
Homework assignment 1

Problem 1

The equation for mass conservation in (x, y, z, t) coordinates is,

∂ρ

∂t
+

∂

∂x
(ρu) +

∂

∂y
(ρv) +

∂

∂z
(ρw) = 0. (1)

Using the approach described in class, derive the mass conservation equation in
(x, y, θ, t) coordinates,

∂

∂t

(
ρ
∂z

∂θ

)
= ? (2)

where θ is any scalar that is conserved on fluid particles, Dθ/Dt = 0. You might want
to read the first chapter of Rick Salmon’s book before answering on this question.

Problem 2

Consider a pendulum mounted on a spring subject to a uniform gravitational accel-
eration g, as shown in figure 1. Except for a small amount of damping applied to
the radial motion, the system is idealized as frictionless. The equations of motion,
and the equations for the displacement of the pendulum in the radial and azimuthal
directions, are,

dv

dt
= −uv

r
− g sin θ, (3)

dθ

dt
=

v

r
, (4)

du

dt
=

v2

r
+ g(cos θ − 1)−K(r − r0)− γu, (5)

dr

dt
= u, (6)

where the velocities u and v and the coordinates r and θ are as indicated in the
figure, K is the spring constant, γ is a damping coefficient and r0 is the radius of the
pendulum when at rest.

Part 1
Assume that the amplitude of the motion is small so that r′ = |r − r0| � 1 and
θ � 1. Derive the linearized equations for r′, u′ = dr′/dt, θ, and v = dθ/dt. Show
that in this limit the radial and azimuthal motions are independent of each other.
Solve the equations for r′ and θ and show that they represent two fundamental types
of oscillations: a ”swinging” mode and a ”bouncing” mode.
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Consider a pendulum mounted on a spring subject to a uniform gravitational acceleration 
g, as shown below: 
 

 
 
Except for a small amount of damping applied to the radial motion, the system is 
idealized as frictionless. The equations of motion, and the equations for the 
displacement of the pendulum in the radial and azimuthal directions, are 
 

 sin( ),dv uv g
dt r

θ= − −  (1) 

 

 ( )
2

cos( ) 1 ( ) ,b
du v g r r u
dt r

θ α ε= + − + − −  (2) 

 

 ,d v
dt r
θ
=  (3) 

and 
 

 ,dr u
dt

=  (4) 

 
where the velocities u and v and the coordinates r and θ  are as indicated in the figure, 
α  is the spring constant, ε  is a damping coefficient and br  is the radius of the 
pendulum when at rest.  
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Part 2
Derive the energy equation for the pendulum, i.e. multiply the u-momentum equation
by u and the v-momentum equation by v to obtain an equation of the form,

d

dt
Energy = −µu2. (7)

Show that the energy is composed of two parts, one associated with the swinging
mode, the other associated with the bouncing mode.

Part 3
The swing and bouncing oscillations are coupled through nonlinear terms. These
oscillations affect each other in various ways. By changing the radius, the bouncing
mode affects the moment arm for the swinging mode, while the centrifugal accelera-
tions associated with the swinging mode contribute to radial motion.

Suppose we are only interested in the swinging mode. To what extent can we ignore
the bouncing mode? Is there radial motion that we associate with the swinging mode?
Physically, we would expect that the swinging mode is decreasingly coupled to the
bouncing mode as we make the spring constant, K, ever larger. In order to focus on
the evolution of the swinging mode, it is convenient to normalize all length scales by

r0 , all velocities by
√

gr0 , and time by the swinging mode period
√

r0/g. Show that
the nondimesional equations take the form,

dv

dt
= −uv

r
− sin θ, (8)

dθ

dt
=

v

r
, (9)

du

dt
=

v2

r
+ cos θ − 1− ν(r − 1)− µu, (10)

dr

dt
= u, (11)

and express µ and ν in terms of the various dimensional parameters of the problem.

In the limit of large ν, we would expect that r = 1 and u = 0 would be a good
approximation. In that case, (8) and (10) decouple from the other equations and
can be solved analytically. This suggests that in the limit of large ν we might find
solutions of the form,

r = 1 +
r1

ν
+ O

(
1

ν2

)
, (12)

u = 0 +
u1

ν
+ O

(
1

ν2

)
, (13)

v = v0 +
v1

ν
+ O

(
1

ν2

)
, (14)

θ = θ0 +
θ1

ν
+ O

(
1

ν2

)
. (15)
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Find expressions for r1 and u1 in terms of the order zero variables, by substituting
these expansions in ν into the governing equations and matching like powers of 1/ν.
These expressions should not contain time derivatives, i.e. they should represent a
balance condition.
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