
12.803. Change of Coordinates (non–orthogonal)

General coordinate change

There is a fairly straightforward mathematical procedure for changing coordinates
from one system to another, even if the second is not orthogonal. Suppose we have a
function ψ(x) and wish to express it and its derivatives as functions of the new coordinates
ξξ. We could use the chain rule to find

∂ψ

∂xi
=
∂ξj
∂xi

∂ψ

∂ξj
(1)

But this may not be adequate, for the following reason. We wish to have coefficients in the
final equations expressed as functions of the new coordinates; however, quantities such as

∂ξ1
∂x3

are more likely to be known as functions of x.
To accomplish the goal of having all terms expressed in the new coordinates, we begin

with the opposite form

∂ψ

∂ξi
=
∂xj

∂ξi

∂ψ

∂xj
or ∇xψ = T∇ξψ (2)

and assume that the ∂xj

∂ξi
terms are functions of ξξ. We can express derivatives in the old

coordinate system in terms of derivates in the new system by inverting the transformation
matrix:

∂ψ

∂xi
=

[
∂xi

∂ξj

]−1
∂ψ

∂ξj
or ∇ξψ = T−1∇xψ (3)

In terms of the Jacobian matrix

∂(A,B,C)
∂(ξ1, ξ2, ξ3)

≡ det


∂A
∂ξ1

∂A
∂ξ2

∂A
∂ξ3

∂B
∂ξ1

∂B
∂ξ2

∂B
∂ξ3

∂C
∂ξ1

∂C
∂ξ2

∂C
∂ξ3


we have

∂ψ

∂x1
=
∂(ψ, x2, x3)
∂(ξ1, ξ2, ξ3)

/∂(x1, x2, x3)
∂(ξ1, ξ2, ξ3)

etc.
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Example

If we take polar coordinates as a specific case, we have the relationship between the
old and new coordinates

x = r cos θ
y = r sin θ
z = z′

So that the transformation matrix matrix Tij = ∂xj

∂ξi
in (2) is

T =

 cos θ sin θ 0
−r sin θ r cos θ 0

0 0 1


The inverse is

T−1 =

 cos θ − 1
r sin θ 0

sin θ 1
r cos θ 0

0 0 1


so that

ψx = cos θ ψr −
1
r

sin θ ψθ

ψy = sin θ ψr +
1
r

cos θ ψθ

ψz = ψz′

as obtained before (but the previous derivation used the orthogonality).
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Change in vertical coordinate

If we switch from x, y, z to x′, y′, ξ, the transformation matrix is

T =


1 0

∂z

∂x′

0 1
∂z

∂y′

0 0
∂z

∂ξ


and its inverse is

T−1 =


1 0 − ∂z

∂x′
/∂z
∂ξ

0 1 − ∂z

∂y′
/∂z
∂ξ

0 0 1
/∂z
∂ξ


Thus we can replace horizontal gradients

∇ −→ ∇− ∇z
zξ

∂

∂ξ

vertical derivatives
∂

∂z
−→ 1

zξ

∂

∂ξ

and time derivatives
∂

∂t
−→ ∂

∂t
− zt

zξ

∂

∂ξ

in our original equations.
First, we note that the material derivative becomes

D

Dt
=

∂

∂t
+ u · ∇+

1
zξ

(w − zt − u · ∇z) ∂
∂ξ

and we can define the “vertical” velocity ω as

ω =
1
zξ

(w − zt − u · ∇z)

so that the material derivative becomes

D

Dt
=

∂

∂t
+ u · ∇+ ω

∂

∂ξ

With this definition, we note that w = D
Dtz as we might expect.
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Transformed equations

The horizontal momentum equations become

D

Dt
u + f k̂× u = −1

ρ
∇p−∇ϕ (e.1)

with ϕ = gz being the geopotential; the hydrostatic balance is

∂

∂ξ
ϕ = −1

ρ

∂

∂ξ
p (e.2a)

while the conservation of mass gives

1
ρ

D

Dt
ρ+∇ · u− 1

zξ
uξ · ∇z +

1
zξ

∂

∂ξ
(
D

Dt
z) = 0

implying
1
ρ

D

Dt
ρ+

1
zξ

D

Dt
zξ +∇ · u +

∂

∂ξ
ω

or
1
pξ

D

Dt
pξ +∇ · u +

∂

∂ξ
ω = 0 (e.3)

Finally, the thermodynamic equation becomes

D

Dt
ρ− 1

c2s

D

Dt
p = 0 (e.4a)

in general. The potential vorticity (with η being the entropy) is

q = − g

pξ
(∇3 × u + f k̂) · ∇3η (e.5)

with the ∇3 notation indicating the vertical derivatives are included.
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Vertical coordinate function of pressure

When the vertical coordinate is a function of pressure ξ = ξ(p) or p = p(ξ), we can
define pξ ≡ −gρc(ξ) and simplify the equations to

D

Dt
u + f k̂× u = −∇ϕ (p.1)

∂

∂ξ
ϕ = g

ρc

ρ
≡ b (p.2)

∇ · u +
1
ρc

∂

∂ξ
(ρcω) = 0 (p.3)

D

Dt
ρ+ ω

gρc

c2s
= 0 or

D

Dt
b+ ω

[
−g

ρcξ

ρ
− g2ρ2

c

ρ2c2s

]
= 0

The last equation can also be written
∂

∂t
b+ u · ∇b+ ω

[
−gρcρξ

ρ2
− g2ρ2

c

ρ2c2s

]
= 0

or
∂

∂t
b+ u · ∇b+ ωS = 0 (p.4)

with the stratification parameter S

S ≡ ρ2
c

ρ2
N2 = bξ − b

ρcξ

ρc
− b2

c2s
(p.5a)

defined in terms of the Brunt-Väisälä frequency

N2 = −g 1
ρ

∂

∂z
ρ− g2

c2s
= −g ρξ

ρc
− g2

c2s
=
g2

b2
bξ −

g2

b

ρcξ

ρc
− g2

c2s
(p.5b)

The PV is
q =

1
ρc

(∇3 × u + f k̂) · ∇3η (p.6)

Thermodynamics

For an ideal gas, we can simplify the thermodynamics using η = cp ln θ
D

Dt
θ = 0 (p.7)

with the potential temperature being

θ = θ0
ρ0

ρ

(
p

p0

)1/γ

Thus, the buoyancy becomes

b = g
ρc

ρ0

(
p

p0

)−1/γ
θ

θ0
≡ G(ξ)θ (p.8)

With a little work, you can substitute (p.8) into (p.4), using c2s = γp/ρ to show that (p.7)
holds. The Brunt-Väisälä frequency is

N2 = g
∂

∂z
ln θ = g

ρ

ρc

∂

∂ξ
ln θ , S = g

ρc

ρ

∂

∂ξ
ln θ
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