
FAST DAYLIGHT COEFFICIENT CALCULATION USING GRAPHICS

HARDWARE

Nathaniel L Jones and Christoph F Reinhart

Massachusetts Institute of Technology, Cambridge, MA, USA

ABSTRACT

As people increasingly work in indoor environments,

the need to provide natural lighting is becoming more

widely recognized. Recent modelling standards such

as LM-83 require the use of climate-based metrics

based on daylight coefficients, rather than

illuminance-based metrics that simulate single points

in time. While calculations based on daylight

coefficients are fast, computation of the daylight

coefficients themselves is a slow process that must be

repeated whenever the scene’s geometry or materials

change. Therefore, it remains impractical to obtain

accurate annual daylight simulation results during

early design stages when designs are fluid and quickly

changing.

This paper describes the development of a new, faster

tool to compute daylight coefficients using graphics

hardware. The tool is an adaptation of rtrace_dc, the

executable used by DAYSIM to calculate daylight

coefficients, written using OptiX™, a free library for

GPU-based ray tracing. The effectiveness of the new

tool is demonstrated using models of a typical office

space with speed and results compared to rtrace_dc.

The speed of the new tool is measured both on a

typical workstation graphics card and on a high-end

graphics server. The results show that the new tool

achieves similar accuracy to the serial version but does

so in one-fifth the time.

INTRODUCTION

As humans spend 90 percent of the time inside of

buildings, the need to provide natural lighting to

indoor spaces is becoming widely recognized (EPA,

1989). However, defining, and therefore predicting,

good daylighting is far from a straightforward task.

While many lighting simulation tools lend themselves

to point-in-time calculations, building performance

metrics must take into account the annual performance

of the building, which requires simulation under

multiple solar positions and sky conditions. Climate-

based daylighting metrics (CBDMs) represent the

annual daylighting performance of a space, an abstract

quantity, while agreeing closely with concrete

occupant observations (Reinhart, et al., 2014). While

CBDMs are useful from a building standards

standpoint, their computation is slow and requires

more memory than older illuminance-based metrics,

which makes them more difficult to integrate into

design tools. It remains impractical to obtain accurate

annual daylight simulation results during early design

stages when the designs change rapidly. In order to

produce CBDM results at interactive rates to feed back

into an iterative design process, we must use new

methods and platforms to calculate them.

DAYSIM is a popular tool for computing CBDMs,

frequently accessed through the graphic user interface

of DIVA-for-Rhino (Jakubiec & Reinhart, 2011).

DAYSIM computes daylight coefficients, measure of

the illuminance contributions from direct and diffuse

natural sources, which can in turn be used to compute

the daylight autonomy of a space (Reinhart &

Walkenhorst, 2001). Like the Radiance suite of

programs on which it is based (Larson & Shakespeare,

1998), DAYSIM uses serial ray tracing to perform

lighting calculations.

Recently, we have developed Accelerad, a suite of

graphics processing unit (GPU)-enabled programs

that implement the core ray tracing functionality of

Radiance at speeds an order of magnitude faster (Jones

& Reinhart, 2014a; Jones & Reinhart, 2014b). In this

paper, we demonstrate how the same techniques that

make Accelerad possible can be used to speed up

DAYSIM calculations. First, we describe tools and

metrics that are relevant to the problem. Then, we

present factors that affect the accuracy and speedup

achieved in GPU-based daylight autonomy

calculations. Finally, we comment on limitations of

GPU-based methods with respect to daylight

coefficient calculation and on future work that may

overcome these limitations.

BACKGROUND

Daylighting Metrics

Early metrics for measuring and predicting indoor

daylight quantities, such as daylight availability and

work plane illuminance under clear sky conditions,

were quick to calculate but could not be extrapolated

to annual values. Recent building standards and rating

systems require the use of CBDMs, which consider

annual daylight availability, rather than illuminance-

based metrics that simulate only a point in time. The

Illuminating Engineering Society of North America

(IESNA) promotes the use of daylight autonomy as a

CBDM through its standard LM-83 (IESNA, 2012).

LM-83 defines a point in space to be daylit if the point

achieves a target illuminance of 300 lux or more for

over 50% of occupied hours; this measure of daylight

autonomy is abbreviated DA300lux[50%]. Studies

comparing simulated daylight autonomy results to

collected observations further suggest that a point can

be considered partially daylit if it achieves

DA150lux[50%] (Reinhart, et al., 2014).

In order to calculate daylight autonomy, DAYSIM

first calculates daylight coefficients and then

combines them with weather data to create a

spatiotemporal illuminance mapping. Each daylight

coefficient is a weighting factor that represents the

contribution of a light source to a point, such that the

total illuminance at that point is the sum of all direct

and diffuse daylight coefficients multiplied by the

respective luminances of their sources at a particular

point in time. For diffuse calculations, DAYSIM uses

148 sources corresponding to the 145 Tregenza sky

divisions (Tregenza, 1987) and three ring-shaped

ground patches. For direct calculations, a location-

dependent number of sources represent a uniform

spatial distribution of sun positions at the appropriate

latitude (Reinhart & Walkenhorst, 2001). At the

authors’ latitude, 63 direct daylight coefficients are

required. Daylight coefficients are calculated using

Whitted-style ray tracing (Whitted, 1980); starting

from a grid of points at which daylight autonomies are

to be calculated, rays are traced through a user-defined

number of bounces until a source is encountered. The

simulation can be made more accurate (and slower) by

increasing the number of bounces through the –ab

parameter or increasing the ambient accuracy by

decreasing the –aa parameter.

Daylight Calculation on the GPU

The high degree of parallelism built into modern

graphics processors has made their use very appealing

for scientific applications. Within the building

performance simulation community, they have been

used mainly for computations involving manipulation

of dense matrices, including applications in

computational fluid dynamics (Zuo & Chen, 2010)

(Wang, et al., 2011), acoustics (Guillaume & Fortin,

2014), and the three-phase method for lighting

simulation (Zuo, et al., 2014). Jones, et al., (2011)

reduced direct solar radiation calculations to a

manipulation of dense matrices in OpenGL®, and

Kramer, et al., (2015) extended this solution to general

direct radiant heat exchange. These applications are

generally well suited to GPU computation because of

its single-instruction, multiple-data (SIMD)

programming model in which the same operation is

applied simultaneously to each matrix element. As a

result, large speedups are possible through

parallelism.

Ray tracing is highly parallel in concept because each

primary ray acts independently of other rays.

However, depending on the material of the surface hit

by a ray, the computation it requires may involve not

only different data, but different instructions as well.

Rather than SIMD, this necessitates a single-

instruction, multiple-thread (SIMT) programming

model, and even then, divergence between threads

computed in the same warp leads to program

inefficiencies. GPU language extensions such as

Compute Unified Device Architecture (CUDA®) from

NVIDIA® and OpenCL™ from the Khronos™ Group

make it possible to implement ray tracing on GPU

shader processors (Aila & Laine, 2009; Wang, et al.,

2009). The OptiX™ ray tracing engine, created by

NVIDIA®, allows ray tracing to be performed on the

GPU from any application without requiring the

programmer to implement their own ray tracing

algorithms (Parker, et al., 2010). Currently, there is no

well-supported OpenCL™ alternative to OptiX™,

although the Embree ray-tracing framework from

Intel® may provide a CPU-based alternative in the

future (Wald, et al., 2014).

The building performance simulation community uses

OptiX™ for a variety of ray tracing tasks. Clark

(2012) and Halverson (2012) demonstrate its use for

modelling radiative heat transfer involved in the urban

heat island effect. Andersen et al. (2013) use it for

interactive visualization of cached Radiance results.

Our own tool, Accelerad, replaces Radiance’s own ray

tracing engine with OptiX™ to achieve speeds twenty

times faster than Radiance (Jones & Reinhart, 2014a;

Jones & Reinhart, 2014b).

IMPLEMENTATION

Before describing the algorithms that compute

daylight coefficients on the GPU, a brief primer in the

DAYSIM code will be useful. DAYSIM is a collection

of programs that call each other, and are in turn called

by interfaces such as DIVA-for-Rhino. DAYSIM

prepares daylight coefficients through three

invocations to gen_dc, the first two to initiate

calculation of diffuse and direct daylight coefficients,

respectively, and the third to merge the results into a

single file. A second program, ds_illum, combines the

computed daylight coefficients with climate data, the

results of which serve as input to calculate daylight

autonomy. The first two runs of gen_dc do not directly

create output; rather, they call another program,

rtrace_dc, which performs ray-tracing calculations

and generates daylight coefficients. In long DAYSIM

calculations with high accuracy settings, rtrace_dc is

responsible for most of the computation time.

DAYSIM’s rtrace_dc is a relatively straightforward

modification of Radiance’s rtrace; it differs by the

addition of a daylight coefficient array at each place

where rtrace stores a colour in intermediate and result

calculations. Each operation that modifies a colour is

also performed on the elements of the daylight

coefficient array. Similarly, accelerad_rtrace is also a

modified version of rtrace, but the modification is

more complex as it involves a language translation

from C to CUDA® and a parallel irradiance caching

strategy (Jones & Reinhart, 2014b). We created a GPU

implementation of rtrace_dc by combining both sets

of modifications (Figure 1). The DAYSIM

modifications were added to the Accelerad source

code, as they were the smaller set of alterations.

Figure 1 The new program combines the alterations

made to Radiance rtrace from DAYSIM with those

from Accelerad

Filling Warps

In CUDA®, groups of 32 threads called warps are

processed together using a SIMT model. Filling a

warp with rays that hit similar materials in the same

order makes the computation more coherent and hence

faster. We achieve better coherence by grouping

primary rays based on the spatial positions of their

origins. This technique works well when the sensor

positions form a grid. Each warp might, for instance,

perform calculations on a 4×8 section of the grid.

To communicate the dimensions of this grid to rtrace,

we use the –x and –y arguments in an analogous

fashion to their use in rpict. In the original rtrace, –x

and –y are optional arguments used to flush output.

When the dimensions are provided, accelerad_rtrace

creates a launch context measuring x by y threads. If

the parameters are not entered, the launch context will

measure 1 by n threads, where n is the number of

sensor points given in input. In the latter approach, the

single column of active threads will incompletely fill

the 4×8 warps. Hence, gridded input with –x and –y

arguments is preferable for computational efficiency.

Memory Allocation

Memory limitations are an important consideration in

porting code to the GPU. While today’s GPUs have

large global memory spaces (3 to 12 GB for the

devices tested on), the on-chip L1 cache is much

smaller and is shared by several parallel threads. In

OptiX™, each thread is limited to 256 registers, which

is not enough space to store even a single daylight

coefficient array; the remainder must spill into global

memory where it cannot be accessed as quickly.

We can reduce, though not eliminate, this inefficiency

by allocating space for daylight coefficient storage in

GPU global memory prior to starting the simulation.

The strategy is to create a buffer in the GPU’s global

memory with dimensions x × y × z, where x and y are

taken from the –x and –y arguments and z is based on

the maximum number of reflections given by the –lr

argument as follows:

 𝑧 = 2𝐷𝐶 × (1 + 𝑙𝑟) (1)

where DC is the size of the array of daylight

coefficients in bytes. This reserves one daylight

coefficient array to store the cumulative daylight

coefficients for each ray until tracing of that ray is

complete and another daylight coefficient array for

intermediate calculations at each hit, which is needed

for ambient and Gaussian specular computations

(Figure 2). Each GPU thread accesses only the

daylight coefficient arrays belonging to one (x, y) pair.

Under this scheme, a DAYSIM simulation of a 10×10

sensor grid with 148 single-precision daylight

coefficients and a maximum of 8 ray reflections

requires about a megabyte of GPU global memory,

which is well within the limits of today’s GPUs.

Ambient calculations require additional memory

depending on the number of irradiance cache entries

(Jones & Reinhart, 2014b).

Figure 2 Arrays of daylight coefficients (DCs) are

stored in global GPU memory so that each is indexed

by thread ID (in the form (x, y)) and level of ray

tracing recursion

Each ray payload and hit calculation stores an index to

a daylight coefficient in global memory, rather than an

entire set of daylight coefficients. The index, stored as

an integer x-y-z triplet, requires 12 bytes and fits easily

in the GPU thread’s local memory. This also means

that details of the implementation, such as the number

and size of daylight coefficients, can be changed

without affecting local memory requirements. For

instance, while our current implementation copies

DAYSIM’s use of a single colour channel for daylight

coefficients, future implementations could store

separate daylight coefficients in red, green, and blue

channels without increasing local memory

requirements.

Radiance

rtrace

add
daylight

coefficients

port to
CUDA

DAYSIM

rtrace_dc

Accelerad

accelerad_rtrace

new program

rtrace_dc

x

y

size of DC
array in bytes

primary
ray

1st

hit

1st

bounce
ray

nth

bounce
ray

2nd

hit
... (n+1)th

hit

TEST RESULTS

We demonstrate the effectiveness of the GPU

implementation of rtrace_dc by comparing it to a

serial implementation. The serial implementation

differs from the version of rtrace_dc distributed with

DAYSIM in that it is compiled natively on Windows

and incorporates the updates of Radiance 5.0. This

allows a more accurate comparison of the serial and

parallel versions as their algorithms are more nearly

identical.

The model used for tests is the south-facing reference

office at the authors’ latitude (Reinhart, et al., 2013).

The office interior measures 3.6 by 8.2 meters and is

spanned by a grid of 1400 irradiance sensors (x = 56,

y = 25) at 0.15-meter spacing (Figure 3). Except as

noted, simulations used the recommended default

parameters for the reference office, summarized in

Table 1.

Figure 3 The reference office, shown in perspective

and plan views, contains six workstations with a

south-facing window (Reinhart, et al., 2013).

Table 1

Default simulation parameters

PARAMETER CODE VALUE

Ambient accuracy –aa 0.05

Ambient bounces –ab 7

Ambient divisions –ad 1500

Ambient resolution –ar 300

Ambient super-samples –as 20

Direct jitter –dj 0

Direct relays –dr 2

Direct sampling –ds 0.2

Maximum ray reflections –lr 6

Minimum ray weight –lw 0.004

Specular sampling –ss 1

Specular threshold –st 0.15

Accelerad introduces a parameter –ac to control the

number of ambient values calculated at each bounce

and stored in its irradiance cache (Jones & Reinhart,

2014b). For tests of the GPU implementation, this

parameter was set to 4096 except where noted

otherwise. The CPU implementation has no equivalent

parameter as its irradiance cache is dynamically sized.

Simulations were run on two machines. The serial

implementation of rtrace_dc was tested on a

workstation with a 3.4 GHz Intel® Core™ i7-4770

processor and an NVIDIA® Quadro® K4000 graphics

card with 768 CUDA® cores. Except as noted, the

GPU version was tested on a workstation with a 2.27

GHz Intel® Xeon® E5520 processor and two

NVIDIA® Tesla® K40 graphics accelerators with 2880

CUDA® cores each. These assignments were made so

that the serial tests had access to a faster CPU and the

parallel tests had access to more GPU cores.

The results that follow demonstrate the speed and

accuracy of the GPU implementation of rtrace and

rtrace_dc in comparison to the serial implementation

and its dependence on ambient accuracy, irradiance

cache size, sensor grid size, and number of GPU cores.

Reported simulation times and daylight autonomies

are based on an average of thirty trials.

Without Daylight Coefficients

A comparison of rtrace and accelerad_rtrace

provides a baseline expectation for the speedup that

can be achieved on a GPU. The model was run in both

non-DAYSIM programs with the parameters from

Table 1. Simulation times are represented in Figure 4.

For the reference office model with the given

simulation parameters, Accelerad produced a speedup

factor of 6.1 over Radiance.

Figure 4 Ray tracing simulation time for the

reference office in rtrace and accelerad_rtrace

without daylight coefficient calculations

Ambient Accuracy

The CPU and GPU implementations differ with

respect to varying ambient accuracy because of

different strategies for placing ambient calculation

points. In the CPU rtrace_dc version, the irradiance

cache is sized dynamically, so reducing the value of

aa results in reduced calculation point spacing, and

thus both increased simulation time and accuracy. The

parallel irradiance caching strategy used by the GPU

requires that the irradiance cache’s size be set in

advance. Decreasing the value of aa no longer changes

the number of ambient values calculated, but it still

reduces the radius associated with each ambient value,

so the time taken for intersection testing in ray tracing

decreases. For the high-accuracy setting of aa = 0.05,

the GPU implementation produces a speedup factor of

0

2

4

6

8

CPU GPU

T
im

e
(m

in
u

te
s)

5.1 (Figure 5). Increasing the value of aa speeds up the

CPU and slows down the GPU implementation. For

the reference office model with the chosen simulation

parameters, the break-even point occurs close to aa =

0.1.

Figure 5 Simulation time as a function of changing

ambient accuracy settings for CPU and GPU

implementations of rtrace_dc

The accuracy of each simulation is presented in terms

of simulated percent of floor area achieving

DA300lux[50%] and DA150lux[50%]. In general,

increasing the ambient accuracy parameter value

increases the reported daylight autonomy because

overlap from multiple cached irradiance values

becomes more probably. This effect is more

pronounced on the GPU, where the fixed-size cache

results in poor spatial coverage, meaning some rays do

not encounter any cached irradiance value at all.

Figure 6 Calculated DA150lux[50%] and

DA300lux[50%] for the reference office as a function

of changing ambient accuracy settings

In CPU simulations, the floor area achieving

DA300lux[50%] ranged from 53.5% at aa = 0.05 to

54.0% at aa = 0.2. The increased accuracy achieved at

aa = 0.05 is negligible because the metric represents

both a spatial and time average. On the GPU, the floor

area achieving DA300lux[50%] ranged from 50.3% at

aa = 0.05 to 55.6% at aa = 0.2. This larger range

demonstrates the effect of incomplete ambient

coverage at lower aa values. Similar results were

found for DA150lux[50%] (Figure 6). However, even

the largest discrepancies between CPU and GPU

calculations, 5.9% for DA300lux[50%] and 4.9% for

DA150lux[50%], are reasonably small in comparison to

other studies (Reinhart & Walkenhorst, 2001).

Irradiance Cache Size

The previous results highlight the importance of

correctly sizing the irradiance cache for the GPU to

provide good spatial coverage of the scene with

ambient values. Figure 7 shows the effect of doubling

the value of ac to increase the size of the irradiance

cache. The larger irradiance cache increases GPU

simulation time substantially, although the effect is

not as pronounced as that of increasing aa on the

CPU’s speed, which effectively also creates a larger

irradiance cache. The doubled irradiance cache size of

8192 still produces a speedup factor of 1.9 over

rtrace_dc at the same ambient accuracy setting.

Figure 7 Simulation time as a function of changing

irradiance cache size for CPU and GPU

implementations of rtrace_dc

The larger irradiance cache produces more accurate

results (Figure 8). The floor area achieving

DA300lux[50%] increases to 52.5% at ac = 8192. This

represents a discrepancy between the CPU and GPU

of only 1.8%. The corresponding discrepancy for

DA150lux[50%] is 2.0%.

Figure 8 Calculated DA150lux[50%] and

DA300lux[50%] for the reference office as a function

of changing irradiance cache size

0

2

4

6

8

10

12

14

0.05 0.1 0.2 0.05 0.1 0.2

T
im

e
(m

in
u

te
s)

Ambient Accuracy

CPU Direct

CPU Diffuse

GPU Direct

GPU Diffuse

0

0.2

0.4

0.6

0.8

1

0.05 0.1 0.2 0.05 0.1 0.2

D
ay

li
g

h
t

A
u

to
n

o
m

y

Ambient Accuracy

CPU DA150 GPU DA150

CPU DA300 GPU DA300

0

2

4

6

8

10

12

14

N/A 4196 8192

T
im

e
(m

in
u

te
s)

Irradiance Cache Size

CPU Direct

CPU Diffuse

GPU Direct

GPU Diffuse

0

0.2

0.4

0.6

0.8

1

N/A 4196 8192

D
ay

li
g
h

t
A

u
to

n
o
m

y

Irradiance Cache Size

CPU DA150 GPU DA150

CPU DA300 GPU DA300

Grid Size

GPUs offer the promise of highly parallel computing,

but their speed is inherently limited by the level of

parallelism in the problem, which for computation of

daylight coefficients is determined by the number of

sensor points. Two additional models were used to

assess the performance of the GPU implementation

under larger computational loads. The first doubled

the number of irradiance sensors to 2800 by including

two side-by-side copies of the reference office in

south-facing orientation. The second included twenty

adjacent copies of the office, half facing south and half

facing north, along with a denser grid of 32400 sensor

points. For the GPU implementation, the irradiance

cache size was also doubled to 8192 for the doubled

model and increased to 16384 for the large model.

The speedup factor was 3.1 for the doubled model and

3.3 for the large model (Figure 9). These speedups are

better than those achieved by increasing only ac,

which allows us to separate the effect of irradiance

cache size from coverage of area by the irradiance

cache.

Figure 9 Simulation time as a function of changing

sensor grid size for CPU and GPU implementations

of rtrace_dc

Figure 10 Calculated DA150lux[50%] and

DA300lux[50%] for the reference office as a function

of changing sensor grid size

Unfortunately, because ambient coverage is not

improved in the larger models, the discrepancy in

daylight autonomy between the CPU and GPU

remains (Figure 10). The doubled model sees a

slightly smaller discrepancy of 3.8% for

DA300lux[50%] and 3.4% for DA150lux[50%]. This

improvement suggests that increasing model size aids

in the even distribution of ambient calculation points.

The large model produces bigger discrepancies of

26.6% for DA300lux[50%] and 24.6% for

DA150lux[50%]. At the scale of this model, the

irradiance cache size is insufficient to generate more

accurate results, but larger caches push the limits of

the current hardware. Larger values of aa might also

help to improve the accuracy of these GPU

calculations.

GPU Core Count

The speed of daylight coefficient calculation for the

reference office was tested on several different GPU

configurations (Figure 11). The Quadro® K4000,

which has roughly one-third the number of cores as

the Tesla® K40, produces a smaller speedup factor of

1.2. Using only one Tesla® K40 instead of two results

in a speedup factor of 3.8 instead of 5.1. The doubled

number of cores available from two graphics

accelerators does not double computational speed.

This is the result of two factors; first, the setup

required for each card is performed as a serial

operation on the CPU, and second, additional time is

required to synchronize memory between GPUs.

Figure 11 Simulation time as a function of hardware

used to run rtrace_dc

Figure 12 Calculated DA150lux[50%] and

DA300lux[50%] for the reference office as a function

of hardware used to run rtrace_dc

0

60

120

180

240

300

1400 2800 32400 1400 2800 32400

T
im

e
(m

in
u

te
s)

Sensors

CPU Direct

CPU Diffuse

GPU Direct

GPU Diffuse

0

0.2

0.4

0.6

0.8

1

1400 2800 32400 1400 2800 32400

D
ay

li
g
h

t
A

u
to

n
o

m
y

Sensors

CPU DA150 GPU DA150

CPU DA300 GPU DA300

0

2

4

6

8

10

12

14

CPU Quadro

K4000

Tesla K40 Dual Tesla

K40

T
im

e
(m

in
u

te
s)

CPU Direct

CPU Diffuse

GPU Direct

GPU Diffuse

0

0.2

0.4

0.6

0.8

1

CPU Quadro

K4000

Tesla K40 Dual Tesla

K40

D
ay

li
g
h

t
A

u
to

n
o
m

y

CPU DA150 GPU DA150

CPU DA300 GPU DA300

The daylight autonomies calculated by the different

GPU configurations are nearly identical, as is

expected given that the same algorithms are used on

each GPU (Figure 12). The discrepancies in floor

areas achieving DA300lux[50%] range from 5.0% to

5.9% and from 3.9% to 4.9% for DA150lux[50%]. While

these are small differences, they are well outside the

standard deviations recorded over thirty trials of each

platform. This may indicate further work necessary in

preserving stochasticity on varying numbers of

threads or in synchronizing irradiance caches and

daylight coefficients between multiple GPUs.

CONCLUSIONS

This study demonstrates the potential of GPU

computation to speed up the calculation of daylight

coefficients while producing acceptable accuracy. The

maximum speedup factor of 5.1 achieved in these tests

is a good first step, yet it seems unimpressive

compared to the twenty-fold speedups seen in image-

creation tests of accelerad_rpict (Jones & Reinhart,

2014b). There are a number of factors that must be

considered to improve speeds in future work:

 Models need more potential for parallelism.

Image generation assigns one primary ray to

each pixel, such that a 512 × 512 image has

262,144 primary rays that may be traced in

parallel. Irradiance sensor simulation assigns

only one primary ray to each sensor, however,

resulting in many fewer rays that could be

traced in parallel. Even without daylight

coefficient computation, accelerad_rtrace

only produces a speedup factor of 6.1 on 1400

primary rays. In the future, we expect

designers to simulate larger models, which

will naturally result in an increased potential

for parallelism.

 Better scene coverage is needed with smaller

irradiance cache sizes. The most time-

consuming simulation components of the

GPU implementation are calculation of

ambient values both within the irradiance

cache and outside it when a ray does not

intersect any cached ambient value. New

algorithms that more evenly distribute

ambient calculation points will produce

results faster and with greater accuracy.

 Faster memory access and more efficient

daylight coefficient storage are needed.

Daylight coefficient calculation adds to

Accelerad the need to store a large amount of

frequently accessed data in the GPU’s global

memory. The memory requirement grows

with the number of sensor points and also

with the size of the irradiance cache. At the

same time, daylight coefficient arrays are

often sparse, and static allocation of these

arrays necessarily leaves space for more

bounces than are likely to be calculated.

Condensing memory requirements and

accelerating memory access will result in

faster simulations.

 Graphics accelerator capabilities must

increase. As shown in Figure 11, increasing

the number of cores on a GPU is significantly

more effective at improving performance

than increasing the number of GPUs.

Daylight coefficient calculation is thus well-

positioned to take advantage of the current

trend toward increased core counts (Sutter,

2005).

Many of these factors will also help to improve the

accuracy of daylight coefficient calculation on the

GPU. However, even in its current state, the relative

error in daylight autonomy calculations, typically

under 6%, is acceptable for early-stage design

analysis. Future work should concentrate on speed

improvements.

We hope in the future to translate the speedup

potential of GPUs into tools to aid in better building

design. Calculation of daylight coefficients in parallel

using GPU computation promises to make CBDM

calculations faster. This speedup will allow building

designers to calculate CBDMs earlier and more

frequently in the design process, and will in turn make

designers more aware of and better informed about

daylighting performance.

ACKNOWLEDGEMENT

This research was funded through the Kuwait-MIT

Center for Natural Resources and the Environment by

the Kuwait Foundation for the Advancement of

Sciences. The Tesla K40 accelerators used for this

research were donated by the NVIDIA Corporation.

REFERENCES

Aila, T. & Laine, S., 2009. Understanding the

efficiency of ray traversal on GPUs. Proceedings

of High-Performance Graphics 2009, pp. 145-

149.

Andersen, M., Guillemin, A., Amundadottir, M. L. &

Rockcastle, S., 2013. Beyond illumination: An

interactive simulation framework for non-visual

and perceptual aspects of daylighting

performance. Proceedings of BS2013: 13th

Conference of International Building

Performance Simulation Association, Chambéry,

France, August 26-28, pp. 2749-2756.

Clark, J. G., 2012. A Fast and Efficient Simulation

Framework for Modeling Heat Transport.

Master’s thesis: University of Minnesota.

EPA, 1989. Report to Congress on indoor air quality:

Volume 2, Washington, D.C.: United States

Environmental Protection Agency.

Guillaume, G. & Fortin, N., 2014. Optimized

transmission line matrix model implementation

for graphics processing units computing in built-

up environment. Journal of Building

Performance Simulation, 7(6), pp. 445-456.

Halverson, S., 2012. Energy Transfer Ray Tracing

with OptiX. Master’s thesis: University of

Minnesota.

IESNA Daylighting Metrics Committee, 2012.

Lighitng Measurement #83, Spatial Daylight

Autonomy (sDA) and Annual Sunlight Exposure

(ASE), New York: IESNA Lighting

Measurement.

Jakubiec, J. A. & Reinhart, C. F., 2011. DIVA 2.0:

Integrating daylight and thermal simulations

using Rhinoceros 3D and EnergyPlus.

Proceedings of Building Simulation 2011: 12th

Conference of International Building

Performance Simulation Association, Sydney, 14-

16 November, pp. 2202-2209.

Jones, N. L., Greenberg, D. P. & Pratt, K. B., 2011.

Fast computer graphics techniques for calculating

direct solar radiation on complex building

surfaces. Journal of Building Performance

Simulation, 5(5), pp. 300-312.

Jones, N. L. & Reinhart, C. F., 2014a. Physically

based global illumination calculation using

graphics hardware. Proceedings of eSim 2014:

The Canadian Conference on Building

Simulation, pp. 474-487.

Jones, N. L. & Reinhart, C. F., 2014b. Irradiance

caching for global illumination calculation on

graphics hardware. 2014 ASHRAE/IBPSA-USA

Building Simulation Conference, Atlanta, GA,

September 10-12, pp. 111-120.

Kramer, S. C. et al., 2015. Fully parallel, OpenGL-

based computation of obstructed area-to-area

view factors. Journal of Building Performance

Simulation, 8(4), pp. 266-281.

Larson, G. W. & Shakespeare, R., 1998. Rendering

with Radiance: The Art and Science of Lighting

Visualization. San Francisco: Morgan Kaufmann

Publishers, Inc.

Parker, S. G. et al., 2010. OptiX: A general purpose

ray tracing engine. ACM Transactions on

Graphics – Proceedings of ACM SIGGRAPH

2010, 29(4).

Reinhart, C. F., Jakubiec, J. A. & Ibarra, D., 2013.

Definition of a reference office for standardized

evaluations of dynamic façade and lighting

technologies. Proceedings of BS2013: 13th

Conference of International Building

Performance Simulation Association, Chambéry,

France, August 26-28, pp. 3645-3652.

Reinhart, C. F. & Walkenhorst, O., 2001. Validation

of dynamic RADIANCE-based daylight

simulations for a test office with external blinds.

Energy and Buildings, Volume 33, pp. 683-697.

Reinhart, C., Rakha, T. & Weissman, D., 2014.

Predicting the daylit area—A comparison of

students assessments and simulations at eleven

schools of architecture. LEUKOS: The Journal of

the Illuminating Engineering Society of North

America, 10(4), pp. 193-206.

Sutter, H., 2005. A fundamental turn toward

concurrency in software. Dr. Dobb's Journal,

30(3), pp. 16-22.

Tregenza, P., 1987. Subdivision of the sky hemisphere

for luminance measurements. Lighting Research

and Technology, Volume 19, pp. 13-14.

Wald, I. et al., 2014. Embree: A kernel framework for

efficient CPU ray tracing. ACM Transactions on

Graphics – Proceedings of ACM SIGGRAPH

2014, 33(4), pp. 143:1-8.

Wang, R., Zhou, K., Pan, M. & Bao, H., 2009. An

efficient GPU-based approach for interactive

global illumination. ACM Transactions on

Graphics – Proceedings of ACM SIGGRAPH

2009, 28(3).

Wang, Y., Malkawi, A. & Yi, Y., 2011. Implementing

CFD (computational fluid dynamics) in OpenCL

for building simulation. Proceedings of Building

Simulation 2011: 12th Conference of

International Building Performance Simulation

Association, Sydney, 14-16 November, pp. 1430-

1437.

Whitted, T., 1980. An improved illumination model

for shaded display. Communications of the ACM,

23(6), pp. 343-349.

Zuo, W. & Chen, Q., 2010. Fast and informative flow

simulations in a building by using fast fluid

dynamics model on graphics processing unit.

Building and Environment, 45(3), pp. 747-757.

Zuo, W., McNeil, A., Wetter, M. & Lee, E. S., 2014.

Acceleration of the matrix multiplication of

Radiance three phase daylighting simulations

with parallel computing on heterogeneous

hardware of personal computer. Journal of

Building Performance Simulation, 7(2), pp. 152-

163.

