
Homework assignment 5

Problem 1: Barotropic jet

Obtain the stability properties of the triangular jet, with a basic state velocity given
by,

U(y) =


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1− |y| −1 ≤ y ≤ 1
0 y ≤ −1

(1)

Inparticular, obtain the eigenfunctions and eigenvalues of the problem, and show that
each eigenfunction is either even or odd. Perturbations with even ψ′ are known as
sinuous modes and those with odd ψ′ are varicose modes. Show that sinuous waves
are unstable for sufficiently long wavelengths in the y-direction, but that all varicose
modes are stable.

Problem 2: Generalized Eady model

In class, we discussed two classical baroclinic instability problems applied to the
atmosphere, the Charney and Eady problems. Both are based on quasi–geostrophic
theory on a β–plane where linearized perturbations on a basic zonal flow, u0(z), are
described by the equation for conservation of pseudo–potential vorticity:
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For the Charney model, the density is assumed to decrease exponentially with height
(i.e., a constant scale height H), the vertical shear of the background flow, du0/dz
and N2 are assumed constant, and there is a rigid lower boundary. The Eady model
takes the even more drastic assumption of setting β to be zero. In addition, the full
Boussinesq approximation is made, which is equivalent to letting H be much larger
than the depth of the system. In addition to a rigid lower boundary at z = 0, a rigid
upper boundary is imposed at some z = h such that the necessary conditions for the
Charney–Stern (generalized Rayleigh) theorem can be met.

Although these approximations may seem extreme, observations over the past several
years suggest that the atmosphere has much in common with the Eady problem in
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that qy is small (and possibly zero) in the midlatitude troposphere. Of course, β is
not zero in the real atmosphere, so if we ignore meridional variations in the zonal
flow, the vanishing PV gradients must come from variations in static stability and or
in shear with height must balance β.

For the following problems, assume a Boussinesq fluid and follow the original Eady
model in replacing the tropopause with a rigid upper boundary.

a) Consider the case where the shear is constant but the static stability N2 varies
with height. Find how it must vary to cancel exactly the contribution of β to
the meridional gradient of q.

b) Repeat (a) for the case where N2 is constant but the shear varies with height.

c) Estimate, using typical tropospheric conditions, the quantitative change is u0

or N2 needed to cancel β (as compared to a constant shear and N2 profile).
Here consider the top at ' 10 km, a mean shear of 3 m/s/km and a mean N2

of 10−4.

d) In the case of constant N2, assuming a normal mode form ψ′ = Ψ(z) exp(ıkx+
ıly− ıωt), solve the eigenvalue problem for c (using appropriate boundary con-
ditions). Find the dispersion relation and the vertical structure Ψ. How do the
results differ from the original Eady problem?

Problem 3: Effect of topography in the Eady problem

In the classical Eady problem the upper and lower boundaries are flat. Repeat the
analysis of the Eady instability in a domain where the topography at the bottom has
a linear slope, i.e. the two vertical boundaries are at z = γy and z = D. Assume that
the slope is of order Rossby. In order to simplify the algebra use periodic boundary
conditions in x and y and use modal solutions of the form ψ′ = Ψ(z) exp(ıkx+ ıly −
ıkct). Does it make a difference whether the ground is inclided in the same or opposite
sense than the isopycnals in the basic state?
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