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Barotropic dynamics

Two-dimensional, constant density fluid
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Barotropic circulation theorem
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Baroclinic circulation theorem: Kelvin’'s theorem
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Vorticity equation
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Conservation of vorticity

Vorticity 1s conserved following a water parcel because of
viscous or external forces or spatial varations in f
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Conservation of potential vortici
P
Since 0, f = 0, the potential vorticity ¢ = ¢ + f 1s conserved
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When F=0 and there are no flux of potential vorticity at the
boundary, ug-n =0

d
= drdyq® = 0
i | [ e



A univariate dynamical system

The dynamics depends only on streamfunction for prescribed

forcing and rotation. The pressure does not appear in the
barotropic vorticity equation. The continuity equation reduces

the temporal evolution from second to first order.
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Rossby waves
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ROSSby waves in the ocean

Rossby waves generated by an oscillating vorticity source

1.5

Fig. 14.11 Rossby wave pattern, Eqn. (14.21), created by an oscillating, small disturbance at the origin. Plotted is the pressure,
or free-surface elevation 7, or streamfunction , at a particular time, as seen from the southwest (negative y, negative x). The
parabolic wave-crests (see as contours on the base plane) sweep westward with time, closing in on the negative x-axis.



Rossby waves in the laboratory

Figure 14.13. Rossby waves in the laboratory, as if viewed by a satellite above the North Pole. The wave
source is at the lower left, and oscillating body. There is no pre-existing circulation, but the waves induce
easterly flow at most latitudes, and westerly flow at the latitudes near the forcing (as seen in the dye



ROSSby waves in the ocean

Obsarved Sea Surface Height Anomaly
a)B°N___ b)14°N

2001
2000 F

1658 |

1BET s

166 b

1Ea5

150 200 250 150 20 250 150
E longitude

Il . E N

-1t 0 o =10 o 10
Cm

Figure 1. Time-longitude plots of S5H anomalies at (a) 8,
(b} 14, and (¢) 20°N from the TOPEX/POSEIDON altime-

ter. Units are meters,



Divergence equation
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Geostrophic balance

After neglecting V - F' and using the following scaling estimates,
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for Ro < 1,

Vi = foV*[1+O(Ro)] = ¢ = fob.

Gradient-wind balance

4 oY O
V¢ = V- (V) +2J [%, a_y]

Exact for 2D motions, and highly accurate for 3D motions with fo < O (1)



Stationary solution: zonal shear tlow

A parallel shear tlow 1s an inviscid stationary solution




Stationary solution: axisymmetrix vortex flow
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where U(r) 1s the radial velocity, V(r) 1s the azimuthal
velocity.
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Far-field generated by a 2D axisymmetric vortex

A monopole vortex whose vorticity, ((r), is restricted to a finite core region
(i.e., ¢ = 0 for all » > r,) has a nearly universal structure to its velocity in the

far-field region well away from its center. Integrating the last relation in
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Far-field generated by a 2D axisymmetric vortex
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Cyclonic and anticyclonic vortices

cyclonic: Ve 0 cCai At - O s iilie i a0
antieyelomic: V <0, C < 0. -C <10 000 =0,
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Gradient-wind balance

The more general form of the divergence equation is the gradient-wind
balance (3.42). For an axisymmetric state with 9y = 0,
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This expresses a radial force balance in a vortex among pressure-gradient,
Coriolis, and centrifugal forces, respectively. (By induction it indicates that
the third term in (3.42) is more generally the divergence of a centrifugal force
along curved, but not necessarily circular, trajectories.) Equation (@) is a
quadratic algebraic equation for V with solutions,
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Vorticity in a 2D turbulent tlow




Stationary solution: point vortex

Mathematical formulas for a point vortex located at x = X are
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Non stationary solutions: point vortices
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Point vortex trajectories

Show matlab simulations




