12.803. Change of Coordinates (non-orthogonal)

General coordinate change

There is a fairly straightforward mathematical procedure for changing coordinates from one system to another, even if the second is not orthogonal. Suppose we have a function $\psi(\mathbf{x})$ and wish to express it and its derivatives as functions of the new coordinates ξ. We could use the chain rule to find

$$
\begin{equation*}
\frac{\partial \psi}{\partial x_{i}}=\frac{\partial \xi_{j}}{\partial x_{i}} \frac{\partial \psi}{\partial \xi_{j}} \tag{1}
\end{equation*}
$$

But this may not be adequate, for the following reason. We wish to have coefficients in the final equations expressed as functions of the new coordinates; however, quantities such as

$$
\frac{\partial \xi_{1}}{\partial x_{3}}
$$

are more likely to be known as functions of \mathbf{x}.
To accomplish the goal of having all terms expressed in the new coordinates, we begin with the opposite form

$$
\begin{equation*}
\frac{\partial \psi}{\partial \xi_{i}}=\frac{\partial x_{j}}{\partial \xi_{i}} \frac{\partial \psi}{\partial x_{j}} \quad \text { or } \quad \nabla_{x} \psi=\mathbf{T} \nabla_{\xi} \psi \tag{2}
\end{equation*}
$$

and assume that the $\frac{\partial x_{j}}{\partial \xi_{i}}$ terms are functions of ξ. We can express derivatives in the old coordinate system in terms of derivates in the new system by inverting the transformation matrix:

$$
\begin{equation*}
\frac{\partial \psi}{\partial x_{i}}=\left[\frac{\partial x_{i}}{\partial \xi_{j}}\right]^{-1} \frac{\partial \psi}{\partial \xi_{j}} \quad \text { or } \quad \nabla_{\xi} \psi=\mathbf{T}^{-1} \nabla_{x} \psi \tag{3}
\end{equation*}
$$

In terms of the Jacobian matrix

$$
\frac{\partial(A, B, C)}{\partial\left(\xi_{1}, \xi_{2}, \xi_{3}\right)} \equiv \operatorname{det}\left(\begin{array}{ccc}
\frac{\partial A}{\partial \xi_{1}} & \frac{\partial A}{\partial \xi_{2}} & \frac{\partial A}{\partial \xi_{3}} \\
\frac{\partial B}{\partial \xi_{1}} & \frac{\partial B}{\partial \xi_{2}} & \frac{\partial B}{\partial \xi_{3}} \\
\frac{\partial C}{\partial \xi_{1}} & \frac{\partial C}{\partial \xi_{2}} & \frac{\partial C}{\partial \xi_{3}}
\end{array}\right)
$$

we have

$$
\frac{\partial \psi}{\partial x_{1}}=\frac{\partial\left(\psi, x_{2}, x_{3}\right)}{\partial\left(\xi_{1}, \xi_{2}, \xi_{3}\right)} / \frac{\partial\left(x_{1}, x_{2}, x_{3}\right)}{\partial\left(\xi_{1}, \xi_{2}, \xi_{3}\right)}
$$

etc.

Example

If we take polar coordinates as a specific case, we have the relationship between the old and new coordinates

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta \\
& z=z^{\prime}
\end{aligned}
$$

So that the transformation matrix matrix $T_{i j}=\frac{\partial x_{j}}{\partial \xi_{i}}$ in (2) is

$$
\mathbf{T}=\left(\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
-r \sin \theta & r \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)
$$

The inverse is

$$
\mathbf{T}^{-1}=\left(\begin{array}{ccc}
\cos \theta & -\frac{1}{r} \sin \theta & 0 \\
\sin \theta & \frac{1}{r} \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)
$$

so that

$$
\begin{aligned}
& \psi_{x}=\cos \theta \psi_{r}-\frac{1}{r} \sin \theta \psi_{\theta} \\
& \psi_{y}=\sin \theta \psi_{r}+\frac{1}{r} \cos \theta \psi_{\theta} \\
& \psi_{z}=\psi_{z^{\prime}}
\end{aligned}
$$

as obtained before (but the previous derivation used the orthogonality).

Change in vertical coordinate

If we switch from x, y, z to $x^{\prime}, y^{\prime}, \xi$, the transformation matrix is

$$
\mathbf{T}=\left(\begin{array}{ccc}
1 & 0 & \frac{\partial z}{\partial x^{\prime}} \\
0 & 1 & \frac{\partial z}{\partial y^{\prime}} \\
0 & 0 & \frac{\partial z}{\partial \xi}
\end{array}\right)
$$

and its inverse is

$$
\mathbf{T}^{-1}=\left(\begin{array}{ccc}
1 & 0 & -\frac{\partial z}{\partial x^{\prime}} / \frac{\partial z}{\partial \xi} \\
0 & 1 & -\frac{\partial z}{\partial y^{\prime}} / \frac{\partial z}{\partial \xi} \\
0 & 0 & 1 / \frac{\partial z}{\partial \xi}
\end{array}\right)
$$

Thus we can replace horizontal gradients

$$
\nabla \longrightarrow \nabla-\frac{\nabla z}{z_{\xi}} \frac{\partial}{\partial \xi}
$$

vertical derivatives

$$
\frac{\partial}{\partial z} \longrightarrow \frac{1}{z_{\xi}} \frac{\partial}{\partial \xi}
$$

and time derivatives

$$
\frac{\partial}{\partial t} \longrightarrow \frac{\partial}{\partial t}-\frac{z_{t}}{z_{\xi}} \frac{\partial}{\partial \xi}
$$

in our original equations.
First, we note that the material derivative becomes

$$
\frac{D}{D t}=\frac{\partial}{\partial t}+\mathbf{u} \cdot \nabla+\frac{1}{z_{\xi}}\left(w-z_{t}-\mathbf{u} \cdot \nabla z\right) \frac{\partial}{\partial \xi}
$$

and we can define the "vertical" velocity ω as

$$
\omega=\frac{1}{z_{\xi}}\left(w-z_{t}-\mathbf{u} \cdot \nabla z\right)
$$

so that the material derivative becomes

$$
\frac{D}{D t}=\frac{\partial}{\partial t}+\mathbf{u} \cdot \nabla+\omega \frac{\partial}{\partial \xi}
$$

With this definition, we note that $w=\frac{D}{D t} z$ as we might expect.

Transformed equations

The horizontal momentum equations become

$$
\begin{equation*}
\frac{D}{D t} \mathbf{u}+f \hat{\mathbf{k}} \times \mathbf{u}=-\frac{1}{\rho} \nabla p-\nabla \varphi \tag{e.1}
\end{equation*}
$$

with $\varphi=g z$ being the geopotential; the hydrostatic balance is

$$
\begin{equation*}
\frac{\partial}{\partial \xi} \varphi=-\frac{1}{\rho} \frac{\partial}{\partial \xi} p \tag{e.2a}
\end{equation*}
$$

while the conservation of mass gives

$$
\frac{1}{\rho} \frac{D}{D t} \rho+\nabla \cdot \mathbf{u}-\frac{1}{z_{\xi}} \mathbf{u}_{\xi} \cdot \nabla z+\frac{1}{z_{\xi}} \frac{\partial}{\partial \xi}\left(\frac{D}{D t} z\right)=0
$$

implying

$$
\frac{1}{\rho} \frac{D}{D t} \rho+\frac{1}{z_{\xi}} \frac{D}{D t} z_{\xi}+\nabla \cdot \mathbf{u}+\frac{\partial}{\partial \xi} \omega
$$

or

$$
\begin{equation*}
\frac{1}{p_{\xi}} \frac{D}{D t} p_{\xi}+\nabla \cdot \mathbf{u}+\frac{\partial}{\partial \xi} \omega=0 \tag{e.3}
\end{equation*}
$$

Finally, the thermodynamic equation becomes

$$
\begin{equation*}
\frac{D}{D t} \rho-\frac{1}{c_{s}^{2}} \frac{D}{D t} p=0 \tag{e.4a}
\end{equation*}
$$

in general. The potential vorticity (with η being the entropy) is

$$
\begin{equation*}
q=-\frac{g}{p_{\xi}}\left(\nabla_{3} \times \mathbf{u}+f \hat{\mathbf{k}}\right) \cdot \nabla_{3} \eta \tag{e.5}
\end{equation*}
$$

with the ∇_{3} notation indicating the vertical derivatives are included.

Vertical coordinate function of pressure

When the vertical coordinate is a function of pressure $\xi=\xi(p)$ or $p=p(\xi)$, we can define $p_{\xi} \equiv-g \rho_{c}(\xi)$ and simplify the equations to

$$
\begin{gather*}
\frac{D}{D t} \mathbf{u}+f \hat{\mathbf{k}} \times \mathbf{u}=-\nabla \varphi \tag{p.1}\\
\frac{\partial}{\partial \xi} \varphi=g \frac{\rho_{c}}{\rho} \equiv b \tag{p.2}\\
\nabla \cdot \mathbf{u}+\frac{1}{\rho_{c}} \frac{\partial}{\partial \xi}\left(\rho_{c} \omega\right)=0 \tag{p.3}\\
\frac{D}{D t} \rho+\omega \frac{g \rho_{c}}{c_{s}^{2}}=0 \quad \text { or } \quad \frac{D}{D t} b+\omega\left[-g \frac{\rho_{c \xi}}{\rho}-\frac{g^{2} \rho_{c}^{2}}{\rho^{2} c_{s}^{2}}\right]=0
\end{gather*}
$$

The last equation can also be written

$$
\frac{\partial}{\partial t} b+\mathbf{u} \cdot \nabla b+\omega\left[-\frac{g \rho_{c} \rho_{\xi}}{\rho^{2}}-\frac{g^{2} \rho_{c}^{2}}{\rho^{2} c_{s}^{2}}\right]=0
$$

or

$$
\begin{equation*}
\frac{\partial}{\partial t} b+\mathbf{u} \cdot \nabla b+\omega \mathcal{S}=0 \tag{p.4}
\end{equation*}
$$

with the stratification parameter \mathcal{S}

$$
\begin{equation*}
\mathcal{S} \equiv \frac{\rho_{c}^{2}}{\rho^{2}} N^{2}=b_{\xi}-b \frac{\rho_{c \xi}}{\rho_{c}}-\frac{b^{2}}{c_{s}^{2}} \tag{p.5a}
\end{equation*}
$$

defined in terms of the Brunt-Väisälä frequency

$$
\begin{equation*}
N^{2}=-g \frac{1}{\rho} \frac{\partial}{\partial z} \rho-\frac{g^{2}}{c_{s}^{2}}=-g \frac{\rho_{\xi}}{\rho_{c}}-\frac{g^{2}}{c_{s}^{2}}=\frac{g^{2}}{b^{2}} b_{\xi}-\frac{g^{2}}{b} \frac{\rho_{c \xi}}{\rho_{c}}-\frac{g^{2}}{c_{s}^{2}} \tag{p.5b}
\end{equation*}
$$

The PV is

$$
\begin{equation*}
q=\frac{1}{\rho_{c}}\left(\nabla_{3} \times \mathbf{u}+f \hat{\mathbf{k}}\right) \cdot \nabla_{3} \eta \tag{p.6}
\end{equation*}
$$

Thermodynamics

For an ideal gas, we can simplify the thermodynamics using $\eta=c_{p} \ln \theta$

$$
\begin{equation*}
\frac{D}{D t} \theta=0 \tag{p.7}
\end{equation*}
$$

with the potential temperature being

$$
\theta=\theta_{0} \frac{\rho_{0}}{\rho}\left(\frac{p}{p_{0}}\right)^{1 / \gamma}
$$

Thus, the buoyancy becomes

$$
\begin{equation*}
b=g \frac{\rho_{c}}{\rho_{0}}\left(\frac{p}{p_{0}}\right)^{-1 / \gamma} \frac{\theta}{\theta_{0}} \equiv G(\xi) \theta \tag{p.8}
\end{equation*}
$$

With a little work, you can substitute ($p .8$) into ($p .4$), using $c_{s}^{2}=\gamma p / \rho$ to show that ($p .7$) holds. The Brunt-Väisälä frequency is

$$
N^{2}=g \frac{\partial}{\partial z} \ln \theta=g \frac{\rho}{\rho_{c}} \frac{\partial}{\partial \xi} \ln \theta \quad, \quad \mathcal{S}=g \frac{\rho_{c}}{\rho} \frac{\partial}{\partial \xi} \ln \theta
$$

