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ABSTRACT 

As people increasingly work in indoor environments, 

the need to provide natural lighting is becoming more 

widely recognized. Recent modelling standards such 

as LM-83 require the use of climate-based metrics 

based on daylight coefficients, rather than 

illuminance-based metrics that simulate single points 

in time. While calculations based on daylight 

coefficients are fast, computation of the daylight 

coefficients themselves is a slow process that must be 

repeated whenever the scene’s geometry or materials 

change. Therefore, it remains impractical to obtain 

accurate annual daylight simulation results during 

early design stages when designs are fluid and quickly 

changing. 

This paper describes the development of a new, faster 

tool to compute daylight coefficients using graphics 

hardware. The tool is an adaptation of rtrace_dc, the 

executable used by DAYSIM to calculate daylight 

coefficients, written using OptiX™, a free library for 

GPU-based ray tracing. The effectiveness of the new 

tool is demonstrated using models of a typical office 

space with speed and results compared to rtrace_dc. 

The speed of the new tool is measured both on a 

typical workstation graphics card and on a high-end 

graphics server. The results show that the new tool 

achieves similar accuracy to the serial version but does 

so in one-fifth the time. 

INTRODUCTION 

As humans spend 90 percent of the time inside of 

buildings, the need to provide natural lighting to 

indoor spaces is becoming widely recognized (EPA, 

1989). However, defining, and therefore predicting, 

good daylighting is far from a straightforward task. 

While many lighting simulation tools lend themselves 

to point-in-time calculations, building performance 

metrics must take into account the annual performance 

of the building, which requires simulation under 

multiple solar positions and sky conditions. Climate-

based daylighting metrics (CBDMs) represent the 

annual daylighting performance of a space, an abstract 

quantity, while agreeing closely with concrete 

occupant observations (Reinhart, et al., 2014). While 

CBDMs are useful from a building standards 

standpoint, their computation is slow and requires 

more memory than older illuminance-based metrics, 

which makes them more difficult to integrate into 

design tools. It remains impractical to obtain accurate 

annual daylight simulation results during early design 

stages when the designs change rapidly. In order to 

produce CBDM results at interactive rates to feed back 

into an iterative design process, we must use new 

methods and platforms to calculate them. 

DAYSIM is a popular tool for computing CBDMs, 

frequently accessed through the graphic user interface 

of DIVA-for-Rhino (Jakubiec & Reinhart, 2011). 

DAYSIM computes daylight coefficients, measure of 

the illuminance contributions from direct and diffuse 

natural sources, which can in turn be used to compute 

the daylight autonomy of a space (Reinhart & 

Walkenhorst, 2001). Like the Radiance suite of 

programs on which it is based (Larson & Shakespeare, 

1998), DAYSIM uses serial ray tracing to perform 

lighting calculations. 

Recently, we have developed Accelerad, a suite of 

graphics processing unit (GPU)-enabled programs 

that implement the core ray tracing functionality of 

Radiance at speeds an order of magnitude faster (Jones 

& Reinhart, 2014a; Jones & Reinhart, 2014b). In this 

paper, we demonstrate how the same techniques that 

make Accelerad possible can be used to speed up 

DAYSIM calculations. First, we describe tools and 

metrics that are relevant to the problem. Then, we 

present factors that affect the accuracy and speedup 

achieved in GPU-based daylight autonomy 

calculations. Finally, we comment on limitations of 

GPU-based methods with respect to daylight 

coefficient calculation and on future work that may 

overcome these limitations. 

BACKGROUND 

Daylighting Metrics 

Early metrics for measuring and predicting indoor 

daylight quantities, such as daylight availability and 

work plane illuminance under clear sky conditions, 

were quick to calculate but could not be extrapolated 

to annual values. Recent building standards and rating 

systems require the use of CBDMs, which consider 

annual daylight availability, rather than illuminance-

based metrics that simulate only a point in time. The 

Illuminating Engineering Society of North America 

(IESNA) promotes the use of daylight autonomy as a 

CBDM through its standard LM-83 (IESNA, 2012). 



LM-83 defines a point in space to be daylit if the point 

achieves a target illuminance of 300 lux or more for 

over 50% of occupied hours; this measure of daylight 

autonomy is abbreviated DA300lux[50%]. Studies 

comparing simulated daylight autonomy results to 

collected observations further suggest that a point can 

be considered partially daylit if it achieves 

DA150lux[50%] (Reinhart, et al., 2014). 

In order to calculate daylight autonomy, DAYSIM 

first calculates daylight coefficients and then 

combines them with weather data to create a 

spatiotemporal illuminance mapping. Each daylight 

coefficient is a weighting factor that represents the 

contribution of a light source to a point, such that the 

total illuminance at that point is the sum of all direct 

and diffuse daylight coefficients multiplied by the 

respective luminances of their sources at a particular 

point in time. For diffuse calculations, DAYSIM uses 

148 sources corresponding to the 145 Tregenza sky 

divisions (Tregenza, 1987) and three ring-shaped 

ground patches. For direct calculations, a location-

dependent number of sources represent a uniform 

spatial distribution of sun positions at the appropriate 

latitude (Reinhart & Walkenhorst, 2001). At the 

authors’ latitude, 63 direct daylight coefficients are 

required. Daylight coefficients are calculated using 

Whitted-style ray tracing (Whitted, 1980); starting 

from a grid of points at which daylight autonomies are 

to be calculated, rays are traced through a user-defined 

number of bounces until a source is encountered. The 

simulation can be made more accurate (and slower) by 

increasing the number of bounces through the –ab 

parameter or increasing the ambient accuracy by 

decreasing the –aa parameter. 

Daylight Calculation on the GPU 

The high degree of parallelism built into modern 

graphics processors has made their use very appealing 

for scientific applications. Within the building 

performance simulation community, they have been 

used mainly for computations involving manipulation 

of dense matrices, including applications in 

computational fluid dynamics (Zuo & Chen, 2010) 

(Wang, et al., 2011), acoustics (Guillaume & Fortin, 

2014), and the three-phase method for lighting 

simulation (Zuo, et al., 2014). Jones, et al., (2011) 

reduced direct solar radiation calculations to a 

manipulation of dense matrices in OpenGL®, and 

Kramer, et al., (2015) extended this solution to general 

direct radiant heat exchange. These applications are 

generally well suited to GPU computation because of 

its single-instruction, multiple-data (SIMD) 

programming model in which the same operation is 

applied simultaneously to each matrix element. As a 

result, large speedups are possible through 

parallelism. 

Ray tracing is highly parallel in concept because each 

primary ray acts independently of other rays. 

However, depending on the material of the surface hit 

by a ray, the computation it requires may involve not 

only different data, but different instructions as well. 

Rather than SIMD, this necessitates a single-

instruction, multiple-thread (SIMT) programming 

model, and even then, divergence between threads 

computed in the same warp leads to program 

inefficiencies. GPU language extensions such as 

Compute Unified Device Architecture (CUDA®) from 

NVIDIA® and OpenCL™ from the Khronos™ Group 

make it possible to implement ray tracing on GPU 

shader processors (Aila & Laine, 2009; Wang, et al., 

2009). The OptiX™ ray tracing engine, created by 

NVIDIA®, allows ray tracing to be performed on the 

GPU from any application without requiring the 

programmer to implement their own ray tracing 

algorithms (Parker, et al., 2010). Currently, there is no 

well-supported OpenCL™ alternative to OptiX™, 

although the Embree ray-tracing framework from 

Intel® may provide a CPU-based alternative in the 

future (Wald, et al., 2014). 

The building performance simulation community uses 

OptiX™ for a variety of ray tracing tasks. Clark 

(2012) and Halverson (2012) demonstrate its use for 

modelling radiative heat transfer involved in the urban 

heat island effect. Andersen et al. (2013) use it for 

interactive visualization of cached Radiance results. 

Our own tool, Accelerad, replaces Radiance’s own ray 

tracing engine with OptiX™ to achieve speeds twenty 

times faster than Radiance (Jones & Reinhart, 2014a; 

Jones & Reinhart, 2014b). 

IMPLEMENTATION 

Before describing the algorithms that compute 

daylight coefficients on the GPU, a brief primer in the 

DAYSIM code will be useful. DAYSIM is a collection 

of programs that call each other, and are in turn called 

by interfaces such as DIVA-for-Rhino. DAYSIM 

prepares daylight coefficients through three 

invocations to gen_dc, the first two to initiate 

calculation of diffuse and direct daylight coefficients, 

respectively, and the third to merge the results into a 

single file. A second program, ds_illum, combines the 

computed daylight coefficients with climate data, the 

results of which serve as input to calculate daylight 

autonomy. The first two runs of gen_dc do not directly 

create output; rather, they call another program, 

rtrace_dc, which performs ray-tracing calculations 

and generates daylight coefficients. In long DAYSIM 

calculations with high accuracy settings, rtrace_dc is 

responsible for most of the computation time. 

DAYSIM’s rtrace_dc is a relatively straightforward 

modification of Radiance’s rtrace; it differs by the 

addition of a daylight coefficient array at each place 

where rtrace stores a colour in intermediate and result 

calculations. Each operation that modifies a colour is 

also performed on the elements of the daylight 

coefficient array. Similarly, accelerad_rtrace is also a 

modified version of rtrace, but the modification is 

more complex as it involves a language translation 

from C to CUDA® and a parallel irradiance caching 

strategy (Jones & Reinhart, 2014b). We created a GPU 



implementation of rtrace_dc by combining both sets 

of modifications (Figure 1). The DAYSIM 

modifications were added to the Accelerad source 

code, as they were the smaller set of alterations. 
 

 

Figure 1 The new program combines the alterations 

made to Radiance rtrace from DAYSIM with those 

from Accelerad 

Filling Warps 

In CUDA®, groups of 32 threads called warps are 

processed together using a SIMT model. Filling a 

warp with rays that hit similar materials in the same 

order makes the computation more coherent and hence 

faster. We achieve better coherence by grouping 

primary rays based on the spatial positions of their 

origins. This technique works well when the sensor 

positions form a grid. Each warp might, for instance, 

perform calculations on a 4×8 section of the grid. 

To communicate the dimensions of this grid to rtrace, 

we use the –x and –y arguments in an analogous 

fashion to their use in rpict. In the original rtrace, –x 

and –y are optional arguments used to flush output. 

When the dimensions are provided, accelerad_rtrace 

creates a launch context measuring x by y threads. If 

the parameters are not entered, the launch context will 

measure 1 by n threads, where n is the number of 

sensor points given in input. In the latter approach, the 

single column of active threads will incompletely fill 

the 4×8 warps. Hence, gridded input with –x and –y 

arguments is preferable for computational efficiency. 

Memory Allocation 

Memory limitations are an important consideration in 

porting code to the GPU. While today’s GPUs have 

large global memory spaces (3 to 12 GB for the 

devices tested on), the on-chip L1 cache is much 

smaller and is shared by several parallel threads. In 

OptiX™, each thread is limited to 256 registers, which 

is not enough space to store even a single daylight 

coefficient array; the remainder must spill into global 

memory where it cannot be accessed as quickly. 

We can reduce, though not eliminate, this inefficiency 

by allocating space for daylight coefficient storage in 

GPU global memory prior to starting the simulation. 

The strategy is to create a buffer in the GPU’s global 

memory with dimensions x × y × z, where x and y are 

taken from the –x and –y arguments and z is based on 

the maximum number of reflections given by the –lr 

argument as follows: 

 𝑧 = 2𝐷𝐶 × (1 + 𝑙𝑟) (1) 

where DC is the size of the array of daylight 

coefficients in bytes. This reserves one daylight 

coefficient array to store the cumulative daylight 

coefficients for each ray until tracing of that ray is 

complete and another daylight coefficient array for 

intermediate calculations at each hit, which is needed 

for ambient and Gaussian specular computations 

(Figure 2). Each GPU thread accesses only the 

daylight coefficient arrays belonging to one (x, y) pair. 

Under this scheme, a DAYSIM simulation of a 10×10 

sensor grid with 148 single-precision daylight 

coefficients and a maximum of 8 ray reflections 

requires about a megabyte of GPU global memory, 

which is well within the limits of today’s GPUs. 

Ambient calculations require additional memory 

depending on the number of irradiance cache entries 

(Jones & Reinhart, 2014b). 
 

 

Figure 2 Arrays of daylight coefficients (DCs) are 

stored in global GPU memory so that each is indexed 

by thread ID (in the form (x, y)) and level of ray 

tracing recursion 
 

Each ray payload and hit calculation stores an index to 

a daylight coefficient in global memory, rather than an 

entire set of daylight coefficients. The index, stored as 

an integer x-y-z triplet, requires 12 bytes and fits easily 

in the GPU thread’s local memory. This also means 

that details of the implementation, such as the number 

and size of daylight coefficients, can be changed 

without affecting local memory requirements. For 

instance, while our current implementation copies 

DAYSIM’s use of a single colour channel for daylight 

coefficients, future implementations could store 

separate daylight coefficients in red, green, and blue 

channels without increasing local memory 

requirements. 
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TEST RESULTS 

We demonstrate the effectiveness of the GPU 

implementation of rtrace_dc by comparing it to a 

serial implementation. The serial implementation 

differs from the version of rtrace_dc distributed with 

DAYSIM in that it is compiled natively on Windows 

and incorporates the updates of Radiance 5.0. This 

allows a more accurate comparison of the serial and 

parallel versions as their algorithms are more nearly 

identical. 

The model used for tests is the south-facing reference 

office at the authors’ latitude (Reinhart, et al., 2013). 

The office interior measures 3.6 by 8.2 meters and is 

spanned by a grid of 1400 irradiance sensors (x = 56, 

y = 25) at 0.15-meter spacing (Figure 3). Except as 

noted, simulations used the recommended default 

parameters for the reference office, summarized in 

Table 1. 
 

 

Figure 3 The reference office, shown in perspective 

and plan views, contains six workstations with a 

south-facing window (Reinhart, et al., 2013). 
 

Table 1 

Default simulation parameters 
 

PARAMETER CODE VALUE 

Ambient accuracy –aa 0.05 

Ambient bounces –ab 7 

Ambient divisions –ad 1500 

Ambient resolution –ar 300 

Ambient super-samples –as 20 

Direct jitter –dj 0 

Direct relays –dr 2 

Direct sampling –ds 0.2 

Maximum ray reflections –lr 6 

Minimum ray weight  –lw 0.004 

Specular sampling –ss 1 

Specular threshold –st 0.15 
 

Accelerad introduces a parameter –ac to control the 

number of ambient values calculated at each bounce 

and stored in its irradiance cache (Jones & Reinhart, 

2014b). For tests of the GPU implementation, this 

parameter was set to 4096 except where noted 

otherwise. The CPU implementation has no equivalent 

parameter as its irradiance cache is dynamically sized. 

Simulations were run on two machines. The serial 

implementation of rtrace_dc was tested on a 

workstation with a 3.4 GHz Intel® Core™ i7-4770 

processor and an NVIDIA® Quadro® K4000 graphics 

card with 768 CUDA® cores. Except as noted, the 

GPU version was tested on a workstation with a 2.27 

GHz Intel® Xeon® E5520 processor and two 

NVIDIA® Tesla® K40 graphics accelerators with 2880 

CUDA® cores each. These assignments were made so 

that the serial tests had access to a faster CPU and the 

parallel tests had access to more GPU cores. 

The results that follow demonstrate the speed and 

accuracy of the GPU implementation of rtrace and 

rtrace_dc in comparison to the serial implementation 

and its dependence on ambient accuracy, irradiance 

cache size, sensor grid size, and number of GPU cores. 

Reported simulation times and daylight autonomies 

are based on an average of thirty trials. 

Without Daylight Coefficients 

A comparison of rtrace and accelerad_rtrace 

provides a baseline expectation for the speedup that 

can be achieved on a GPU. The model was run in both 

non-DAYSIM programs with the parameters from 

Table 1. Simulation times are represented in Figure 4. 

For the reference office model with the given 

simulation parameters, Accelerad produced a speedup 

factor of 6.1 over Radiance. 
 

 

Figure 4 Ray tracing simulation time for the 

reference office in rtrace and accelerad_rtrace 

without daylight coefficient calculations 

Ambient Accuracy 

The CPU and GPU implementations differ with 

respect to varying ambient accuracy because of 

different strategies for placing ambient calculation 

points. In the CPU rtrace_dc version, the irradiance 

cache is sized dynamically, so reducing the value of 

aa results in reduced calculation point spacing, and 

thus both increased simulation time and accuracy. The 

parallel irradiance caching strategy used by the GPU 

requires that the irradiance cache’s size be set in 

advance. Decreasing the value of aa no longer changes 

the number of ambient values calculated, but it still 

reduces the radius associated with each ambient value, 

so the time taken for intersection testing in ray tracing 

decreases. For the high-accuracy setting of aa = 0.05, 

the GPU implementation produces a speedup factor of 

0

2

4

6

8

CPU GPU

T
im

e 
(m

in
u

te
s)



5.1 (Figure 5). Increasing the value of aa speeds up the 

CPU and slows down the GPU implementation. For 

the reference office model with the chosen simulation 

parameters, the break-even point occurs close to aa = 

0.1. 
 

 

Figure 5 Simulation time as a function of changing 

ambient accuracy settings for CPU and GPU 

implementations of rtrace_dc 
 

The accuracy of each simulation is presented in terms 

of simulated percent of floor area achieving 

DA300lux[50%] and DA150lux[50%]. In general, 

increasing the ambient accuracy parameter value 

increases the reported daylight autonomy because 

overlap from multiple cached irradiance values 

becomes more probably. This effect is more 

pronounced on the GPU, where the fixed-size cache 

results in poor spatial coverage, meaning some rays do 

not encounter any cached irradiance value at all. 
 

 

Figure 6 Calculated DA150lux[50%] and 

DA300lux[50%] for the reference office as a function 

of changing ambient accuracy settings 
 

In CPU simulations, the floor area achieving 

DA300lux[50%] ranged from 53.5% at aa = 0.05 to 

54.0% at aa = 0.2. The increased accuracy achieved at 

aa = 0.05 is negligible because the metric represents 

both a spatial and time average. On the GPU, the floor 

area achieving DA300lux[50%] ranged from 50.3% at 

aa = 0.05 to 55.6% at aa = 0.2. This larger range 

demonstrates the effect of incomplete ambient 

coverage at lower aa values. Similar results were 

found for DA150lux[50%] (Figure 6). However, even 

the largest discrepancies between CPU and GPU 

calculations, 5.9% for DA300lux[50%] and 4.9% for 

DA150lux[50%], are reasonably small in comparison to 

other studies (Reinhart & Walkenhorst, 2001). 

Irradiance Cache Size 

The previous results highlight the importance of 

correctly sizing the irradiance cache for the GPU to 

provide good spatial coverage of the scene with 

ambient values. Figure 7 shows the effect of doubling 

the value of ac to increase the size of the irradiance 

cache. The larger irradiance cache increases GPU 

simulation time substantially, although the effect is 

not as pronounced as that of increasing aa on the 

CPU’s speed, which effectively also creates a larger 

irradiance cache. The doubled irradiance cache size of 

8192 still produces a speedup factor of 1.9 over 

rtrace_dc at the same ambient accuracy setting. 
 

 

Figure 7 Simulation time as a function of changing 

irradiance cache size for CPU and GPU 

implementations of rtrace_dc 
 

The larger irradiance cache produces more accurate 

results (Figure 8). The floor area achieving 

DA300lux[50%] increases to 52.5% at ac = 8192. This 

represents a discrepancy between the CPU and GPU 

of only 1.8%. The corresponding discrepancy for 

DA150lux[50%] is 2.0%. 
 

 

Figure 8 Calculated DA150lux[50%] and 

DA300lux[50%] for the reference office as a function 

of changing irradiance cache size 
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Grid Size 

GPUs offer the promise of highly parallel computing, 

but their speed is inherently limited by the level of 

parallelism in the problem, which for computation of 

daylight coefficients is determined by the number of 

sensor points. Two additional models were used to 

assess the performance of the GPU implementation 

under larger computational loads. The first doubled 

the number of irradiance sensors to 2800 by including 

two side-by-side copies of the reference office in 

south-facing orientation. The second included twenty 

adjacent copies of the office, half facing south and half 

facing north, along with a denser grid of 32400 sensor 

points. For the GPU implementation, the irradiance 

cache size was also doubled to 8192 for the doubled 

model and increased to 16384 for the large model. 

The speedup factor was 3.1 for the doubled model and 

3.3 for the large model (Figure 9). These speedups are 

better than those achieved by increasing only ac, 

which allows us to separate the effect of irradiance 

cache size from coverage of area by the irradiance 

cache. 
 

 

Figure 9 Simulation time as a function of changing 

sensor grid size for CPU and GPU implementations 

of rtrace_dc 
 

 

Figure 10 Calculated DA150lux[50%] and 

DA300lux[50%] for the reference office as a function 

of changing sensor grid size 
 

Unfortunately, because ambient coverage is not 

improved in the larger models, the discrepancy in 

daylight autonomy between the CPU and GPU 

remains (Figure 10). The doubled model sees a 

slightly smaller discrepancy of 3.8% for 

DA300lux[50%] and 3.4% for DA150lux[50%]. This 

improvement suggests that increasing model size aids 

in the even distribution of ambient calculation points. 

The large model produces bigger discrepancies of 

26.6% for DA300lux[50%] and 24.6% for 

DA150lux[50%]. At the scale of this model, the 

irradiance cache size is insufficient to generate more 

accurate results, but larger caches push the limits of 

the current hardware. Larger values of aa might also 

help to improve the accuracy of these GPU 

calculations. 

GPU Core Count 

The speed of daylight coefficient calculation for the 

reference office was tested on several different GPU 

configurations (Figure 11). The Quadro® K4000, 

which has roughly one-third the number of cores as 

the Tesla® K40, produces a smaller speedup factor of 

1.2. Using only one Tesla® K40 instead of two results 

in a speedup factor of 3.8 instead of 5.1. The doubled 

number of cores available from two graphics 

accelerators does not double computational speed. 

This is the result of two factors; first, the setup 

required for each card is performed as a serial 

operation on the CPU, and second, additional time is 

required to synchronize memory between GPUs. 
 

 

Figure 11 Simulation time as a function of hardware 

used to run rtrace_dc 
 

 

Figure 12 Calculated DA150lux[50%] and 

DA300lux[50%] for the reference office as a function 

of hardware used to run rtrace_dc 
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The daylight autonomies calculated by the different 

GPU configurations are nearly identical, as is 

expected given that the same algorithms are used on 

each GPU (Figure 12). The discrepancies in floor 

areas achieving DA300lux[50%] range from 5.0% to 

5.9% and from 3.9% to 4.9% for DA150lux[50%]. While 

these are small differences, they are well outside the 

standard deviations recorded over thirty trials of each 

platform. This may indicate further work necessary in 

preserving stochasticity on varying numbers of 

threads or in synchronizing irradiance caches and 

daylight coefficients between multiple GPUs. 

CONCLUSIONS 

This study demonstrates the potential of GPU 

computation to speed up the calculation of daylight 

coefficients while producing acceptable accuracy. The 

maximum speedup factor of 5.1 achieved in these tests 

is a good first step, yet it seems unimpressive 

compared to the twenty-fold speedups seen in image-

creation tests of accelerad_rpict (Jones & Reinhart, 

2014b). There are a number of factors that must be 

considered to improve speeds in future work: 

 Models need more potential for parallelism. 

Image generation assigns one primary ray to 

each pixel, such that a 512 × 512 image has 

262,144 primary rays that may be traced in 

parallel. Irradiance sensor simulation assigns 

only one primary ray to each sensor, however, 

resulting in many fewer rays that could be 

traced in parallel. Even without daylight 

coefficient computation, accelerad_rtrace 

only produces a speedup factor of 6.1 on 1400 

primary rays. In the future, we expect 

designers to simulate larger models, which 

will naturally result in an increased potential 

for parallelism. 

 Better scene coverage is needed with smaller 

irradiance cache sizes. The most time-

consuming simulation components of the 

GPU implementation are calculation of 

ambient values both within the irradiance 

cache and outside it when a ray does not 

intersect any cached ambient value. New 

algorithms that more evenly distribute 

ambient calculation points will produce 

results faster and with greater accuracy. 

 Faster memory access and more efficient 

daylight coefficient storage are needed. 

Daylight coefficient calculation adds to 

Accelerad the need to store a large amount of 

frequently accessed data in the GPU’s global 

memory. The memory requirement grows 

with the number of sensor points and also 

with the size of the irradiance cache. At the 

same time, daylight coefficient arrays are 

often sparse, and static allocation of these 

arrays necessarily leaves space for more 

bounces than are likely to be calculated. 

Condensing memory requirements and 

accelerating memory access will result in 

faster simulations. 

 Graphics accelerator capabilities must 

increase. As shown in Figure 11, increasing 

the number of cores on a GPU is significantly 

more effective at improving performance 

than increasing the number of GPUs. 

Daylight coefficient calculation is thus well-

positioned to take advantage of the current 

trend toward increased core counts (Sutter, 

2005). 

Many of these factors will also help to improve the 

accuracy of daylight coefficient calculation on the 

GPU. However, even in its current state, the relative 

error in daylight autonomy calculations, typically 

under 6%, is acceptable for early-stage design 

analysis. Future work should concentrate on speed 

improvements. 

We hope in the future to translate the speedup 

potential of GPUs into tools to aid in better building 

design. Calculation of daylight coefficients in parallel 

using GPU computation promises to make CBDM 

calculations faster. This speedup will allow building 

designers to calculate CBDMs earlier and more 

frequently in the design process, and will in turn make 

designers more aware of and better informed about 

daylighting performance. 
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