12.803. Change of Coordinates (non-orthogonal)

General coordinate change

There is a fairly straightforward mathematical procedure for changing coordinates
from one system to another, even if the second is not orthogonal. Suppose we have a
function ¢ (x) and wish to express it and its derivatives as functions of the new coordinates
&. We could use the chain rule to find
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But this may not be adequate, for the following reason. We wish to have coefficients in the
final equations expressed as functions of the new coordinates; however, quantities such as
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are more likely to be known as functions of x.
To accomplish the goal of having all terms expressed in the new coordinates, we begin
with the opposite form
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and assume that the gig terms are functions of £&. We can express derivatives in the old
coordinate system in terms of derivates in the new system by inverting the transformation
matrix:
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In terms of the Jacobian matrix
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Example

If we take polar coordinates as a specific case, we have the relationship between the
old and new coordinates

T =r7cosf
y =rsinf
z=2

So that the transformation matrix matrix 7;; = gig?' in (2) is
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as obtained before (but the previous derivation used the orthogonality).



Change in vertical coordinate

If we switch from xz, y, z to 2/, 3/, &, the transformation matrix is
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and its inverse is

Thus we can replace horizontal gradients
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vertical derivatives

and time derivatives
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in our original equations.
First, we note that the material derivative becomes
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and we can define the “vertical” velocity w as
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so that the material derivative becomes

B—Q—Fu'v—k o
Dt Ot wag

With this definition, we note that w = D%z as we might expect.



Transformed equations

The horizontal momentum equations become
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with ¢ = gz being the geopotential; the hydrostatic balance is
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while the conservation of mass gives
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Finally, the thermodynamic equation becomes
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in general. The potential vorticity (with 1 being the entropy) is
q= —i(V3 x u+ fk) - Vsn (e.5)
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with the V3 notation indicating the vertical derivatives are included.



Vertical coordinate function of pressure

When the vertical coordinate is a function of pressure £ = &(p) or p = p(&), we can

define pe = —gp.(£) and simplify the equations to
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The last equation can also be written
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with the stratification parameter S
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defined in terms of the Brunt-Vaiisala frequency
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The PV is
qg=—(Vsxu+ fk)-Vsn
Thermodynamics

For an ideal gas, we can simplify the thermodynamics using 77 = ¢, In0
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with the potential temperature being

Thus, the buoyancy becomes
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With a little work, you can substitute (p.8) into (p.4), using ¢ = yp/p to show that (p.7)

holds. The Brunt-Vaisala frequency is
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