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a b s t r a c t

The mono-frequency as well as multi-frequency vortex-induced vibrations of a

tensioned beam of aspect ratio 200, immersed in a linear shear flow at Reynolds

number 330 and free to move in both the in-line and cross-flow directions, are studied

by means of direct numerical simulation. The structural responses are composed of

mixed standing–traveling wave patterns. We observe a switch between mono- and

multi-frequency vibrations when the mass ratio changes from a value of 3 to 6, while

keeping constant the non-dimensional cable and beam phase velocities. This switch

is attributed to the accompanying change in the time-averaged in-line curvature of the

beam, which alters the oncoming flow velocity component normal to the structure

configuration. It is shown, in general, that the mono- or multi-frequency nature of

the response is controlled by the form of the profile of the normal component of the

oncoming flow.

Mono- and multi-frequency vibrations may occur in both the in-line and cross-flow

directions, with a frequency ratio close to 2. Each excited frequency is associated with a

single structural wavenumber. The local synchronization between the vortex shedding

and the cross-flow oscillation, i.e. the lock-in condition, occurs in the high velocity zone

and covers a similar spanwise extent in both the mono- and multi-frequency cases.

Counter-clockwise figure-eight trajectories are very likely to occur within the lock-in

region. In both the mono- and multi-frequency types of response, the flow excites the

structural vibrations within the lock-in region and damps the structural motions in

the non-lock-in region. The multi-frequency character of the response impacts both the

lock-in phenomenon and the fluid–structure energy transfer.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Vortex shedding in the wake of a bluff body immersed in a cross-flow induces unsteady forces on the body, and can
lead to vibrations if the body is flexible or flexibly mounted. The phenomenon of vortex-induced vibrations (VIV) occurs in
a number of physical problems, especially in the context of long flexible cylindrical structures employed in ocean
engineering, such as risers and hawsers. The case of a rigid circular cylinder free to move, or forced to oscillate in the cross-
flow direction within a uniform current, is considered as the canonical problem to investigate VIV mechanisms (Bearman,
1984; Sarpkaya, 2004; Williamson and Govardhan, 2004). It has been shown that self-excited, self-limited, large amplitude
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oscillations occur when the vortex shedding and the structural vibration frequencies coincide, a condition referred to as
‘lock-in’. More recently, some differences have been reported when the rigid cylinder is also allowed to move in the in-line
direction (Jauvtis and Williamson, 2004; Jeon and Gharib, 2001; Sarpkaya, 1995). Jauvtis and Williamson (2004) have
noticed a dramatic change in the cross-flow response as significant in-line motion appears, as the structure to displaced
fluid mass ratio is reduced below 6. An increase in the in-line to cross-flow natural frequency ratio induces changes as
well, causing a larger cross-flow peak amplitude response, together with a shift of the lock-in range toward higher reduced
velocities (Dahl et al., 2006; Lucor and Triantafyllou, 2008). Furthermore, the orientation and shape of the in-line/cross-
flow trajectories can promote higher harmonic fluid forces (Dahl et al., 2007, 2010).

Investigations of flexible cylinders immersed in non-uniform currents have highlighted the increased complexity of the
VIV phenomenon (e.g. Chaplin et al., 2005; Lie and Kaasen, 2006; Modarres-Sadeghi et al., 2010; Trim et al., 2005; Vandiver
et al., 2009). In shear flow, flexible structure vibrations are often composed of mixtures of standing and traveling wave
patterns (Bourguet et al., 2011; Lucor et al., 2006; Newman and Karniadakis, 1997). Contrary to the case of a rigid cylinder,
the phase difference between the in-line and cross-flow displacements of a flexible cylinder can vary along the span,
leading to diverse trajectories (Modarres-Sadeghi et al., 2010; Vandiver et al., 2009). For a long flexible cylinder freely
vibrating in the cross-flow direction and in both the in-line and cross-flow directions, in linear shear flow, Lucor et al.
(2001) and Bourguet et al. (2011) reported the occurrence of the lock-in condition only over a portion of the span. The
partial occurrence of the ‘wake capture’ phenomenon (Sarpkaya, 2004) had also been observed in the case of the forced
oscillations of a cable in shear flow (Peltzer and Rooney, 1985). Uniform flows induce narrow band excitations often
limited to a single vortex shedding frequency. In contrast, non-uniform flows can potentially trigger broad band responses
since the Strouhal frequency, i.e. the vortex shedding frequency observed past a stationary cylinder in uniform flow,
depends on the oncoming flow velocity. The occurrence of vibrations at several frequencies in non-uniform currents has
been emphasized in Kim et al. (1986), Vandiver et al. (1996), Chaplin et al. (2005) and Lucor et al. (2006), for example.
Vandiver et al. (1996) have underlined the possible influence of the flow shear rate on the development of responses at a
single or multiple frequencies. However, the causes of a switch between these two types of response are still unclear. In
addition, the impact of the mono- or multi-frequency content of the vibrations on the lock-in phenomenon and on the
fluid–structure energy transfer still needs to be elucidated.

In the present study, direct numerical simulation (DNS) is employed to investigate the mono- and multi-frequency
vibrations of a tensioned beam of aspect ratio 200, immersed in a linear shear flow at Reynolds number 330, based on the
maximum inflow velocity, and free to move in both the in-line and cross-flow directions. This work aims at characterizing
precisely the two types of response, at identifying the reasons of the observed change in the nature of the vibrations and at
quantifying the influence of the response nature on the principal fluid–structure interaction mechanisms.

The paper is organized as follows. The coupled fluid–structure model and the numerical method are presented in
Section 2. The mono- and multi-frequency structural vibrations are analyzed in Section 3. The causes of the switch
between mono- and multi-frequency responses in the present configuration are investigated in Section 4. The impact of
the vibration nature on fluid–structure interaction phenomena is examined in Section 5. The findings of the present study
are summarized in Section 6.

2. Formulation and numerical method

The tensioned beam under study has a circular cross-section and an aspect ratio L/D¼200, where L is its length in
equilibrium position in quiescent flow and D its diameter. It is pinned at both ends, while it is free to move in both the in-
line (x) and cross-flow (y) directions. The beam mass ratio is defined as m¼ rc=rf D2, where rc is the beam mass per unit
length and rf is the fluid density (Newman and Karniadakis, 1997). The actual ratio between the mass of the beam and the
mass of the displaced fluid is equal to m� ¼ 4m=p. Two mass ratios are considered in the present work: a moderate mass
ratio, m¼6 (m� ¼ 7:64), was chosen in reference to Jauvtis and Williamson’s (2004) work, and a lower value, m¼3
(m� ¼ 3:82), closer to the offshore applications, was also considered. In the following, all physical variables are non-
dimensionalized using the cylinder diameter D and the maximum inflow velocity U. The constant tension, bending
stiffness and damping of the structure are designated by T, EI and K, respectively. The in-line and cross-flow displacements
of the cylinder are denoted by zx and zy. The drag and lift coefficients are denoted by Cx and Cy. The structural dynamics are
governed by the following tensioned beam model, expressed in non-dimensional form (Evangelinos and Karniadakis,
1999; Newman and Karniadakis, 1997):
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where f¼ ½zx,zy�
T and C ¼ ½Cx,Cy�

T . t denotes the non-dimensional time variable. oc and ob are the cable and beam phase
velocities, defined by o2

c ¼ T=m and o2
b ¼ EI=m, respectively. The structural damping is set equal to zero (K¼0) to allow

maximum amplitude oscillations. A tensioned beam is considered in this study with oc ¼ 4:55 and ob ¼ 9:09. When the
mass ratio is changed between the values of 3 and 6, T and EI are modified accordingly to keep oc and ob constant, so that
vibrations involving similar high wavenumbers develop in both cases, as shown in Section 3. Such vibrations are
representative of configurations encountered in the context of ocean engineering (e.g. Chaplin et al., 2005; Lie and Kaasen,
2006).
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Fig. 1. Sketch of the physical configuration.
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The flow is predicted using DNS of the three-dimensional incompressible Navier–Stokes equations. The beam is
submitted to an oncoming current which is parallel to the x-axis and linearly sheared along the z-axis, as illustrated in
Fig. 1. The maximum inflow velocity U occurs at z¼0. The ratio between maximum and minimum inflow velocity is equal
to 3.67. The Reynolds number (Re) based on D and the inflow velocity ranges from 330 to 90.

The parallelized code Nektar, based on the spectral/hp element method (Karniadakis and Sherwin, 1999), is used to
solve the coupled fluid–structure system. Details regarding validation studies of the numerical method and parameters
have been reported in Newman and Karniadakis (1997) and Evangelinos and Karniadakis (1999). The computational
domain extends 50D downstream, and 20D upstream, above, and below the cylinder. A two-dimensional grid of 2175
elements with Jacobi polynomials of order p¼7 is used in the (x,y) planes. In the z-direction, 1024 planes (512 complex
Fourier modes) are used. The spatial resolution is similar to Evangelinos and Karniadakis’s (1999) study for a cylinder of
aspect ratio L=D¼ 4p constrained to oscillate in the cross-flow direction, at Re¼1000.

Fourier expansion implies spanwise periodicity of the imposed shear velocity profile. The periodicity condition is
enforced in a buffer region where the inflow velocity profile is represented by a third-order polynomial that ensures
continuity of the velocity profile and its slope. The size of the buffer region, Dz, is chosen equal to 8% of the cylinder length
(Dz¼ 16), in agreement with the recommendations of Lucor et al. (2006). Details concerning buffer region implementation
and validation have been reported in Bourguet et al. (2011). In particular, simulations performed with Dz¼ 11 and 21 have
shown the negligible influence of the buffer region size on the rest of the domain, as long as it remains small compared to
the cylinder length. As an example, the relative difference on the maximum RMS values of the structure displacements
along the span was smaller than 3% between Dz¼ 11 and 21 cases.

The analysis reported in the present study is based on the monitoring of time series of more than 300 convective time
units, collected after the initial transient dies out, with a non-dimensional sampling frequency equal to 40.
3. Mono- and multi-frequency responses

The in-line and cross-flow vortex-induced vibrations of the structure are studied in this section with an emphasis on
the frequency content of the structural responses. In the present configuration, a change in the mass ratio causes a change
of the time-averaged in-line bending of the beam. The link between the modification of the curvature of the structure and
the nature of the responses is investigated in Section 4.

Selected time series of the in-line and cross-flow displacements are presented along the beam span in Fig. 2. In these

plots and in the following, only the deviations of the in-line displacement from its mean value, ~zx , are shown. In both
directions and for both mass ratios, the structural responses are mixtures of standing and traveling wave patterns. The
traveling components of the vibrations are more pronounced in the in-line direction and principally oriented from the high
to low inflow velocity regions (increasing z). Standing wave patterns dominate the region near z¼0 in both directions until
approximately z¼30. It can be noted that the standing wave component is more pronounced in this region for m¼3,
especially in the in-line direction. Beyond this region, distinct traveling waves are observed; these waves are less altered
by the underlying standing wave patterns for m¼3.

Maximum and root-mean-square (RMS) values of the displacements along the beam span are plotted in Fig. 3. These
plots reflect the mixed standing–traveling wave patterns of the responses. The standing character of the vibrations leads to
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Fig. 2. Selected time series of (a,b) in-line displacement fluctuation and (c,d) cross-flow displacement along the beam span, for (a,c) m¼3 and (b,d) m¼6.
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Fig. 3. (a,b) Maximum and (c,d) RMS values of (a,c) in-line displacement fluctuation and (b,d) cross-flow displacement, along the beam span.
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the formation of cells along the span corresponding to alternating ‘nodes’ (minima of the response envelope) and ‘anti-
nodes’ (maxima of the response envelope). The standing character is more pronounced near the ends and especially near
z¼0, as previously observed. The RMS values of displacements associated with nodes are different from zero which
emphasizes the modulation of the standing wave patterns by the superimposed traveling wave components. On average
(RMS values), larger vibration amplitudes are observed for m¼3 than for m¼6. The maximum amplitudes of the cross-
flow vibrations are, however, very close. In addition, it is interesting to notice that the amplitude between adjacent node
and anti-node is generally smaller for m¼6. The existence of several excited structural wavenumbers in this case is
responsible for this phenomenon as shown in the following on the basis of spectral analysis.

Spatio-temporal spectral analysis is carried out to clarify the nature of the structural vibrations. This is achieved by a
two-dimensional FFT of the spatio-temporal evolution of the structural responses which are zero padded to reach a
frequency resolution of 5�10�4 in both time and space. In Fig. 4, power spectral densities (PSD) of the in-line and cross-
flow displacements are plotted as functions of frequency and spatial wavenumber. Positive frequencies are presented and
thus negative wavenumbers (upper part of each plot) are associated with traveling waves moving toward the low velocity
region while positive wavenumbers (lower part of each plot) represent traveling waves moving toward the high velocity
region. PSD are normalized by the maximum observed on both domains (positive and negative wavenumbers) to illustrate
the traveling or standing character of the response. The predominant vibration frequencies are identified by yellow vertical
dashed lines. Sine Fourier modes (sinðpnzD=LÞ for the nth mode) are often used to describe the structural response (e.g.
Chaplin et al., 2005; Lie and Kaasen, 2006). For illustration purposes, and comparison with the existing literature, the
wavenumbers corresponding to selected sine Fourier modes are indicated by white horizontal dashed lines.

A substantial difference exists in the spectral content of the structural responses between the two different mass ratio
cases under study: responses at a single frequency are observed in both directions for m¼3, while the case of m¼6
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exhibits responses at several frequencies. These two types of response are referred to as mono-frequency and multi-
frequency, respectively. In the case of multi-frequency responses (m¼6), for instance in the in-line direction, it can be
noticed that the frequency peaks are clearly defined and distinct from each other. The ratio between the in-line and cross-
flow excited frequencies is close to 2 in both cases. The synchronization between the in-line and cross-flow vibrations is
analyzed in Section 5.1.

The predominant excited wavenumbers correspond to modes n¼24 in the in-line direction and n¼14 in the cross-flow
direction for m¼3 and n 2 f22,23,24,25g in the in-line direction and n 2 f13,14,15g in the cross-flow direction for m¼6.
These mode numbers are close to those measured experimentally by Trim et al. (2005) and Lie and Kaasen (2006), where
cases of multi-frequency responses have been reported in shear flow. In the present case of mixed standing–traveling wave
responses, it is recalled that the concept of structural modes and the association of the excited wavenumbers with sine
Fourier mode numbers are used loosely, for illustration purposes only.

At a given vibration frequency, it appears that only one peak emerges on the spatial spectrum at the same wavenumber
on both negative and positive sides, i.e. only one structural wavenumber is excited at a given frequency. The natural
frequency fnat of the tensioned beam associated with the wavenumber k can be evaluated as follows, in vacuum:

f nat ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

c þ4p2o2
bk2

q
: ð2Þ

This spectrum may be modified to take into account of the immersion of the cylinder into the fluid:

f mod ¼ f nat

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

mþ
p
4

Cm

vuut , ð3Þ

where Cm is the added mass coefficient induced by the flow. The corresponding modified frequencies, for a choice of Cm¼1,
are indicated by red crosses in Fig. 4. While this modified spectrum provides a reasonable approximation of the effective
excited frequencies in some cases, significant deviations appear in other cases (e.g. in-line direction for m¼3) emphasizing
the strong variability of the added mass coefficient.

The relative weights of negative and positive wavenumber peaks for the same frequency provide information
concerning the standing/traveling character of the corresponding wave. In all cases, negative peaks dominate, indicating
predominant traveling waves moving from the high to low velocity regions (increasing z), as qualitatively observed on the
spatio-temporal evolutions plotted in Fig. 2. The ratio between the negative and positive peak amplitudes, for a given
frequency, is generally larger for m¼3. This is in agreement with the previous remark concerning the occurrence of purer,
reinforced traveling waves in this case on most of the beam length (z430, approximately).

The causes of the observed switch between mono- and multi-frequency responses as the mass ratio is increased are
examined in the next section.

4. Impact of the structural average curvature on the response frequency content

The time-averaged in-line displacement of the beam along its span is presented in Fig. 5(a). As expected from
expression (1), since oc and ob are kept constant, the beam time-averaged curvature increases as the mass ratio is
reduced. In both mass ratio cases, the beam exhibits an asymmetric deformation due to the shear flow, with a maximum
displacement located near z¼80. Such asymmetric deformation has been observed experimentally by Chaplin et al. (2005)
for a cylinder submitted to a stepped current, for example.

The in-line bending modifies the oncoming flow velocity component normal to the beam. The spanwise evolution of the
inflow normal component is plotted in Fig. 5(b) and (c), for m¼3 and 6, respectively (plain lines). The larger bending
observed for m¼3 induces a stronger deviation of the normal velocity profile from the total, linearly sheared inflow
parallel to the x-axis (dotted lines), principally in the high velocity region, for zo60 approximately.

To establish that it is the normal velocity profile that determines the mono- or multi-frequency nature of the response,
two additional simulations have been performed: (i) a simulation for m¼3 with a modified sheared inflow profile that
emulates the normal velocity profile observed in the case of m¼6, (ii) a simulation for m¼6 with a modified sheared
inflow profile that emulates the normal velocity profile observed in the case of m¼3. The profiles of the inflow velocity
component normal to the beam reached in these additional simulations are very close to the original ones, as illustrated in
Fig. 5(b) and (c) (dashed lines).

The influence of the normal inflow profile is quantified through spectral analysis. The spanwise distributions of the
temporal PSD of the cross-flow vibrations are plotted in Fig. 6 for the original and modified inflow cases. PSD is normalized
at each spanwise location by the corresponding displacement variance. The mono-frequency nature of the response for
m¼3, when the cylinder is submitted to the original linear shear profile, is confirmed in Fig. 6(a). When the inflow velocity
is modified to emulate the normal profile corresponding to the original case of m¼6 (Fig. 6(b)), the beam exhibits a multi-
frequency vibration similar to the original multi-frequency case, with three distinct excited frequencies. Conversely, the
original multi-frequency case for m¼6 (Fig. 6(c)) becomes mainly mono-frequency if the inflow velocity is tuned to match
the normal profile observed in the original case of m¼3 (Fig. 6(d)). Similar changes in the response frequency content are
noted in the in-line direction, when the normal velocity profile is modified.
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Therefore, the observed switch between mono- and multi-frequency vibrations is triggered by the modification of the
inflow velocity component normal to the beam. The importance of the normal inflow component has been previously
highlighted in the literature, for example through the independence principle (IP) which states that the flow past a yawed
cylinder can be compared to the normal incidence case by considering the component of the oncoming flow velocity normal
to the cylinder (Schlichting, 1968). The IP is subject, however, to a number of limitations that have been emphasized for
stationary and freely vibrating rigid cylinders (e.g. Lucor and Karniadakis, 2003; Ramberg, 1983; Van Atta, 1968).

In the present case, the range of normal velocity in the high velocity region seems to control the vibrational response
bandwidth. Specifically, the reduction of this range, as static curvature increases, leads to a narrower excitation bandwidth
resulting in mono-frequency response. The role of the high velocity zone in structure excitation is examined in Section 5.3.

5. Influence of the mono-/multi-frequency nature of the vibrations on VIV mechanisms

The above analysis shows that a flexible cylinder in shear flow may exhibit both mono- and multi-frequency responses
along the span. The impact of the response mono-/multi-frequency nature on some fluid–structure interaction
mechanisms is investigated in this section.

5.1. Synchronization of the in-line and cross-flow vibrations

In Section 3, the in-line and cross-flow responses have been considered separately. They are, in fact, coupled non-
linearly through the fluid forces; their synchronization is studied in this section. The spectral analysis above has
emphasized that the in-line and cross-flow vibrations mainly occur with a relative frequency ratio of 2. This leads to
‘figure-eight’ trajectories in the (x,y) plane, as illustrated in Fig. 7(a).

The shape and orientation of the beam trajectories in the (x,y) plane are controlled by the phase difference between the
in-line and cross-flow displacements. The instantaneous phases of the in-line and cross-flow displacements (fx and fy,
respectively) are determined by means of the Hilbert transform. Adopting an approach similar to Huera-Huarte and
Bearman (2009), the phase difference Fxy is evaluated as follows:

Fxy ¼ ½pfx�qfy, mod 3601�, ð4Þ

where p and q are two integer numbers defining the level of synchronization studied. The couple (p,q)¼(1,2) is chosen
here. Values of Fxy in the range 01�1801 (1801�3601, respectively) correspond to ‘figure-eight’ orbits where the beam
moves upstream (downstream, respectively) when reaching the cross-flow oscillation maxima. These two types of
trajectories are referred to as ‘counter-clockwise’ and ‘clockwise’, respectively (Dahl et al., 2007).
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Fig. 7. (a) Selected trajectories of the cylinder at different spanwise locations, for m¼3. Histogram of phase difference between the in-line and cross-flow

displacements along the beam span for (b) m¼3 and (c) m¼6. The spanwise locations selected in (a) are identified by white dashed lines in (b).
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Histograms of Fxy are determined from the response time series. Fig. 7(b) and (c) show at each spanwise location the
relative weights of the phase difference angles for m¼3 and 6, respectively. The contributions are normalized by the
maximum weight. In Fig. 7(b), the spanwise locations of the selected trajectories in Fig. 7(a) are indicated by white
horizontal dashed lines.

The mono/multi-frequency nature of the response does not substantially modify the in-line/cross-flow motion
synchronization. In spite of a noisier character in the case of multi-frequency vibrations, both the mono- and multi-
frequency cases exhibit very similar synchronization patterns along the span. For zo30, approximately, both the in-line
and cross-flow vibrations exhibit pronounced standing wave patterns. As a consequence, switching between counter-
clockwise and clockwise trajectories are observed near the nodes of the in-line displacements. Beyond this region, this
switching counter-clockwise/clockwise pattern is altered by the development of mainly traveling waves, still modulated
by an underlying standing wave component. The fact that the nodes of the standing wave pattern in the cross-flow
direction do not necessarily coincide with the in-line displacement nodes also alters the above alternating pattern. While
perfect traveling waves in both directions would lead to constant Fxy along the span (Vandiver et al., 2009), perfect
standing waves (with a ratio of 2 between the in-line and cross-flow excited structural wavenumbers) would instead be
associated with a switching counter-clockwise/clockwise pattern (as observed near z¼0). In the present case, due to mixed
standing–traveling wave vibrations, Fxy exhibits a zig-zagging spanwise pattern, drifting toward higher phase difference
angles as z increases. In addition, it can be noted that counter-clockwise trajectories dominate within the high velocity
region. A similar observation has been reported by Vandiver et al. (2009) and Modarres-Sadeghi et al. (2010) on the basis
of experimental measurements involving flexible cylinders in shear flows. As shown in the following, this phenomenon
coincides with the occurrence of lock-in in this region.

5.2. Lock-in

For long flexible cylinders in shear flow, the lock-in condition can be defined at each spanwise location by the
synchronization of the local vortex shedding frequency with the local cross-flow vibration frequency; otherwise, the
condition is referred to as non-lock-in. In the following, the spanwise region which includes all the locally locked-in
locations is referred to as the lock-in region and the rest of the span as the non-lock-in region.

The vortex shedding frequency is determined from the temporal power spectrum of the cross-flow component of flow
velocity v that has been recorded over the same time interval as the beam displacements, along a spanwise line in the
wake, at (x,y)¼(31,0) in the case of m¼3 and (x,y)¼(20,0) in the case of m¼6. The spanwise distribution of v PSD is plotted
in Fig. 8(a) and (b) for m¼3 and 6, respectively. The predominant vibration frequencies previously identified (Fig. 4) are
indicated by yellow vertical dashed lines.

In both cases, the lock-in region is found in the high flow velocity region, near z¼0, and the rest of the span corresponds
to the non-lock-in region. In the case of forced cross-flow oscillations of a flexible cylinder in shear flow, Peltzer and
Rooney (1985) have emphasized the formation of long (440D) spanwise cells of constant shedding frequency, equal to
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the forcing frequency. In the present case of free-vibrations, the spanwise extent of the lock-in region is similar for the
mono- and multi-frequency cases, equal to 77D for m¼3 and 75D for m¼6.

The impact of the multi-frequency response is clearly visible within the lock-in region, where lock-in is established at
three predominant vibration frequencies. A detailed view of the lock-in region for the multi-frequency case is presented in
Fig. 8(c). It is observed that lock-in is generally established at a single frequency at a given spanwise location. The local
lock-in frequency often coincides with the local predominant vibration frequency (represented by white segments in
Fig. 8(c)). Under lock-in, the vortex shedding frequency may be driven far from the Strouhal frequency observed for a
stationary cylinder. Shedding frequencies normalized by the local oncoming flow velocity are in the ranges [0.155,0.22]
and [0.15,0.22], for m¼3 and 6, respectively. The lock-in region occurs in the high velocity zone while the previous
observations have shown that counter-clockwise beam trajectories are more likely in this zone; in the lock-in region, the
cylinder exhibits principally counter-clockwise orbits.

In both the mono- and multi-frequency cases, the non-lock-in region is characterized by a cellular pattern relatively
similar to the case of a stationary cylinder in shear flow, as reported for example in Peltzer and Rooney (1985) for a
comparable shear rate.

As in the case of a stationary cylinder in shear flow, or a tapered cylinder in uniform flow (Mukhopadhyay et al., 1999;
Piccirillo and Van Atta, 1993), the partitioning of the wake into spanwise cells of constant vortex shedding frequency leads
to an oblique orientation of the vortex rows, as illustrated in Fig. 9 by plotting instantaneous iso-surfaces of spanwise
vorticity. To ensure the continuity of the spanwise vortex filaments while the vortex shedding frequency is discontinuous,
vortex splitting events (e.g. Piccirillo and Van Atta, 1993; Williamson, 1992; Zhang et al., 1995) occur between adjacent
cells in Fig. 8. A detailed analysis of the wake patterns occurring in a similar physical configuration, for m¼6 and various
Reynolds numbers, has been reported in Bourguet et al. (2011).



−0.2 0 0.2 0.4 0.6
0

20

40

60

80

100

120

140

160

180

z

m = 3
m = 6

Temporal frequency
z

0.15 0.16 0.17 0.18
0

10

20

30

40

50

60

70

80 Modal Cfv

−0.02

−0.01

0

0.01

0.02

0.03

0.04

Cfv

Fig. 10. (a) Spanwise evolution of the time-averaged force coefficient in phase with the beam velocity. (b) Frequency decomposition of the force

coefficient in phase with the beam velocity for m¼6, detail of the lock-in region. In (b) black dashed lines indicate the predominant frequencies of the

cross-flow vibration and white segments denote the local lock-in frequency.

R. Bourguet et al. / Journal of Fluids and Structures 32 (2012) 52–6462
5.3. Fluid–structure energy transfer

Fluid–structure energy transfer can be quantified by the fluid force coefficient in phase with the beam velocity (Hover
et al., 1998; Newman and Karniadakis, 1997). The time-averaged value of this coefficient, including both the in-line and
cross-flow contributions, is defined as:

Cfv ¼

ffiffiffi
2
p

/ ~C x
_~z xþCy

_zySffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/ _~z

2

xþ
_z

2

y

q
S

, ð5Þ

where / �S denotes the time-averaging operator and ~C x is the fluctuating component of Cx. Positive values of Cfv indicate
that the fluid supplies, on average, energy to the structure and hence excites the vibrations, while negative values indicate
that the fluid is damping the structural motion.

The spanwise evolution of Cfv is plotted in Fig. 10(a), for both mass ratio cases. Zones of positive Cfv are located on the
high velocity side and are contained within the lock-in region. In the non-lock-in region, Cfv remains negative. Hence, the
vibrations are excited by the flow in the lock-in region and damped in the non-lock-in region. It is important to mention
that, in both the mono- and multi-frequency cases, the excitation of the structural vibrations is not uniform within the
lock-in region. In particular, Cfv tends to decrease in spanwise zones where the beam exhibits clockwise trajectories and
negative peaks can occur near the cross-flow vibration nodes.

The reinforced standing wave pattern for approximately zo30 in the case of m¼3 is accompanied by stronger
modulations of Cfv in the lock-in region. In the case of multi-frequency response, the fluid–structure energy transfer occurs
at the three frequencies of lock-in, as illustrated in Fig. 10(b) through a frequency decomposition of Cfv within the lock-in
region. It can be noted that the flow excites the structural vibrations in this zone principally at the local lock-in frequency
(white segments). The three main peaks of positive Cfv (z� 18, z� 38, z� 57) indeed occur at the local lock-in frequency.
6. Conclusions

Mono-frequency as well as multi-frequency vortex-induced responses of a long tensioned beam, subject to sheared
oncoming cross-flow, have been investigated by means of DNS at Reynolds number 330. The structural responses are
found to consist of mixed standing and traveling wave patterns; the in-line and cross-flow vibrations exhibit frequencies
with a ratio close to a value of 2. The traveling wave components are mainly oriented from the high to low flow velocity
regions. Mono- and multi-frequency vibrations occur in both the in-line and cross-flow directions for the two mass ratios
studied, m¼3 and 6. In both cases of mono- and multi-frequency responses, each excited frequency is associated with a
single structural wavenumber.
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The switch between mono- and multi-frequency responses is controlled by the profile of the oncoming flow component
normal to the beam configuration; hence changes in the in-line static curvature of the structure can trigger a transition
from one type of response to the other, since it changes the normal velocity component.

The in-line and the cross-flow responses exhibit a spanwise zig-zagging synchronization pattern for both mono- and
multi-frequency responses. Likewise, for both types of response, lock-in occurs in the high velocity zone and covers a
similar spanwise extent, and counter-clockwise figure-eight trajectories are very likely to occur within the lock-in region.
Also, for mono- and multi-frequency cases, the flow excites the structural vibrations within the lock-in region and damps
the structure motions in the non-lock-in region.

For multi-frequency vibrations, lock-in is established with all the observed vibration frequencies. However, lock-in
remains a locally mono-frequency event, involving preferentially the locally predominant structural vibration frequency.
Structural excitation occurs at multiple frequencies across the lock-in region, but for a given spanwise location, it occurs
mainly at a single frequency, the local lock-in frequency.
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