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Lecture II



with the nonlinear advective dynamics of turbulence. On average turbulence
acts to change the flow patterns, to increase their complexity (i.e., their
incoherence), and to limit the time over which the evolution is predictable. A
central problem in GFD is how these contrasting paradigms — coherent
structures and turbulence — can each have validity in nature. This chapter is
an introduction to these phenomena in the special situation of
two-dimensional (2D), or barotropic, fluid dynamics.

3.1 Barotropic Equations

Consider 2D dynamics, with ∂z = w = δρ = δθ = 0, and purely vertical
rotation with ΩΩΩ = ẑ f/2. The governing momentum and continuity equations
under these conditions are

Du

Dt
− fv = −∂φ

∂x
+ F (x)

Dv

Dt
+ fu = −∂φ

∂y
+ F (y)

∂u

∂x
+

∂v

∂y
= 0 , (3.1)

with
D

Dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
.

These equations conserve the total kinetic energy,

KE =
1

2

∫ ∫
dx dy u2 , (3.2)

when F is zero and no energy flux occurs through the boundary:

d

dt
KE = 0 . (3.3)

This can be shown by multiplying the momentum equation in (3.1) by u· ,
integrating over the domain, and using continuity to show that there is no net
energy source or sink from advection and the pressure force. The 2D
incompressibility relation implies that the velocity can be represented entirely
in terms of a streamfunction, ψ(x, y, t),

u = −∂ψ

∂y
, v =

∂ψ

∂x
, (3.4)
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since there is no divergence (cf., (2.17)). The vorticity (2.19) in this case only
has a vertical component, ζ = ζz:

ζ =
∂v

∂x
− ∂u

∂y
= ∇2ψ . (3.5)

(In the present context, it is implicit that ∇∇∇ ≡ ∇∇∇h.) There is no buoyancy
influence on the dynamics. This is an example of barotropic flow using either
of its common definitions, ∂z = 0 (sometimes enforced by taking a depth
average of a 3D flow) or ∇∇∇φ × ∇∇∇ρ = 0. (The opposite of barotropic is
baroclinic; Chap. 5). The consequence of these simplifying assumptions is that
the gravitational force plays no overt role in 2D fluid dynamics, however much
its influence may be implicit in the rationale for why 2D flows are
geophysically relevant (McWilliams, 1983).

3.1.1 Circulation

The circulation (defined in Sec. 2.1) has a strongly constrained time
evolution. This will be shown using an infinitesimal calculus. Consider the
time evolution of a line integral

∫
C A · dr, where A is an arbitrary vector and

C is a closed material curve (i.e., attached to the material parcels along it). A
small increment along the curve between two points marked 1 and 2,
∆r = r2 − r1, becomes ∆r′ after a small interval, ∆t (Fig. 3.2):

∆r′ ≡ r′2 − r′1
≈ (r2 + u2∆t) − (r1 + u1∆t)

= ∆r + (u2 − u1)∆t , (3.6)

using a Taylor series expansion in time for the Lagrangian coordinate, r(t).
Thus,

∆r′ − ∆r

∆t
≈ u2 − u1 ≈ ∂u

∂s
∆s = (∆r · ∇∇∇)u (3.7)

for small ∆s ≡ |∆r|, where s is arc length along C. As ∆t → 0, (3.7) becomes

D

Dt
∆r = (∆r · ∇∇∇)u . (3.8)

This expresses the stretching and bending of ∆r through the tangential and
normal components of (∆r · ∇∇∇)u, respectively. Now divide C into small line
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Barotropic circulation theorem 1

C =
∮

u · dr (1)

DC
Dt =

D

Dt

∮
u · dr (2)

=
∮ Du

Dt
· dr +

∮
u · Ddr

Dt
(3)

=
∮

[−fz × u−∇φ + F ] · dr +
∮

u · du (4)

=
∮

[−fz × (z ×∇ψ) + F ] · dr (5)

=
∮

[f∇ψ + F ] · dr (6)

=
∮

[−ψ∇f + F ] · dr (7)
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Baroclinic circulation theorem: Kelvin’s theorem

1
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DC
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D

Dt

∮
u · dr (8)

=
∮ Du

Dt
· dr +

∮
u · Ddr

Dt
(9)

=
∮ [
−fz × u− 1

ρ
∇p + F

]
· dr (10)

=
∮ [
−fz × u− ∇ρ×∇p

ρ2
+ F

]
· dr (11)

(12)



Vorticity equation
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ζ = ẑ ·∇× u (13)
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barotropic flow, whose dynamics have a lot in common with shallow-water
flow (Chap. 4). For further discussion see Gill (p. 237-8, 1982).

3.1.2 Vorticity and Potential Vorticity

The vorticity equation is derived by taking the curl, (ẑ · ∇∇∇h×) , of the
momentum equations in (3.1). Examine in turn each term that results from
this operation:

∂u

∂t
−→ − ∂2u

∂y∂t
+

∂2v

∂x∂t
=

∂ζ

∂t
; (3.19)

(u ·∇)u −→ − ∂

∂y

[
u
∂u

∂x
+ v

∂u

∂y

]
+

∂

∂x

[
u

∂v

∂x
+ vv

∂v

∂y

]

= u

(
∂2v

∂x2
− ∂2u

∂y∂x

)
+ v

(
∂2v

∂y∂x
− ∂2u

∂y2

)

−∂u

∂y

(
∂u

∂x
+

∂v

∂y

)
+

∂v

∂x

(
∂u

pdx
+

∂v

∂y

)
= u · ∇∇∇ζ , (3.20)

using the 2D continuity relation in (3.1);

∇∇∇φ −→ − ∂

∂y

(
∂φ

∂x

)
+

∂

∂x

(
∂φ

∂y

)
= 0 ; (3.21)

f ẑ × u −→ − ∂

∂y
(−fv) +

∂

∂x
(fu)

= f

(
∂u

pdx
+

∂v

∂y

)
+ u

∂f

∂x
+ v

∂f

∂y

= u · ∇∇∇f ; (3.22)

and

F −→ −∂F x

∂y
+

∂F y

∂x
≡ F . (3.23)

The result is
Dζ

Dt
= −u · ∇∇∇f + F . (3.24)
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barotropic flow, whose dynamics have a lot in common with shallow-water
flow (Chap. 4). For further discussion see Gill (p. 237-8, 1982).
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using the 2D continuity relation in (3.1);

∇∇∇φ −→ − ∂

∂y

(
∂φ

∂x

)
+

∂

∂x

(
∂φ

∂y

)
= 0 ; (3.21)

f ẑ × u −→ − ∂

∂y
(−fv) +

∂

∂x
(fu)

= f

(
∂u

pdx
+

∂v

∂y

)
+ u

∂f

∂x
+ v

∂f

∂y

= u · ∇∇∇f ; (3.22)

and

F −→ −∂F x

∂y
+

∂F y

∂x
≡ F . (3.23)

The result is
Dζ

Dt
= −u · ∇∇∇f + F . (3.24)
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Conservation of potential vorticity

Since               , the potential vorticity                  is conserved

1

C =
∮

u · dr (1)

DC
Dt =

D

Dt

∮
u · dr (2)

=
∮ Du

Dt
· dr +

∮
u · Ddr

Dt
(3)

=
∮

[−fz × u−∇φ + F ] · dr +
∮

u · du (4)

=
∮

[−fz × (z ×∇ψ) + F ] · dr (5)

=
∮

[f∇ψ + F ] · dr (6)

=
∮

[−ψ∇f + F ] · dr (7)

DC
Dt =

D

Dt

∮
u · dr (8)

=
∮ Du

Dt
· dr +

∮
u · Ddr

Dt
(9)

=
∮ [
−fz × u− 1

ρ
∇p + F

]
· dr (10)

=
∮ [
−fz × u− ∇ρ×∇p

ρ2
+ F

]
· dr (11)

(12)

ζ = ẑ ·∇× u (13)

{
1

2

}
(14)

∮
u · dr =

∫ ∫
ζdA (15)

∂tf = 0 (16)

2

q = ζ + f (18)
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2
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Dζ

Dt
+ u ·∇f = F =⇒ Dq

Dt
= F (17)

When F=0 and there are no flux of potential vorticity at the 
boundary, 

2

q = ζ + f (18)

uq · n̂ = 0 (19)

The vorticity only changes following a parcel because of a viscous or external
force curl, F , or spatial variation in f . Notice the similarity with Kelvin’s
theorem (3.16). This is to be expected because, as derived in Sec. 2.1,∫

C
u · dr =

∫ ∫
A

ζ dx dy . (3.25)

Equation (3.24) is a local differential relation, rather than an integral relation,
but since (3.16) applies to all possible material curves, both relations cover
the entire 2D domain.

Advection Operator: Using (3.4) the advection operator can be rewritten
as

u · ∇∇∇A = u
∂A

∂x
+ v

∂A

∂y

= −∂ψ

∂y

∂A

∂x
+

∂ψ

∂x

∂A

∂y
≡ J [ψ, A] (3.26)

for any advected field, A. J is called the Jacobian operator, and it is the
approximate form for advection in flows dominated by ψ (cf., Sec. 2.2.1), even
in 3D.

Potential Vorticity: Since ∂tf = 0, (3.24) can be rewritten as

Dq

Dt
= F , (3.27)

with the potential vorticity defined by

q ≡ f + ζ . (3.28)

When F = 0 (conservative flow), q is a parcel invariant; i.e., Dtq = 0 for all
parcels in the domain. This implies that a conservative flow can only
rearrange the spatial distribution of q(x) without changing any of its
aggregate (or integral) properties; e.g.,

d

dt

∫ ∫
dx dy qn = 0 (3.29)

for any value of n as long as there is no potential-vorticity flux at the
boundary, qu · n̂ = 0.
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A univariate dynamical system

2

q = ζ + f (18)

uq · n̂ = 0 (19)

∇2∂ψ

∂t
+ J

[
ψ, f +∇2ψ

]
= F (20)

The dynamics depends only on streamfunction for prescribed 
forcing and rotation. The pressure does not appear in the 
barotropic vorticity equation. The continuity equation reduces 
the temporal evolution from second to first order.



Rossby waves

A Univariate Dynamical System: Eqs. (3.24) or (3.27), with (3.5)
and/or (3.28), comprise a partial differential equation system with ψ as the
only dependent variable (assuming that f is known and F can be expressed in
terms of the flow) because φ does not appear in the potential vorticity
equation, in contrast to the momentum-continuity formulation (3.1). For
example, with f = f0 and F = 0, (3.24) can be written entirely in terms of ψ
as

∇2∂ψ

∂t
+ J [ψ,∇2ψ] = 0 . (3.30)

Equation (3.30) is often called the barotropic vorticity equation since it has no
contributions from vertical shear or any other vertical gradients.

Rossby Waves: As an alternative to (3.30) when f = f(y) = f0 +β0(y− y0)
(i.e., the β-plane approximation (2.90)) and advection is neglected (i.e., the
flow is linearized about a resting state), (3.24) or (3.28) becomes

∇2∂ψ

∂t
+ β0

∂ψ

∂x
= 0 . (3.31)

In an unbounded domain, this equation has normal-mode solutions with
eigenmodes,

ψ = Real
(
ψ0e

i(kx+!y−ωt)
)

, (3.32)

for an arbitrary amplitude constant, ψ0 (with the understanding that only the
real part of ψ is physically meaningful) and eigenvalues (eigenfrequencies),

ω = − β0k

k2 + &2
. (3.33)

This can be verified as a solution by substitution into (3.31). The type of
relation (3.33), between the eigenfrequency and the wavenumbers and
environmental parameters (here β0), is called a dispersion relation, and it is a
usual element for wave and instability solutions (Chap. 4). These particular
eigenmodes are westward-propagating (i.e., ω/k < 0), barotropic Rossby
waves. (Secs. 4.6-4.7 have more analyses.)

3.1.3 Divergence and Diagnostic Force Balance

The divergence equation is derived by operating on the momentum equations
in (3.1) with (∇∇∇ · ) . Again examine the effect of this operation on each term:

∂u

∂t
−→ ∂

∂x

∂u

∂t
+

∂

∂y

∂v

∂t
= 0 ; (3.34)
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2

q = ζ + f (18)

uq · n̂ = 0 (19)

∇2∂ψ

∂t
+ J

[
ψ, f +∇2ψ

]
= F (20)

cx =
ω

k
= − β

k2 + l2
cgx =

∂ω

∂k
=

β(k2 − l2)

k2 + l2
(21)
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Divergence equation

1

C =
∮

u · dr (1)

DC
Dt =

D

Dt

∮
u · dr (2)

=
∮ Du

Dt
· dr +

∮
u · Ddr

Dt
(3)

=
∮

[−fz × u−∇φ + F ] · dr +
∮

u · du (4)

=
∮

[−fz × (z ×∇ψ) + F ] · dr (5)

=
∮

[f∇ψ + F ] · dr (6)

=
∮

[−ψ∇f + F ] · dr (7)

DC
Dt =

D

Dt

∮
u · dr (8)

=
∮ Du

Dt
· dr +

∮
u · Ddr

Dt
(9)

=
∮ [
−fz × u− 1

ρ
∇p + F

]
· dr (10)

=
∮ [
−fz × u− ∇ρ×∇p

ρ2
+ F

]
· dr (11)

(12)

ζ = ẑ ·∇× u (13)

{
1

2

}
(14)

A Univariate Dynamical System: Eqs. (3.24) or (3.27), with (3.5)
and/or (3.28), comprise a partial differential equation system with ψ as the
only dependent variable (assuming that f is known and F can be expressed in
terms of the flow) because φ does not appear in the potential vorticity
equation, in contrast to the momentum-continuity formulation (3.1). For
example, with f = f0 and F = 0, (3.24) can be written entirely in terms of ψ
as

∇2∂ψ

∂t
+ J [ψ,∇2ψ] = 0 . (3.30)

Equation (3.30) is often called the barotropic vorticity equation since it has no
contributions from vertical shear or any other vertical gradients.

Rossby Waves: As an alternative to (3.30) when f = f(y) = f0 +β0(y− y0)
(i.e., the β-plane approximation (2.90)) and advection is neglected (i.e., the
flow is linearized about a resting state), (3.24) or (3.28) becomes

∇2∂ψ

∂t
+ β0

∂ψ

∂x
= 0 . (3.31)

In an unbounded domain, this equation has normal-mode solutions with
eigenmodes,

ψ = Real
(
ψ0e

i(kx+!y−ωt)
)

, (3.32)

for an arbitrary amplitude constant, ψ0 (with the understanding that only the
real part of ψ is physically meaningful) and eigenvalues (eigenfrequencies),

ω = − β0k

k2 + &2
. (3.33)

This can be verified as a solution by substitution into (3.31). The type of
relation (3.33), between the eigenfrequency and the wavenumbers and
environmental parameters (here β0), is called a dispersion relation, and it is a
usual element for wave and instability solutions (Chap. 4). These particular
eigenmodes are westward-propagating (i.e., ω/k < 0), barotropic Rossby
waves. (Secs. 4.6-4.7 have more analyses.)

3.1.3 Divergence and Diagnostic Force Balance

The divergence equation is derived by operating on the momentum equations
in (3.1) with (∇∇∇ · ) . Again examine the effect of this operation on each term:

∂u

∂t
−→ ∂

∂x

∂u

∂t
+

∂

∂y

∂v

∂t
= 0 ; (3.34)
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as

∇2∂ψ

∂t
+ J [ψ,∇2ψ] = 0 . (3.30)
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∇2∂ψ

∂t
+ β0

∂ψ

∂x
= 0 . (3.31)

In an unbounded domain, this equation has normal-mode solutions with
eigenmodes,

ψ = Real
(
ψ0e

i(kx+!y−ωt)
)

, (3.32)

for an arbitrary amplitude constant, ψ0 (with the understanding that only the
real part of ψ is physically meaningful) and eigenvalues (eigenfrequencies),

ω = − β0k

k2 + &2
. (3.33)

This can be verified as a solution by substitution into (3.31). The type of
relation (3.33), between the eigenfrequency and the wavenumbers and
environmental parameters (here β0), is called a dispersion relation, and it is a
usual element for wave and instability solutions (Chap. 4). These particular
eigenmodes are westward-propagating (i.e., ω/k < 0), barotropic Rossby
waves. (Secs. 4.6-4.7 have more analyses.)

3.1.3 Divergence and Diagnostic Force Balance

The divergence equation is derived by operating on the momentum equations
in (3.1) with (∇∇∇ · ) . Again examine the effect of this operation on each term:

∂u
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−→ ∂
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∂u
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∂
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∂v

∂t
= 0 ; (3.34)
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(
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)

= −2

(
∂u

∂x
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∂y
− ∂u

∂y

∂v

∂x

)

=
∂u

∂t
= −2J

[
∂ψ

∂x
,

∂ψ

∂y

]
; (3.35)

−∇∇∇φ −→ −∇2φ ; (3.36)

f ẑ × u −→ ∂

∂x
(−fv) +

∂

∂y
(fu) = −∇∇∇ · (f∇∇∇ψ) ; (3.37)

and
F −→ ∇∇∇ · F . (3.38)

The result is

∇2φ = ∇∇∇ · (f∇∇∇ψ) + 2J

[
∂ψ

∂x
,

∂ψ

∂y

]
+ ∇∇∇ · F . (3.39)

This relation allows φ to be calculated diagnostically from ψ and F, whereas,
as explained near (3.30), ψ can be prognostically solved for without knowing
φ. The partial differential equation system (3.27) and (3.39) is fully equivalent
to the primitive variable form (3.1), given consistent boundary and initial
conditions. The former equation pair is a system that has only a single time
derivative. Therefore, it is a first-order system that needs only a single field
(e.g., ψ(x, 0)) as the initial condition, whereas an incautious inspection of
(3.1), by counting time derivatives, might wrongly conclude that the system is
second order, requiring two independent fields as an initial condition. The
latter mistake results from overlooking the consequences of the continuity
equation that relates the separate time derivatives, ∂tu and ∂tv. This mistake
is avoided for the univariate system because the continuity constraint is
implicit in the use of ψ as the prognostic variable.

After neglecting ∇∇∇ · F and using the following scaling estimates,

u ∼ V, x ∼ L, f ∼ f0, ψ ∼ V L, φ ∼ f0V L, β =
df

dy
∼ Ro

f0

L
, (3.40)

for Ro & 1, (3.39) becomes

∇2φ = f0∇2ψ[ 1 + O(Ro) ] ⇒ φ ≈ f0ψ . (3.41)
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Gradient-wind balanceThis is the geostrophic balance relation (2.107). For general f and Ro, the 2D
divergence equation is

∇2φ = ∇∇∇ · (f∇∇∇ψ) + 2J

[
∂ψ

∂x
,

∂ψ

∂y

]
, (3.42)

again neglecting ∇∇∇ · F.

This is called the gradient-wind balance relation. Equation (3.42) is an exact
relation for conservative 2D motions, but also often is a highly accurate
approximation for 3D motions with Ro ≤ O(1) and compatible initial
conditions and forcing. In comparison geostrophic balance is accurate only if
Ro # 1. When the flow evolution satisfies a diagnostic relation like (3.41) or
(3.42), it is said to have a balanced dynamics and, by implication, exhibits
fewer temporal degrees of freedom than allowed by the more general
dynamics. Most large-scale flow evolution is well balanced, but inertial
oscillations and internal gravity waves are not balanced (cf., Chaps. 2 & 4).
Accurate numerical weather forecasts require that the initial conditions of the
time integration be well balanced, or else the evolution will be erroneously
oscillatory compared to nature.

3.1.4 Stationary, Inviscid Flows

Zonal Flow: A parallel flow, such as the zonal flow,

u(x, t) = U(y) x̂ , (3.43)

is a steady flow when F = 0 (e.g., when ν = 0). This is called an inviscid
stationary state, i.e., a non-evolving solution of (3.1) and (3.28) where the
advection operator is trivial. On the f -plane a stationary parallel flow can
have an arbitrary orientation, but on the β-plane, with f = f(y), only the
zonal flow (3.43) is a stationary solution. This flow configuration makes the
advective potential-vorticity tendency vanish,

J [ψ, q] = J

[
−

∫ y

U(y′) dy′, f(y) − dU

dy
(y)

]
= 0 ,

as a consequence instance of the Jacobian operator’s property that it vanishes
if each of its arguments is a functional of a single variable, here y. In a zonal
flow, all other flow quantities (e.g., ψ, φ, ζ, q) are functions only of the
coordinate y.
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Stationary solution: zonal shear flow
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A parallel shear flow is an inviscid stationary solution
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Stationary solution: axisymmetrix vortex flow

Vortex Flow: A simple example of a vortex solution for 2D, conservative,
uniformly rotating (i.e., f = f0) dynamics is an axisymmetric flow where
ψ(x, y, t) = ψ(r) and r = [(x − x0)2 + (y − y0)2]1/2 is the radial distance from
the vortex center at (x0, y0). This too is a stationary state since in
(3.24)-(3.26), J [ψ(r), ζ(r)] = 0. The most common vortex radial shape is a
monopole vortex (Fig. 3.3). It has a monotonic decay in ψ as r increases away
from the extremum at the origin (ignoring a possible far-field behavior of ψ ∝
log[r]; see (3.50) below). An axisymmetric solution is most compactly
represented in cylindrical coordinates, (r, θ), that are related to the Cartesian
coordinates, (x, y), by

x = x0 + r cos θ, y = y0 + r sin θ . (3.44)

The solution has corresponding cylindrical-coordinate velocity components,
(U, V ), related to the Cartesian components by

u = Ucos θ − V sin θ, v = Usin θ + V cos θ . (3.45)

Thus, for an axisymmetric vortex,

u = U = ẑ × ∇∇∇ψ −→ V =
∂ψ

∂r
, U = 0

ζ = ẑ · ∇∇∇× u −→ ζ =
1

r

∂

∂r
[rV ] . (3.46)

A monopole vortex whose vorticity, ζ(r), is restricted to a finite core region
(i.e., ζ = 0 for all r ≥ r∗) has a nearly universal structure to its velocity in the
far-field region well away from its center. Integrating the last relation in
(3.46) with the boundary condition V (0) = 0 (i.e., there can be no azimuthal
velocity at the origin where the azimuthal direction is undefined) yields

V (r) =
1

r

∫ r

0
ζ(r′)r′ dr′ . (3.47)

For r ≥ r∗, this implies that

V (r) =
C

2πr
. (3.48)

The associated far-field circulation, C, is

C(r) =
∫

r≥r∗
u · dr′
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where U(r) is the radial velocity, V(r) is the azimuthal 
velocity.
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Figure 3.3: An axisymmetric anticyclonic monopole vortex (when f0 > 0).
(Left) Typical radial profiles for ψ and V . (Right) Typical radial profiles for ζ,
showing either a monotonic decay (“bare”) or an additional outer annulus of
opposite-sign vorticity (“shielded”).

68

ζ

r

r

ζ

r

r

Ψ

V

anticyclonic monopole vortex (f > 0)

"bare"

"shielded"

or

Figure 3.3: An axisymmetric anticyclonic monopole vortex (when f0 > 0).
(Left) Typical radial profiles for ψ and V . (Right) Typical radial profiles for ζ,
showing either a monotonic decay (“bare”) or an additional outer annulus of
opposite-sign vorticity (“shielded”).

68



Far-field generated by a 2D axisymmetric vortex

Vortex Flow: A simple example of a vortex solution for 2D, conservative,
uniformly rotating (i.e., f = f0) dynamics is an axisymmetric flow where
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A monopole vortex whose vorticity, ζ(r), is restricted to a finite core region
(i.e., ζ = 0 for all r ≥ r∗) has a nearly universal structure to its velocity in the
far-field region well away from its center. Integrating the last relation in
(3.46) with the boundary condition V (0) = 0 (i.e., there can be no azimuthal
velocity at the origin where the azimuthal direction is undefined) yields

V (r) =
1

r

∫ r

0
ζ(r′)r′ dr′ . (3.47)

For r ≥ r∗, this implies that

V (r) =
C

2πr
. (3.48)

The associated far-field circulation, C, is

C(r) =
∫

r≥r∗
u · dr′
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Vortex Flow: A simple example of a vortex solution for 2D, conservative,
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=
∫ 2π

0
V (r)r dθ

= 2πrV (r)

= 2π
∫ r∗

0
ζ(r′)r′ dr′ . (3.49)

C(r) is independent of r in the far-field; i.e., the vortex has constant
circulation around all integration circuits, C, that lie entirely outside r∗. Also,

∂ψ

∂r
= V

⇒ ψ =
∫ r

0
V dr′ + ψ0

⇒ ψ ∼ ψ0 as r → 0

⇒ ψ ∼ C

2π
ln r as r → ∞ . (3.50)

For monopoles with only a single sign for ζ(r) (e.g., the “bare” profile in Fig.
3.3), C %= 0. In contrast, for a “shielded” profile (Fig. 3.3), there is a
possibility that C = 0 due to cancellation between regions with opposite-sign
ζ. If C = 0, the vortex far-field flow (3.48) is zero to leading order in 1/r, and
V (r) is essentially, though not precisely, confined to the region where ζ %= 0.
In this case its advective influence on its neighborhood is spatially more
localized than when C %= 0. Finally, the strain rate for an axisymmetric vortex
has the formula,

S = r
d

dr

[
V

r

]
∼ − C

2πr2
as r → ∞ . (3.51)

Thus, the strain rate is spatially more extensive than the vorticity for a
vortex, but it is less extensive than the velocity field.

Monopole vortices can have either sign for their azimuthal flow direction
and the other dynamical variables. Assuming f0 > 0 (northern hemisphere)
and geostrophic balance (3.41), the two vortex parities are categorized as

cyclonic: V > 0, ζ > 0, C > 0, ψ < 0, φ < 0.

anticyclonic: V < 0, ζ < 0, C < 0, ψ > 0, φ > 0.

(For ζ the sign condition refers to ζ(0) as representative of the vortex core
region.) In the southern hemisphere, cyclonic refers to
V < 0, ζ < 0, C < 0, ψ > 0, but still φ < 0, and vice versa for anticyclonic.
The 2D dynamical equations for ψ, (3.24) or (3.27) above, are invariant under
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Far-field generated by a 2D axisymmetric vortex
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Figure 3.3: An axisymmetric anticyclonic monopole vortex (when f0 > 0).
(Left) Typical radial profiles for ψ and V . (Right) Typical radial profiles for ζ,
showing either a monotonic decay (“bare”) or an additional outer annulus of
opposite-sign vorticity (“shielded”).
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Cyclonic and anticyclonic vortices
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Figure 3.5: Radial profiles of φ and V for axisymmetric cyclones and anticy-
clones with finite Rossby number (f0 > 0). Cyclone pressures are “lows”, and
anticyclone pressures are “highs”.

3.2.1 Point Vortices

An idealized model of the mutually induced movement among neighboring
vortices is a set of point vortices. A point vortex is a singular limit of a stable,
axisymmetric vortex with simultaneously r∗ → 0 and max [ζ] → ∞ while C ∼
max [ζ]r2

∗ is held constant. This limit preserves the far-field information about
a vortex in (3.48). The far-field flow is the relevant part for causing mutual
motion among well separated vortices. In the point-vortex model, the spatial
degrees of freedom that represent the shape deformation within a vortex are
neglected (but they sometimes do become significantly excited; see Sec. 3.7).

Mathematical formulas for a point vortex located at x = x are

ζ = Cδ(x − x∗)
V = C/2πr ,

ψ = c0 + C/2π ln r

u = V θ̂θθ = V (−sin θx̂ + cos θŷ)

= V (−y

r
x̂ +

x

r
ŷ)
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Gradient-wind balance

the following transformation:

(ψ, u, v, x, y, t,F , df/dy) ←→ (−ψ, u,−v, x,−y, t,−F , df/dy) , (3.52)

even with β $= 0. Therefore, any solution for ψ with one parity implies the
existence of another solution with the opposite parity with the sense of
motion in y reversed. 2D dynamics is in general parity invariant, even though
the divergence relation and its associated pressure field are not parity
invariant. Specifically, the 2D dynamics of cyclones and anticyclones are
essentially equivalent. (This is not true generally for 3D dynamics, except for
geostrophic flows; e.g., Sec. 4.5.)

The more general form of the divergence equation is the gradient-wind
balance (3.42). For an axisymmetric state with ∂θ = 0,

1

r

d

dr

[
r
∂φ

∂r

]
=

f0

r

d

dr

[
r
∂ψ

∂r

]
+

1

r

d

dr

 (
∂ψ

∂r

)2
 . (3.53)

This can be integrated, −(
∫ ∞
r · r dr), to obtain

∂φ

∂r
= fV +

1

r
V 2 . (3.54)

This expresses a radial force balance in a vortex among pressure-gradient,
Coriolis, and centrifugal forces, respectively. (By induction it indicates that
the third term in (3.42) is more generally the divergence of a centrifugal force
along curved, but not necessarily circular, trajectories.) Equation (3.54) is a
quadratic algebraic equation for V with solutions,

V (r) = −fr

2

(
1 ±

√
1 +

4

f 2r

∂φ

∂r

)
. (3.55)

This solution is graphed in Fig. 3.4. Near the origin (the point marked A),

1

f 2r

∂φ

∂r
→ 0 (Ro → 0) and V ≈ 1

f

∂φ

∂r
. (3.56)

This relation is geostrophic balance. At the point marked B,

V = −fr

2
,

∂φ

∂r
= −f 2r

4
, and f + ζ = 0 . (3.57)

Real-valued solutions in (3.55) do not exist for ∂rφ values that are more
negative than −f 2r/4. If there were such an initial condition, the
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Figure 3.4: Graphical solution of axisymmetric gradient-wind balance (3.55).
The circled point A is the neighborhood of geostrophic balance; the point B is
the location of the largest possible negative pressure gradient; and points C are
the non-rotating limit (Ro → ∞) where V can have either sign. Cyclonic and
anticyclonic solutions are in the upper and lower half plane, respectively. The
dashed line indicates the solution branch that is usually centrifugally unstable
for finite Ro values.
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Real-valued solutions in (3.55) do not exist for ∂rφ values that are more
negative than −f 2r/4. If there were such an initial condition, the
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axisymmetric gradient-wind balance relation could not be satisfied, and the
evolution would be such that ∂t, ∂θ, and/or ∂z are nonzero in some
combination.

The two solution branches extending to the right from point B correspond
to the ± options in (3.55). The lower branch is dashed as an indication that
these solutions are usually centrifugally unstable (Sec. 3.3.2) and so unlikely
to persist.

Finally, at the points marked C,

V ≈ ±
√

r
∂φ

∂r
(Ro → ∞) . (3.58)

Thus, vortices of either parity must have low-pressure centers (i.e., with
∂rφ > 0) when rotational influences are negligibly small. This limit for (3.42)
and (3.54) is called the cyclostrophic balance relation, and it occurs in
small-scale vortices with large Ro values (e.g., tornadoes). Property damage
from a passing tornado is as much due to the sudden drop of pressure in the
vortex core (compared to inside an enclosed building or car) as it is to the
drag forces from the extreme wind speed.

Since the gradient-wind balance relation (3.42) is not invariant under the
parity transformation (3.52), φ(r) does not have the the same shape for
cyclones and anticyclones when Ro = O(1) (Fig. 3.5). This disparity is
partially the reason why low-pressure minima for cyclonic storms are typically
stronger than high-pressure maxima in the extra-tropical atmosphere (though
there are also some 3D dynamical reasons for their differences).

3.2 Vortex Movement

A single axisymmetric vortex profile like (3.46) is a stationary solution when
∇∇∇f = F = 0, and it can be stable to small perturbations for certain profile
shapes (Sec. 3.3). The superposition of several such vortices, however, is not a
stationary solution because axisymmetry is no longer true as a global
condition. Multiple vortices induce movement among themselves while more
or less preserving their individual shapes as long as they remain well
separated from each other; this is because the strain rate is much weaker than
the velocity in a vortex far-field. Alternatively, they can cause strong shape
changes (i.e., deformations) in each other if they come close enough together.
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Real-valued solutions in (3.55) do not exist for ∂rφ values that are more
negative than −f 2r/4. If there were such an initial condition, the
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Stationary solution: point vortex

r
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r

V

φ
cycloneanticyclone

Figure 3.5: Radial profiles of φ and V for axisymmetric cyclones and anticy-
clones with finite Rossby number (f0 > 0). Cyclone pressures are “lows”, and
anticyclone pressures are “highs”.

3.2.1 Point Vortices

An idealized model of the mutually induced movement among neighboring
vortices is a set of point vortices. A point vortex is a singular limit of a stable,
axisymmetric vortex with simultaneously r∗ → 0 and max [ζ] → ∞ while C ∼
max [ζ]r2

∗ is held constant. This limit preserves the far-field information about
a vortex in (3.48). The far-field flow is the relevant part for causing mutual
motion among well separated vortices. In the point-vortex model, the spatial
degrees of freedom that represent the shape deformation within a vortex are
neglected (but they sometimes do become significantly excited; see Sec. 3.7).

Mathematical formulas for a point vortex located at x = x are

ζ = Cδ(x − x∗)
V = C/2πr ,

ψ = c0 + C/2π ln r

u = V θ̂θθ = V (−sin θx̂ + cos θŷ)

= V (−y

r
x̂ +

x

r
ŷ)
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=

C

2πr2
(−yx̂ + xŷ) , (3.59)

where (r, θ) = x − x∗. Without loss of generality, we choose c0 = 0 since only
the gradient of ψ is related to the velocity. There is a singularity at r = 0 for
all quantities, and a weak singularity (i.e., logarithmic) at r = ∞ for ψ. By
superposition, a set of N point vortices located at {xα, α = 1, N} has the
expressions,

ζ(x, t) =
N∑

α=1

Cαδ(x− xα)

ψ(x, t) =
1

2π

N∑
α=1

Cα ln |x − xα|

u(x, t) =
1

2π

N∑
α=1

Cα

|x − xα|2 [−(y − yα)x̂ + (x − xα)ŷ)] . (3.60)

To see that these fields satisfy the differential relations in (3.46), use the
differential relation,

∂|a|
∂a

=
a

|a| . (3.61)

By (2.1) the trajectory of a fluid parcel is generated from

dx

dt
(t) = u(x(t), t) , x(0) = x0 . (3.62)

This can be evaluated for any x using the expression for u in (3.59). In
particular, it can be evaluated for the limit, x → xα, to give

ẋα = − 1

2π

′∑
β

Cβ

|xα − xβ|2 (yα − yβ)

ẏα = +
1

2π

′∑
β

Cβ

|xα − xβ|2 (xα − xβ) , (3.63)

with initial conditions, xα(0) = xα0. Here the dot above the variable indicates
a time derivative, and the prime denotes a sum over all β $= α. This result is
based on taking the principal-value limit as x → xα that gives zero
contribution from the right side of u in (3.60) at the vortex locations, xα.
Eqs. (3.63) are the equations of motion for the point-vortex system in
combination with

Ċα = 0 ⇒ Cα(t) = Cα(0) , (3.64)
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ẏα = +
1

2π

′∑
β

Cβ

|xα − xβ|2 (xα − xβ) , (3.63)

with initial conditions, xα(0) = xα0. Here the dot above the variable indicates
a time derivative, and the prime denotes a sum over all β $= α. This result is
based on taking the principal-value limit as x → xα that gives zero
contribution from the right side of u in (3.60) at the vortex locations, xα.
Eqs. (3.63) are the equations of motion for the point-vortex system in
combination with
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Point vortex trajectories

Figure 3.6: Trajectories for an individual point vortex initially at (−√
3,−1).

All vortices in the associated point-vortex system are of equal strength with
C > 0. Initial conditions are the following: (a) Three vortices symmetrically
located at (±√

3,−1), (0, 2). (b) Three vortices asymmetrically located at
(±√

3,−1), (1, 1). (c) Four vortices symmetrically located at (±√
3,−1), (0, 2),

(0, 0). (d) Four vortices asymmetrically located at (±√
3,−1), (1, 1), (−2, 2.4).

The motion is periodic in time for (a)-(c), but it is chaotic for (d). The trajec-
tories in panels (a)-(c) are time periodic, although the period for (c) includes
many circuits. The trajectory in (d) is chaotic, and if it were continued for a
longer time, the mesh of lines would become much denser.
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