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 The problem of vortex-induced vibrations in flexibly mounted cylinders and marine cables
 is addressed using a new laboratory apparatus ,  which combines force-feedback with on-line
 numerical simulation of a modeled structure .  We establish correlation with published
 single-mode ,  free vibration data ,  and give results for a dynamic model having the principal
 characteristics of inclined cables ,  i . e .  pairs of weakly coupled modes and crossover
 avoidance .  While the fluid lift properties of the single-mode and multiple-mode systems
 are qualitatively similar ,  the spectra dif fer in several fundamental ways ,  suggesting distinct
 wake interaction processes .

 ÷ 1997 Academic Press Limited

 1 .  INTRODUCTION

 V ORTEX-INDUCED VIBRATIONS  (VIV) of cables and pipes are ubiquitous during ocean
 towing ,  and in marine applications involving free spans subjected to ambient currents .
 These vibrations are of significant engineering importance because a compliant
 member can develop an increased drag coef ficient ,  which alters the static configuration ,
 and thereby increases the static loading (Every  et al .  1981 ;  Sarpkaya 1978 ;  Yoerger  et
 al .  1991) .  Furthermore ,  these excitations can lead to large dynamic loads at the forcing
 frequency ,  reducing the system’s fatigue life .

 Full-scale studies reveal that the vibrations are characterized by a spectrum
 containing several frequencies ,  often dominated by strong beating oscillations (Alexan-
 der 1981 ;  Grosenbaugh  et al .  1991 ;  Vandiver & Chung 1987) .  One cause is current
 shear ;  the vortex-shedding rate has a roughly linear dependence on local velocity even
 for short cylinder spans placed in a nonuniform flow (Stansby 1976) .  Nearly all
 deployments involve shear of some sort ,  while curved cables are also subject to a
 spatially varying normal velocity ,  even within a uniform current .  The variation in
 normal oncoming velocity can be shown analytically to lead to beating-type behavior in
 long members (Howell 1989) .  Additionally ,  cables with significant in-water weight and
 normal drag forces are subject to sagging ,  and as such possess a nonuniform
 multi-mode dynamic response (Irvine & Caughey 1974 ;  Triantafyllou 1984) .

 We have developed a force-feedback laboratory apparatus which allows modeling of
 complex structural dynamics ,  while fully accounting for fluid – structure interaction .  The
 experiments described in this paper represent a fundamental divergence from VIV
 studies to date ,  and a short review of past work helps to illuminate the dif ferences .  A
 great number of researchers have performed laboratory work with test cylinders ,  either
 fixed or motor-driven (Bishop & Hassan 1964 ;  Protos  et al .  1968 ;  Mercier 1973 ;
 Sarpkaya 1978 ;  Staubli 1983 ;  Schargel 1980 ;  Gopalkrishnan 1992) .  Forced-motion tests ,
 employing sinusoidal or beating motions ,  achieve the gross features of observed VIV
 phenomena ,  although the essence of fluid – structure interaction is missing ;  that is ,  no
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 matching exists between the dynamics of the structure and the wake .  Free-vibration
 tests ,  such as initiated by Feng (1968) (in air) ,  Anand (1985) ,  and Moe & Wu (1989) ,
 allow the complete coupled process to develop ,  although only relatively simple ,
 single-mode mass-spring systems have been used .  Free vibrations of flexibly mounted ,
 rigid cylinder sections with multi-mode responses have not been considered ex-
 perimentally .  However ,  progress in understanding multi-mode responses has been
 made by Nakano & Rockwell (1993) and Gopalkrishnan (1992) ,  who studied forced
 beating oscillations .  In addition ,  nonlinear compliant systems have not been studied
 experimentally ;  the nonlinearities arise from geometric (typically quadratic or cubic) ,
 or material properties .

 In Section 2 ,  we describe how the present apparatus employs a hybrid experimental
 and numerical simulation approach :  structural vibrations are simulated in software ,
 using as excitation the real-time force measurements from a load cell attached to a test
 cylinder .  This cylinder is a physical component of the modeled structure and ,  when
 placed within an on-coming steady flow ,  oscillates transversely with the motion
 predicted by the numerical simulation ,  using a computer-controlled servo motor .  The
 result is a closed-loop system that simulates the overall fluid – structure interaction
 process .  It should be noted that the two ends of our test cylinder move together ,  and
 that no in-line oscillations take place .

 In the subsequent sections ,  we first study the applicability of our approach to
 single-mode compliance ,  computing lift force amplitude and phase ,  as well as power
 spectra .  Then we investigate bimodal structural dynamics in the context of a
 low-ordered inclined cable model ,  whose response is characterized by pairs of closely
 spaced eigenvalues and weakly coupled modes .  Specifically ,  what we wish to study here
 is the qualitative fluid – structure interaction when avoided crossings ,  and hence large
 sensitivity to parametric changes ,  are exhibited by the structure .

 In this paper ,  we chose to couple the model of the extended cable structure with a
 short span wake ,  since the latter can be adequately represented by our experimental
 facility .  Outside the test cylinder ,  we did not wish to obscure the basic problem by
 having to assume models for the hydrodynamic loading ,  such as correlation length .
 Thus ,  although the structural dynamic response includes the entire cable ,  fluid forcing
 is applied only at the location of the test cylinder .  We recognize that the hybrid test
 apparatus is a simplification ,  and that most often in practice cables are exposed along
 their whole span to fluid forcing .  The inclined cable problem is a natural setting for this
 work ,  but the new phenomena we report pertain strictly to multi-mode compliance .
 Notation is given in the Appendix .

 2 .  APPARATUS

 2 . 1 .  H ARDWARE

 At the MIT Testing Tank Facility ,  a moving carriage has been outfitted with a micro-
 computer ,  servomotor system ,  lead-screw assembly ,  and a yoke with a cylindrical test
 section ;  see Figure 1 .  This apparatus is an adaptation of that used by Gopalkrishnan
 (1992) .  The tank is 1 ? 4  m deep and 2 ? 6  m wide ,  with a working length of 18  m .  The test
 cylinder is mounted on a piezoelectric quartz load cell ,  and we measure the location of
 the yoke with a linear variable dif ferential transformer (LVDT) .  The test cylinder is
 62  cm long ,  with a diameter of 3 ? 175  cm ,  and has circular end-plates of 35  cm diameter .
 We used carriage speeds of 0 ? 23 – 0 ? 36  m / s in the tests ,  for a Reynolds number range of
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 Figure 1 .  A computer-controlled servomotor actively positions the test cylinder through a linear slide ;  this
 assembly ,  along with the supporting electronics and sensors ,  translates along a 25  m towing tank .

 7200 – 11  500 .  These values are typical for metallic mooring or towing lines operating in
 slow to moderate ocean currents .

 As shown in Figure 2 ,  the force feedback loop uses measured forces on the test
 cylinder to drive a real-time simulation of the physical cable system ;  the output of the
 simulation then provides the motor setpoint .  Ideally ,  the simulator has an exact
 dynamic response ,  albeit subject to some amount of noise and filtering ef fects .  The
 950-Watt DC motor is controlled by a digital servo loop closed at 12  khz ,  and the peak
 force output through the linear drive is 6  000  N ,  which compares favorably with fluid
 forces on the order of 5  N and inertial loads on the order of 2  400  N .  A number of steps
 were taken to ensure clean measurements and smooth operation .  First ,  we stif fened the
 carriage lower assembly ,  and used rubber wheels with durometer hardness 60 – 70 to
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 Figure 2 .  Force-feedback with an inertial correction enables real-time dynamic .
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 isolate the force sensor from irregularities on the carriage rail .  In order to minimize
 electromagnetic noise ,  all connections and wiring were shielded ;  we placed the control
 and simulation computer on the carriage itself .  Finally ,  we tuned the motor servo so
 that less than 1  deg .  of phase could be discerned ,  for oscillations of 3  cm amplitude and
 frequency 15  rad / s .  With respect to other hardware ,  the lead-screw has a specified
 backlash of 5  m  m .  Measurement of the carriage speed indicated a worst-case error of
 2% ;  several seconds of data during the carriage acceleration and oscillation growth
 were truncated at the beginning of each run .  To maximize the useful data length ,  we
 initialized each run with 3  s of stored simulation states and physical oscillations from a
 previous run .  Variances for the force sensor and the LVDT were computed as
 9  3  10 2 4  N 2 ,  and 4  3  10 2 4  cm 2 ,  respectively .

 2 . 2 .  P ROGRAMMING AND  P ROCESSING

 The transverse force data were corrected on-line for the inertia of the apparatus .  To
 illustrate ,  in the case of the linear mass-spring-dashpot models ,  the desired behavior is
 governed by the equation

 my ̈  ( t )  1  by ~  ( t )  1  ky  5  F  ( t ) ,  (1)

 where  F  ( t ) is purely fluid forcing . †  However ,  the measured force ,   F m ( t ) ,  is actually

 F m ( t )  5  F  ( t )  2  m c y l y ̈  ( t ) ,  (2)

 where  m c y l  is the actual mass of the test cylinder ,  plus some small entrained water mass
 around the force sensor .  Therefore ,  to retain the desired dynamics ,  the governing
 equation becomes

 my ̈  ( t )  1  by ~  ( t )  1  ky ( t )  5  F m ( t )  1  m c y l y ̈  ( t ) .  (3)

 With the right-side of this equation representing the force seen by the numerical
 model ,  we discretized the dynamic equation using the matrix exponential .  The control
 loop bandwidth is 500  Hz ,  well above that required to track the 3  Hz oscillations of
 interest .  One important and typical assumption is that of the zero-order hold ,  i . e .,  that
 F  ( t )   is held constant between samples .  This yields the following linear discrete-time
 system ,  to be applied at each time step in the simulation :

 x ( t  1  D t )  5  F x #  ( t )  1  G F  ( t ) .  (4)

 In the single-mode case ,   x ( t ) consists of cylinder velocity and position ,  while  F   and  G
 are 2  3  2 and 2  3  1 constant matrices ,  respectively .  The position or velocity can thus
 pass directly to the servomotor at each time step .  Note that since the simulation runs at
 500  Hz ,  while the servomotor samples the setpoint at 12  kHz ,  a second zero-order hold
 approximation exists .

 Because the cylinder used for the tests is quite heavy (density 1500  kg / m 3 ) ,  we
 encountered some chatter in the closed-loop from the large inertial correction .  Part of
 this is certainly due to double dif ferentiation of the LVDT signal ,  but a similar ,  more
 general problem exists for robotic arms interacting with massive or rigid environments .
 Specifically ,  a nonyielding surface that is normal to the motion naturally prohibits
 position control in this direction (Mason 1981) ,  and in most practical cases the robot
 must be programmed to be suitably compliant .  In contrast ,  our experimental technique
 insists upon position control ,  with the cylinder mass acting as the nonyielding

 †  In the case of a distributed cable ,  we use  F  ( s ,  t ) to indicate forcing dependence on location as well as
 time .
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 environment .  To our knowledge ,  no general solution exists in this application except
 for low-pass filtering ;  we employed a Chebyshev third-order digital filter with cutof f at
 100  rad / s .  This filter brings a lag of about 12  deg .  at the fixed-cylinder vortex-shedding
 rate ,  but achieves very smooth motion .  We believe that the overall ef fect of this lag is
 minor ,  as evidenced by the data in later sections .  A similar phase loss also applies to
 the inclined-cable results of this paper ;  we are presently developing a much lighter
 cylinder for future tests .  With the inertial correction and filter in place ,  we verified
 proper static deflections ,  natural frequencies ,  and decay envelopes for the feedback
 system in air .

 Linear vertical position ,  horizontal force (not presented) ,  and vertical force were
 recorded on a separate ,  dedicated computer at 100  Hz .  During processing ,  we looked
 only at regions of fully developed beating .  For computing the spectra ,  we detrended
 and employed a Hanning window .  We obtained displacement magnitudes by finding
 the peaks between zero crossings ,  and averaging the top 10% .

 2 . 3 .  D EFINITIONS

 The experiments are parameterized with the ratio of the damped structural frequency
 to the fixed-cylinder vortex-shedding rate :

 v t  5
 v d

 v S
 5

 5 ? 25
 V r

 ,  (5)

 where  V r   is the standard reduced velocity 2 π U  / v d d ,  and  S  5  0 ? 19 .  In the single-mode
 cases ,  we also varied the damping ratio  z .

 In sinusoidal forced vibration tests ,  fluid forcing can be decomposed into a lift
 component in phase with the lateral velocity ,   C F y  ,  and an added mass component in
 phase with the acceleration ,   C F a .  The lift force is nondimensionalized with dynamic
 pressure :

 C F y  5
 F 0  sin  c
 1 – 2 r ldU  2  ,  (6)

 C F a  5
 F 0 ( 2 cos  c  )

 1 – 2 r ldU 2  ,  (7)

 where  c   denotes the phase angle between force and displacement .  Positive values of
 C F y   indicate excitation ,  as energy flows from the fluid into the structure .  Likewise ,
 negative values of  C F y   indicate damping ,  as energy flows from the structure to the fluid .
 The time-averaged power flow can be shown to be a scaled product of the transverse
 velocity and  C F y

   as follows :

 1
 τ  E

 τ

 0
 F  ( t ) y ~  ( t ) dt  5  1 – 2 F 0 v Y 0  sin  c  5  1 – 4 Y 0 v C F y

 pldU 2 .  (8)

 Note that a negative  C F a
   indicates positive added mass .

 Many of the data sets obtained show multiple spectral peaks ,  however ,  requiring an
 alternative method of analysis .  After calculation of the spectra for a given run ,  we
 chose the lowest dominant peak frequency and divided the data into bins of five
 periods each .  We then consolidated the multi-mode signals into  equi y  alent  lift and
 added mass coef ficients which preserve the power flow of the pure sinusoidal
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 coef ficients (Gopalkrishnan 1992) .  These formula also apply to the case with more than
 two distinct frequencies .  We have

 C F y
 5 – 2

 τ
 k F  ( t ) ,  y ~  ( t ) l

 4 Dy ~  ( t ) ,  y ( t ) l
 1

 1 – 2 r ldU 2  ,  (9)

 C F a
 5 – 2

 τ
 k F  ( t ) ,  y ̈  ( t ) l

 4 k  y ̈  ( t ) ,  y ̈  ( t ) l
 1

 1 – 2 r ldU 2  ,  (10)

 where  τ   is the integration interval .  To see that the power flow has the same
 dependence on  C F y

 ,  we make the substitutions again as in equation (8) :

 1
 τ

 k F  ( t ) ,  y ~  ( t ) l  5
 1
 τ

 C F y

 1 – 2 r ldU 2 – τ
 2

 k  y ~  ( t ) ,  y ~  ( t ) l  .  (11)

 In the case of single-mode input ,  the square root reduces to  Y 0 v τ  / 2 ,  and the result of
 equation (8) is recovered .  In the case of multiple components ,  the square root reduces
 to the root-mean-square transverse velocity multiplied by  τ  / 4 2 .  The lift coef ficient and
 phase angles reported in the following sections are averaged and standard deviations of
 values obtained in the bins .

 3 .  SINGLE-MODE FREE VIBRATIONS

 A typical set of inertia-corrected force and position signals is given in Figure 3 ,  for the
 case  z  5  0 ? 01 and  v t  5  1 ? 2 .  This run contains significant amplitude modulation in
 position ,  but the force signal has some higher harmonics evident ,  especially in the
 position cusps (Gopalkrishnan 1992) .  Employing the inner-product calculations above ,
 the phase angle in this case is near zero degrees .

 The total lift ,  phase ,  and amplitude data are shown in Figure 4 ,  for the complete
 range of damping ratios  z  5  h 0 ? 000 ,  0 ? 001 ,  0 ? 010 ,  0 ? 100 j   and tunings  v t  5  0 ? 40  2  1 ? 70 .
 Vertical bars ,  where shown ,  indicate addition and subtraction of one standard
 deviation .  The amplitudes given are the average of the one-tenth highest values .  The
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 Figure 3 .  Typical displacement and force signals ;   v t  5  1 ? 2 ,  z  5  0 ? 01 .  The position is bimodal with peaks
 near the structural mode and the shedding rate ,  while the force signal contains energy primarily at the

 shedding rate .
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 Figure 4 .  Total lift coef ficient ,  nondimensional amplitude ,  and phase are shown for four damping ratios ,  as
 a function of structural tuning  v t  .  Vertical lines indicate one standard deviation from the mean value .

 peak displacement of about one diameter is achieved near  v t  5  0 ? 9 in all cases ,
 corresponding to dramatic phase angle changes and a weak local minimum in the total
 lift coef ficient .  The  A / d  ratios are also characterized by a step change ,  which is known
 to involve a hysteretic response to steady-stream velocity (Feng 1968 ;  Berger 1978) .
 The lift coef ficient has maximum value at  v t  5  1 ? 0 ,  with the phase generally stabilized
 at this point .  An interesting point is the variation of phase in the case  z  5  0 ? 001 ,
 compared to the cases  z  5  0 ? 000 and  z  5  0 ? 010 .  The latter two curves share a gradual
 return to  v  5  180  deg .,  while the first remains near a value of zero degrees as  v t

 increases .  This observation suggests a polytypic dependence of phase on damping
 ratios .  However ,  the amplitude ratios appear consistent ;  that is ,  they vary inversely
 with  z .  Much stronger  A / d  variations for the range  z  5  0 ? 0015 – 0 ? 0030 have been found
 in air experiments (Gonswami  et al .  1993) .

 Figures 5 – 7 show the amplitude and force spectra from the majority of experiments ,
 confirming that the vibrations follow the fixed-cylinder vortex-shedding rate when the
 structural modal frequency exceeds it (Feng 1968 ;  Anand 1985) .  On each subplot ,  log
 power spectral densities for successive cases are of fset by four orders of magnitude ;  the
 position plots show the  A / d  p . s . d .,  and the force coef ficient plots give the p . s . d .  of the
 force coef ficient

 C F  5
 F m  1  m c y l y ̈

 1 – 2 r U 2 dl
 .  (12)

 A single horizontal dotted line for each position p . s . d .  denotes the value 0 ? 0001 ,  or 1%
 of the  A / d  ratio .  On the force subplots ,  the reference line indicates a force coef ficient
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 Figure 5 .  Amplitude and force coef ficient power spectra for the single-mode model with damping ratio
 0 ? 001 .  The curves are of fset by four orders of magnitude ,  with reference lines indicating  A / d  5  0 ? 01 and
 C F  5  0 ? 1 .  The dashed vertical line indicates the nominal shedding frequency ,  and the slanted heavy line

 locates the structural mode for each  v t   considered .
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 Figure 6 .  Amplitude and normalized force spectra for the single-mode model with damping ratio 0 ? 010 .
 See Figure 5 caption .
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 Figure 7 .  Amplitude and normalized force spectra for the single-mode model with damping ratio 0 ? 100 .
 See Figure 5 caption .

 p . s . d .  of 0 ? 01 ,  or 10% of the nominal fluid force .  A heavy slanted line indicates the
 structural mode associated with each experiment .

 For low damping ,  we observe narrow-band displacement peaks growing in the range
 v t  5  0 ? 6 – 1 ? 0 .  Localized beating phenomena then occurs just above the crossover
 ( v t  5  1 ? 1  2  1 ? 3) ;   beyond this point ,  the responses diminish and broaden mildly ,  as the
 shedding mode dominates .  The low-damping displacement spectra also show some
 weak indication of second and third harmonics (Wu 1992) ,  usually below  v t  5  1 ? 0 .
 Large damping tends to create more broadband displacement spectra ,  especially near
 cross-over ,  with very little beating .  The force signals largely comprise white noise when
 0 ? 5  ,  v t  ,  1 ? 0 ,  organizing to a single peak near the shedding rate ,  at lower and higher
 values .  The force signals contain little evidence of beating ,  even when the displacement
 is beating strongly .  Additionally ,  neither the force nor displacement spectra indicate
 clearly why phase in the three cases  z  5  0 ? 000 ,  0 ? 001 and 0 ? 010 should be distinct ,  as
 pointed out previously .

 Figure 8 compares the new data with that of several previous studies .  In the first
 case ,  we replot the amplitude ratios against the observed frequencies ,  for damping
 ratios of [0 ? 000 ,  0 ? 001 ,  0 ? 010] .  Additionally ,  zero contours of the lift coef ficient in phase
 with velocity  C F y

   are shown ;  the data are from Gopalkrishnan (1992) ,  for forced
 oscillation tests with beating .  Low structural damping implies nearly zero average
 power flow in the steady state ,  so at low  v t  ,  i . e .,  during lock-in ,  we expect the new data
 points to fall near these zero contours .  The reduced amplitude associated with higher
 damping provides an additional line (not shown) which corresponds to a positive  C F y

 .
 As  v t   increases ,  the observed frequency conforms to the fixed-cylinder vortex-

 shedding rate  v S  ,  and the amplitude in all cases decreases .  This brings the new data
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 Figure 8 .  (a) Amplitude ratios in lightly-damped free vibration follow the zero contours of lift in phase
 with velocity ,  obtained for dif ferent forced-beating patterns by Gopalkrishnan (1992) .  Lift is positive below
 the contour lines ,  and the symbols are :   3 ,   z  5  0 ? 000 ;   s ,  z  5  0 ? 001 ;   1 ,  z  5  0 ? 010 .  (b) Peak amplitude ratios ,
 for the values of  z   considered ,  match the average curve for data presented by Grif fin (1980) .  The leftmost

 experimental point is at zero damping .

 points into a positive  C F y
   area in Gopalkrishnan’s plots ,  and therefore ,  in this regime

 the forced- and free-vibration results are in disagreement .  Specifically ,  the zero-power
 condition  must  hold in the free vibration ,  while a positive  C F y

   indicates power flowing
 from the fluid into the cylinder .  We believe that the drastic variation of phase with
 vibration frequency near the vortex-shedding rate [e . g .,  Figure 4 and Staubli 1983)]
 may be responsible for the discrepancy .

 In the second plot of Figure 8 ,  the peak amplitude ratio is given as a function of
 reduced damping ,  here defined by

 k r  5
 8 π  2 S 2 m z

 r d 2  .  (13)

 The data are compared against the generalized curve given by Grif fin (1980) ,
 representing a considerable experimental base of data .  For further comparison with
 other work ,  the mass ratio 2 m  / r d 2  in our tests is calculated to be 11 ? 0 .  This value is
 quite low with respect to air tests ( . 30) ,  but fairly high with respect to typical water
 tests ( $ 1 ? 5) .  One well-known ef fect of a low mass ratio is that the lock-in range of
 reduced velocity is greatly broadened ;  the force spectra shown in Figure 5 generally
 agree with this point ,  as lock-in to the structural mode holds up to  V r  .  8 ? 75 .  To
 summarize ,  the single-mode free vibration data obtained using force feedback closely
 replicates the responses reported by other researchers .

 4 .  THE INCLINED CABLE

 4 . 1 .  B ACKGROUND

 Closely spaced linear vibrational modes ,  often manifested as beating ,  can occur in
 shallow-sag cables (Irvine & Caughey 1974 ;  Triantafyllou 1984) .  The natural fre-
 quencies vary as a function of the nondimensional structural parameter  l  ,

 l  5 – EA

 T a
 S WL

 T a
 D cos  f a  ,  (14)

 where  f a   and  T a   are the mean angle and top tension .  Horizontal systems ( f a  5  0)
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 experience mode cross-over ,  in which the odd modes transition to higher odd modes
 through symmetric growth of side lobes ;  the antisymmetric modes are not af fected by
 l .  For inclined catenaries ,  the modal frequency lines do not cross ,  but veer apart
 instead .  The avoided crossings can be arbitrarily close ,  or quite disparate ,  depending on
 the ratio  EA / T a  ,  which relates axial to lateral wave speed .  In both horizontal and
 inclined systems ,  however ,  dynamic tensions can be extremely high near the cross-over
 region ,  and therefore understanding the natural response at this point is of critical
 importance (Triantafyllou & Grinfogel 1986) .

 The natural modes and planar mode shapes for a suspended cable can be computed
 using the formulation developed by Triantafyllou (1984) .  To enable the approach ,  we
 assume that the bending stif fness and structural damping are negligible ;  this latter
 condition is supported by the relative insensitivity of the amplitude response to reduced
 damping less than 0 ? 10 (Grif fin 1980) .

 4 . 2 .  I MPLEMENTATION

 Galerkin projection provides a consistent way to incorporate the cable modal dynamics
 into the force-feedback system (Burgess & Triantafyllou 1985) .  The lateral deflection is
 written as

 q ( s ,  t )  5  O ̀
 i 5 1

 Q i ( t ) R i ( s ) ,  (15)

 where  Q ( t ) is the temporal component of  q ( s ,  t ) ,  and  R i ( s ) is the  i th eigenfunction .
 This expansion is then employed in the simplified transverse equation

 M
 Û

 2 q

 Û t 2  5
 d T 0

 d s
 Û q
 Û s

 1  T 0
 Û

 2 q

 Û s 2  1  T
 d f  0

 d s
 ,  (16)

 where the quasi-static dynamic tension is

 T  5
 EA
 L

 E L

 0
 F 1

 2
 S Û q

 Û s
 D 2

 2
 d f  0

 d s
 q ( s ) G  d s .  (17)

 Since the quadratic term in the integral is second-order ,  it is neglected in the
 expansion .  Projection onto the mode  R m ( s ) leads to

 I l Q ̈  5  ( I r  1  I s  1  I t ) Q ,  (18)

 where

 I l i j  5  m  E L

 0
 R i R j  d s ,  (19)

 I r i j
 5 E L

 0

 d T 0

 d s
 R 9 i  r j  d s ,  (20)

 I s i j
 5 E L

 0
 T 0 R i 0 R j  d s ,  (21)

 I t i j  5  2
 EA

 L
 E L

 0
 R j F E L

 0

 d f  0

 d s
 R i  d s G  d s .  (22)
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 As discussed in the Introduction ,  fluid forcing in a full-scale deployment generally
 occurs along the entire cable length ,  and hence correlation length and boundary
 conditions may play a significant role .  In tests with a short cylinder ,  the forces are
 measured at only  one  location on the continuous structure .  In the absence of a
 complete hydrodynamic model for the cable ,  the simplest course is to zero the forcing
 outside the experimental cylinder .  This is akin to suspending the member in air ,  with
 the test cylinder passing through a small water channel .  The force input and motion
 output of our system is taken to be at location  s 0  .  Using projection ,  the forcing term
 becomes

 E L

 0
 R m ( s ) F  ( s ,  t )  d s  é  F  ( t )  E s 1 l /2

 s 0 2 l /2
 R m ( s )  d s .  (23)

 The motion for the motor to follow is

 q ( s 0  ,  t )  5  O ̀
 i 5 1

 Q i ( t ) R i ( s 0 ) .  (24)

 The dynamic system of equation (18) may contain any number of modes ,  but only two
 are required to capture the first avoided crossing .  In a manner entirely parallel to that
 of the single-mode case [equation (3)] ,  the set of dif ferential equations is assembled
 into matrix form ,  and discretized using the matrix exponential and zero-order hold .
 One notable dif ference is that where in the single-mode case ,  the states alone form the
 servomotor setpoint ,  the setpoint now must be computed as a linear combination of
 projected components ,  using equation (24) .

 Using the physical parameters in Table 1 ,  we generated the natural frequencies
 shown as solid curved lines in Figure 9 .  The static cable shape and associated mode
 shapes are shown in Figure 10 .  The reader should note that this example has a rather
 deep sag .  The parameters were chosen to match the size and bandwidth of the
 experimental apparatus ,  and specifically to incur closely spaced hybrid modes .  In this
 system ,  the transverse mode shapes are not orthogonal near crossover ,  so some weak
 coupling occurs .  Eigenvalues for the first two modes at the point of nearest approach
 are  h 0  Ú  j 10 ? 349 ,  0  Ú  j 11 ? 172 j ,  and the eigenvectors are  h 2 0 ? 995 ,  2 0 ? 030 ,  0  Ú  j 0 ? 096 ,
 0  Ú  j 0 ? 0029 j   and  h 0 ? 096 ,  2 0 ? 991 ,  0  Ú  j 0 ? 0086 ,  0  Ú  j 0 ? 089 j .  The variation in the
 avoided crossing value of  l   from the usual value of 2 π   is due to the significant added
 mass of the cable in water .

 Eigenfunction zeros tend to prohibit excitation at their corresponding natural
 frequencies .  Specifically ,  these near-zero values are as shown below .

 Mode  l  / π  s  / L

 2
 1
 2
 2

 1 ? 27
 1 ? 50
 1 ? 78
 2 ? 11

 0 ? 50
 0 ? 25
 0 ? 75
 0 ? 75

 They can be seen in Figure 10 .  In the more specific case ,  projection of the two-mode
 system onto a small segment leads to a transfer-function zero between the poles .
 Proximity of this zero to the pole pair depends on both  l  / π   and the location along the
 cable  s 0  ,  as shown in Figure 11(a) .  At the cable center ,  the zero is essentially
 independent of  l  / π  ,  whereas in the other cases it is located nonsymmetrically .  These
 modal zeros can prevent substantial motion from occurring ,  even when the shedding
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 T ABLE  1
 Physical parameters for inclined cable calculations .

 Parameter  Value  Units

 Length
 Diameter
 Cable density
 Young’s modulus
 f a
 T a

 5 ? 0
 3 ? 17

 7000
 11 – 270
 28 ? 28
 528

 m
 cm

 kg / m 3

 MPa
 deg
 N

1.2

0.6
0.8

λ/π

ω
/ω

S

1.4

1

0.8

1.2 1.6 1.8 2 2.21

ExperimentsMode 1

Mode 2

 Figure 9 .  Cross-over avoidance for the first two natural modes (solid curved lines) is shown for the
 parameters of Table 1 .  Also shown are 20 points for the test runs ;  five dif ferent shedding rates for four

 dif ferent structures parameterized by ( l / π  ) .

 rate is very close ;  see the spectra in the following section .  A characteristic structural
 natural frequency corresponds to the zero-moment value ,  valid for white-noise input .  If
 G (  j v  ) is the system transfer function ,  we set

 v z  5

 E ̀

 0
 u G (  j v  ) v  u  d v

 E ̀

 0
 u G (  j v  ) u  d v

 .  (25)
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 Figure 10 .  Coupled modes for the suspended cable are computed from linearization about the static
 configuration shown (Table 1) .  Fluid flow is perpendicular to the page .
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2

1.15

0.85
1.4

1.1

1.05

1
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0.9
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(b)

ω
z/

ω
S

λ /π

 Figure 11 .  (a) Galerkin projection of the cable equations onto the test cylinder leads to a zero located
 between the natural modes .  (b) The corresponding zero-moment frequencies  v z  .  –  –  –  ,  Natural modes ;   1 ,

 for  s  / L  5  0 ? 25 ;   s ,  for  s  / L  5  0 ? 50 ;   p ,  for  s  / L  5  0 ? 75 .

 Figure 11(b) indicates these zero-moment frequencies ,  which are a spatially varying
 nonlinear function of the structured parameter  l  / π .

 4 . 3 .  E XPERIMENTAL  R ESULTS

 We conducted 60 tests ,  covering four  l   and five  v S   points ,  shown as points in Figure 9
 along with the first two natural modes .  For each of the 20  h l  ,  v S j   points ,  we considered
 three locations on the cable :   s 0  5  h 0 ? 25 L ,  0 ? 50 L ,  0 ? 75 L j .  The fixed-cylinder vortex-
 shedding rate was varied directly by changing the towing speed ;  the range of 0 ? 225 to
 0 ? 360  m / s covers all the natural modes ,  as shown .  The presentation of data parallels
 that of the single-mode tests above ,  so that direct comparisons can be made .

 The displacement and force coef ficient power spectra are given in Figures 12 – 14 .  In
 these plots ,  five orders of magnitude separate the curves ;  otherwise ,  they are directly
 comparable to the single-mode plots .  The frequency scale is nondimensionalized to a
 nominal vortex-shedding rate ,  based on the third towing speed of 0 ? 294  m / s .  It should
 be pointed out that where we used the term ‘‘cross-over’’ to denote the point  v t  5  1 ? 0
 previously ,  in the inclined cable case ,  this location is less well-defined ,  since the
 structural modes themselves have a nonuniform dependence on  l .

 Overall ,  the displacement spectra have the same character as in the single-mode
 case .  Double- and triple-mode responses are common ,  comprising the structural and
 shedding frequencies and tempered by the zeros described above .  Perhaps more clear
 than in the single-mode spectra ,  second and third harmonics are also visible .  The
 corrected force coef ficient spectra show several significant divergences from the
 single-mode case ,  however ,  suggesting a variance of the wake interaction with the
 structure .  Namely ,  where previously the force peak organized at cross-over ( v t  5  1 ? 0)
 and aligned eventually with the shedding rate ,  now only one of the structural modes
 needs to exceed the shedding rate in order to narrow the force spectrum .  This point is
 clear in Figures 12 and 13 ,  while in Figure 14 ,  an even stronger statement seems to
 hold :  narrow-band force spectra can form even if  both  structural modes are below the
 shedding rate .  This latter figure ,  at  U  5  0 ? 325  m / s ,  also suggests that the force peak
 need not occur at the shedding rate ,  nor at the lowest of the three frequencies .  Indeed ,
 at small  l  / π  ,  the peak aligns with the upper structural mode ,  while at large  l  / π  ,  it
 tends to reside at the lower structural frequency ,  being below the shedding rate in both
 cases .  These properties are in sharp contrast to the single-mode results ,  suggesting a
 significant variation in the wake-structure interaction .
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 Figure 12 .  Log power spectra of amplitude ratio and force coef ficient at  U  5  0 ? 257  m / s .  Five orders of
 magnitude separate the curves ,  and reference lines show  A / d  5  0 ? 01 and  C F  5  0 ? 1 .  The dashed vertical line
 indicates the shedding rate ,  and the two curved solid lines indicate structural modes as the structural
 parameter  l / π   is varied .  The horizontal axis is scaled with a nominal shedding rate based on a towing speed

 of 0 ? 294  m / s .

 The measured force (corrected for cylinder inertia) and position signals ,  several of
 which are shown in Figures 15 – 17 ,  demonstrate a variety of relations .  The first
 example ,  in Figure 15 ,  is for the second towing speed (0 ? 257  m / s) ,   l  / π  5  1 ? 50 and
 s  / L  5  0 ? 75 .  The displacement ,  undergoing a changing beating pattern ,  has three
 spectral peaks :  two at the structural modes ,  and one at the shedding rate .  This
 triple-peak response is typical of runs at the lower two towing speeds ,  where the
 displacements tend to be small ,  and the structural modes exceed the shedding rate .  The
 force signal in this run is narrow-band at the shedding rate ,  with no sign of beating .
 Figure 16 is for the middle towing speed (0 ? 294  m / s) ,  with  l  / π  5  2 ? 11 and  s  / L  5  0 ? 50 .
 Here ,  the amplitude-modulated displacement ,  with two spectral peaks ,  appears to be
 stable ,  and the force has similar modulation with a well-correlated envelope .  However ,
 the force spectrum shows little evidence of this envelope .  In Figure 17 ,  the
 displacement again has a reasonably stable amplitude modulation ,  but the force signal
 is quite disorganized ,  showing periods of both reduced and increased frequency .  This
 run was at the fourth speed (0 ? 325  m / s) ,  and had  l  / π  5  1 ? 50 and  s  / L  5  0 ? 75 .  In the
 single-node experiments ,  we see no cases in which broadband forcing leads to bimodal
 displacement oscillation .

 The lift coef ficients ,  phases ,  and amplitude ratios from the test data ,  shown in
 Figure 18 ,  bear a strong qualitative similarity to those of the single-mode system in
 Figure 4 .  This correlation is in large part due to our use of the zero-moment frequency
 v z   in the parameterization ;  here  v t  5  v z  / v S  .  The large standard deviations shown ,  and
 the scatter in the mean values ,  are likely due to the increased spectral richness in the
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 Figure 13 .  Log power spectra of amplitude ratio and force coef ficient ,  at  U  5  0 ? 294  m / s .  See Figure 12
 caption .
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 Figure 14 .  Log power spectra of amplitude ratio and force coef ficient ,  at  U  5  0 ? 325  m / s .  See Figure 12
 caption .
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 Figure 15 .  Amplitude and force signals for  U  5  0 ? 257  m / s ,   l / π  5  1 ? 50 and  s  / L  5  0 ? 75 .  Evidence of three
 peaks in the displacement spectra lead to a varying modulation ,  while forcing is primarily at the shedding

 rate .
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 Figure 16 .  Amplitude and force signals for  U  5  0 ? 294  m / s ,   l / π  5  2 ? 11 and  s  / L  5  0 ? 50 .  The position spectra
 are strongly bimodal ,  and the force signal shows some associated modulation .
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 Figure 17 .  Amplitude and force signals for  U  5  0325  m / s ,   l / π  5  1 ? 50 and  s  / L  5  0 ? 75 .  The cylinder
 oscillates at the two structural modes ,  but the force is broadband ,  with the structural modes well below the

 shedding rate .
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 Figure 18 .  Lift coef ficient ,  phase ,  and amplitude ratios for the inclined cable experiments .  Overall ,  most of
 the character of Figure 4 is recovered ,  when the zero-moment frequency scaling is used .

 responses ,  since the inner-product calculation exactly describes only monochromatic
 processes .  The force coef ficients reach peak values of approximately two ,  peaking in
 the range  v t  5  0 ? 9  2  1 ? 0 .  Additionally ,  the phase has a zero-angle regime in the range
 v t  5  0 ? 9  2  1 ? 25 ;   both of these quantities are in good agreement with the single-mode
 results .  Amplitude ratios are somewhat reduced ,  however ,  and show a large amount of
 scatter .  The hysteretic step has apparently vanished as well ,  although admittedly the
 lower limit of  v t   is not as low as in the single-mode tests .  Only one point ,  for
 s  / L  5  0 ? 50   and  v t  5  0 ? 66 ,  indicates that the subcritical tuning point has been passed .

 5 .  CONCLUSIONS

 Accurate laboratory testing of fluid interaction with complex ,  compliant structures
 requires scaled hardware ,  or a short-span hybrid approach which employs real-time
 simulation .  The force-feedback scheme described in this paper can address a range of
 free-vibration models ,  including multiple modes ,  traveling waves (through finite-
 dif ference discretization) ,  and nonlinearities .  Application to real engineering problems ,
 however ,  may require the use of hydrodynamic models outside the test cylinder .

 In single-mode experiments ,  we found good agreement with the work of other
 researchers ,  in lift coef ficient ,  phase ,  and peak amplitudes .  Force spectra for the
 low-damping tests are generally broadband in the lock-in regime ,  and narrowband
 outside ,  while the cylinder displacement undergoes significant amplitude modulation
 near the lock-in cross-over point .

 Dynamic responses for multi-mode models ,  arising from inclined cable dynamics ,  can
 be compared to those of single-mode compliant structures with proper frequency
 scaling .  This scaling accounts for structural zeros which are absent in most single-mode
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 systems .  Although the observed lift ,  phase ,  and amplitude properties are similar in
 both single- and multi-mode cases ,  the spectra in the latter are more complex .  Notably ,
 only one structural mode ,  and sometimes neither ,  needs to exceed the fixed-cylinder
 vortex-shedding rate in order for the force spectrum to be narrowband .  This fact is in
 contrast to single-mode results ( v t  .  1 ? 0) ,  and suggests that the presence of two
 structural modes provides to the wake a new mechanism for organizing .  Flow-
 visualization tests are anticipated which will help to describe this interaction more
 completely .
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 APPENDIX :  NOMENCLATURE

 y ( t ) , Y 0  lateral deflection of test cylinder ,  single-mode peak value
 F  ( t ) , F m ( t )  fluid-only ,  measured force on test cylinder
 m c y l  material mass of test cylinder
 l ,d  cylinder length ,  diameter
 U  towing speed
 r  fluid density
 S ,  v S  Strouhal number ,  fixed-cylinder vortex-shedding frequency
 m , b , k ,  z  mass ,  damping ,  stif fness ,  and damping ratio of single-mode system
 v d  structural damped frequency
 F 0  ,  c  lift force amplitude ,  phase
 C F  , C F y  , C F a  force coef ficient :  total ,  in phase with velocity ,  acceleration
 k r  reduced damping
 L  cable length
 A  cable cross-sectional area
 W  cable weight per unit length in water
 M  ef fective lateral mass per unit length
 E  Young’s modulus of cable
 f a  mean angle of inclination
 T a  projection of top tension along  f a
 l  structural parameter for suspended cables
 v z ( l )  zero-moment frequency
 s  cable axial coordinate
 q ( s ,  t )  cable lateral deflection
 f  0 ( s ) ,  f  ( s ,  t )  static ,  dynamic cable angle
 T 0 ( s ) , T  ( s ,  t )  static ,  dynamic cable tension
 Q i ( t ) , R i ( s )  temporal ,  spatial components of  q ( s ,  t )
 s 0  test cylinder location on cable


