the machine language sequence I want first, then
fooling the compiler into emitting it. It just isn”t worth writing
any program in higher-level 1language if its performance 1is so
important and the language so poorly suited.

Let us momentarily suspend disbelief, to consider an ALM wversion
of MPPC. It should execute similar functions at the same speed as the
standard PC, so the extra cost is just the 400 usec presumed for IPC
and swapping, or only an BX increase in CPU time per fault. The delay
at fault time becomes 1049 usec less (from Table 1IV), so overall
performance 1is improved for any load up to 72% (i.e. more than 28%
idle). 1In fact, if the IPC and swapping were optimized as previously
suggested, the overall performance might be improved at any realistic
load.

Even the ALM MPPC would cause some loss in throughput 1f there

were no otherwise-idle time to give to the PC processes. In the face

-105=
of strong real-world emphasis on execution speed, it"s sometimes hard
to explain why the program with good organization and modularity,
clearly expressed in higher-level language, 1s better than its
assembly language predecessor. We have no way of measuring the
intangible benefit of any such improvement or of weighing it against a
known cost in CPU cycles or dollars. All we can fall back on is the

general philosophy, "Good is better than evil, because it’s nicer."

