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ABSTRACT 
An increasingly urbanizing human population 
presents new challenges for urban planners and 
designers. While the applicability of urban design 
tools for simulation experts is constantly improving, 
urban development scenarios require the input of 
multiple stakeholders, each with different outlooks, 
expertise, requirements, and preconceptions, and good 
urban design requires communication and 
compromise as much as it requires effective use of 
tools. The best tools will facilitate this communication 
while remaining evidence-based, allowing diverse 
planning teams to develop high quality, healthy, 
sustainable urban proposals. 
Presented in this paper is a new such tool, 
implemented as a tangible user interface, that allows 
varied stakeholders to quickly collaborate on creation 
and exploration of new urban design solutions. The 
tool provides performance feedback for a 
neighborhood’s operational energy costs, daylight 
availability, and walkability. Fast interaction is 
attained through a novel precalculation method that is 
also presented and validated. Details of the tool’s 
deployment as part of a  case study that was conducted 
with members of the planning commission of Riyadh, 
SA, in March 2015 are given.  

INTRODUCTION 
Cities across the planet are growing at an 
unprecedented speed: The United Nations predicts 
two million additional city dwellers per week until 
2030 (United Nations, 2014). To accommodate this 
massive growth, cities must both expand and densify, 
but the quality and efficiency of new and existing 
neighborhoods must not therefore suffer. They should 
instead be designed for resource-efficiency, with 
quality indoor and outdoor spaces that support 
communities and favor human-powered modes of 
transportation such as walking and biking. In recent 
years, the building performance simulation 
community has made significant progress towards 
developing planning tools that predict various 
measures of urban sustainability, from operational 
(Nouvel et al., 2013; Reinhart et al., 2013; Robinson 
et al., 2009) and embodied building energy use 
(Davila and Reinhart, 2013) to daylight (Dogan et al., 
2012) and walkability (Rakha and Reinhart, 2012). 

Some of these tools are usable by urban designers and 
architects, but the neighborhood design process 
generally involves many more stakeholders, including 
city governments, citizens, developers, financiers, and 
others, and is far more complicated than simple 
selection of the "best" solution as identified by a 
computer program. Diverse interest groups prioritize 
different urban attributes, so maximal satisfaction 
requires compromise. 

Unfortunately, with stakeholders’ varied interests 
come varied preconceptions and assumptions. In order 
to make multi-stakeholder urban planning discussions 
more evidence-based and productive, design 
proposals must be evaluated based on meaningful 
urban performance metrics so that tradeoffs can be 
better understood. Indeed, using urban planning tools, 
a design team can nowadays prepare design variants 
before a stakeholder meeting to guide a discussion, but 
consideration of new ideas during the meeting itself is 
impractical due to model input and execution time. 
Consequently, the shared creative wisdom of all 
involved stakeholders is underutilized, and a lack of 
participant “ownership” over prepared solutions 
hinders buy-in. In the worst cases, this disengagement 
causes discussants to revert to conversations grounded 
in their individual preconceptions, dismissing 
(implicitly or otherwise) the evidence-based proposals 
presented entirely. 
What is needed is a collaborative design tool that (a) 
allows non-expert stakeholders to actively contribute 
their ideas during a planning session and (b) provides 
real-time analysis feedback on emerging design ideas 
in order to quickly advance the design process and 
help participants identify acceptable solutions. One 
possible approach is the use of a tangible user 
interface (TUI) (Ullmer and Ishii, 2000), which is a 
system marrying representation and control, allowing 
novice users to perform urban design and see the 
results of their design in real time without any 
modeling training. Such physical design interfaces 
have previously found success in architectural and 
urban design and analysis (Huang et al., 2003; Piper et 
al., 2002; Seichter and Schnabel, 2005; Strzalka et al., 
2011; Underkoffler and Ishii, 1999). 
This document presents a new such collaborative 
design tool that uses Lego blocks to allow novices to 
design a neighborhood. A camera and projection 



system colorize the blocks to present the 
neighborhood’s performance to the users in real-time. 
The simulated performance metrics are operational 
building energy cost, annual daylight availability in 
buildings, and neighborhood walkability. Real-time 
interactivity is achieved with a novel simulation 
approximation method that was validated against 
more detailed, traditional simulation approaches. The 
overall system was deployed as a “game” in a case 
study at the planning commission of Riyadh, Saudi 
Arabia, and the results of that case study are given and 
discussed. 

NEIGHBORHOOD PERFORMANCE 
Energy 
Buildings significantly contribute to cities’ energy 
needs, and despite recent attention to embodied energy 
costs, operational energy analysis generally dominates 
discussions. However, neighborhoods comprise 
multiple buildings, and devising a metric useful for 
inter-building comparison is a challenge. One 
commonly used energy metric is energy use intensity 
(EUI), which is defined as the ratio of a building’s 
annual energy use to its net conditioned floor area. 
But, while this metric is useful for comparing a 
building’s energy performance to that of another 
building of the same type, its failure to account for 
building population diminishes its effectiveness for 
urban analysis. For example, a larger single family 
building of high construction standard may have a 
very low EUI compared to an apartment building 
because internal equipment loads are spread across a 
larger area, but the efficiency per occupant is lower 
simply because this building type tends to 
accommodate fewer residents. Normalization by 
population, not area, is therefore a better choice for a 
metric to promote urban density and efficiency. 
Furthermore, the traditional expression in annual kWh 
is difficult for a layperson to grasp; conversion to 
financial cost is far more intuitive for the game’s 
intended users. This has the additional benefit of 
accounting for use-sensitive electricity costs. The final 
energy metric used for the game was therefore 
operational energy cost in dollars per person and year. 
The mertric can be displayed on a building-by-
building level as well as an average for a whole 
neighborhood. 

Daylighting 
Daylight access is widely recognized as an indicator 
of the quality of a building and the health and 
wellbeing of its occupants. The US Green Building 
Council’s LEED green building rating system as well 
as the Illuminating Engineering Society of North 
America (IESNA) focus mostly on a spatial metric 
called daylight autonomy that describes the percentage 
of the occupied time in a year when interior lighting 
levels due to daylight are above 300 lux. A space is 
“daylit” if its daylight autonomy is above 50%, i.e. 
there is sufficient daylight at least half of the year. In 

accordance with these standards, the daylighting 
metric used for the game was spatial daylight 
autonomy (IESNA, 2012), which is the percentage of 
a building’s floor area that is daylit. Again, the metric 
was provided per building and for the overall 
neighborhood. 

Walkability 
One benefit of urban density is that residents may walk 
or bike instead of relying on non-human powered 
modes of transportation. This benefit is twofold: 
residents tend to be healthier (Pucher et al., 2010), and 
energy use related to transportation tends to be lower. 
A quantified walkability score from 0.0 to 1.0 was 
therefore selected as the third performance metric in 
the game. 

SYSTEM SETUP 
The system’s physical interface consists of a 
plexiglass tabletop with a grid upon which users can 
place pre-assembled Lego blocks, each representing 
an 80-meter by 80-meter city area, to build a 
neighborhood. There are sixteen block types to choose 
from: One represents a park space, and each other 
represents one or more commercial, residential, or 
mixed-use buildings. Each of these buildings has all of 
its design characteristics predefined, including 
construction assemblies, occupancy, internal gains, 
and window-to-wall ratios. Each block type is 
represented by an alphanumeric code such as “C2” or 
“ST3” and has, on its base, a color code indicating its 
type, which is read by a camera mounted underneath 
the table. Figure 1 shows each of the sixteen block 
types. Whenever a change to the block configuration 
is made, the camera sends the new configuration to a 
computer, which calculates performance scores for all 
three neighborhood metrics and uses these scores to 
colorize the blocks on the table via a projector 
mounted above it. Figure 2 shows a diagram of the 
system’s component interactions, which are an 
impelementation of the MIT Media Lab’s CityScope 
technology (Winder, 2015). 

Figure 1 The sixteen available block types. 

Performance scores are calculated for each block as a 
value between 0 and 1, which is then mapped to a color 
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on a spectrum from red (for “bad” blocks) through 
yellow to green (for “good” blocks). At any point, only 
one of the three metrics is used to colorize the table 
blocks, and users can change this “active” metric at 
will, allowing them to focus on a particular 
neighborhood performance aspect. In addition to 
block-level scores, a neighborhood-level score is 
calculated for each metric and displayed on a large 
monitor behind the table along with a colorized, 3D 
rendering of the designed neighborhood. Figure 3 
shows a photograph of the operational interface. 

Figure 2 The system’s component interactions. 

SCORE CALCULATION 
Energy 
The need for building energy consumption 
calculations to be sufficiently fast for interactive use 
of the table proscribes not only the direct use of 
detailed simulation engines such as EnergyPlus (US 
DOE, 2013) but any programs or algorithms that 
invoke such an engine, even in a simplified way, such 
as Dogan and Reinhart’s Shoeboxer algorithm (Dogan 
and Reinhart, 2013). The design system instead 
approximates energy consumption using presimulated 
energy performance data for buildings modeled on the 
site in question. This means that each instance of the 
design game is custom-tailored for a specific site; in 
our case study, this was a neighborhood in Riyadh, 
Saudi Arabia. Presimulation relies on the fact that each 
available building is fully specified in every way 
except geometric position, so users cannot modify any 
thermal performance factors of buildings they place. 
The assumption driving the presimulation approach is 
that with all of a building’s properties except 
positioning held constant, its energy consumption 
according to EnergyPlus varies only with incident 
solar radiation, which varies with the proximity and 
type of neighboring structures. This assumption is 
reasonable since simulation programs such as 
EnergyPlus only consider the presence of neighboring 

buildings via solar obstruction surfaces whereas other 
inter-building effects such as the blockage of wind and 
urban heat island effects are being ignored. 
Building simulation parameters such as construction 
assemblies, glazing properties, internal loads, and 
occupancy schedules were selected based on surveys 
of Kuwaiti building stock (Al-Mumin et al., 2003; 
Assam and Al-Ragom, 2009; Cerezo et al., 2015), the 
Kuwati energy code (MEW, 2010), and the ASHRAE 
90.1 standard for international climate zone 1. Each 
building on each block was presimulated using the 
Riyadh Typical Meteorological Year (TMY) under a 
variety of shading conditions. For each shading 
condition, the sky view factor (Hopkinson et al., 1966) 
of the building centroid’s projection to the ground was 
calculated using the Radiance (Ward, 2014) backward 
raytracer, and its energy consumption was simulated 
using the Shoeboxer. (The Shoeboxer was used 
instead of a detailed EnergyPlus simulation in order to 
expedite post-gameplay comparison of approximated 
results to simulated ones.) The shading conditions 
were generated by surrounding each building’s block 
by an open box of gradually increasing height, as 
demonstrated in Figure 4. Figure 5 shows an example 
presimulation curve for one of the game buildings.  

Figure 3 The operational system. 

These pairs of sky view factors and simulation results 
were assembled into a lookup table. During gameplay, 
a building’s sky view factor was again calculated, and 
the two energy consumption values in the lookup table 
with the nearest corresponding sky view factors were 
averaged to yield the approximated energy 
consumption. 



Figure 4 Example artificial shading conditions for 
presimulation of block type “C2 

Figure 5 Presimulated energy performance of the 
commercial building on “ST2” blocks. 

The mapping from energy performance costs to scores 
between 0 and 1 was linear, and its bounds were 
determined by the absolute minimum and maximum 
costs generated during presimulation. Figure 6 shows 
where on the entire red-green color spectrum each 
simulated block could fall. Three particularly 
inefficient blocks (C3, ST1 and R1) were always 
assigned a score of 0 in order to avoid distorting the 
overall mapping and allow for greater color variation 
among the other block types. However, each 
individual block type does not vary much; for the 

buildings investigated, insolation has a relatively 
limited effect on a building’s energy consumption in 
Riyadh. 

Daylighting 
As with operational energy, neither a detailed 
simulation itself (e.g. using DAYSIM  nor an 
algorithm invoking a detailed simulation in a 
simplified way (e.g. Urban Daylight (Dogan et al., 
2012)) is fast enough for interactive use of the design 
environment. So again, presimulation is used. During 
the presimulation step, each building’s spatial daylight 
autonomy is additionally simulated using Urban 
Daylight and entered in a second lookup table, this 
time mapping sky view factor to sDA. The 
presimulation was executed for one week in spring, for 
performance purposes, under the assumption that 
seasonal daylighting variation in Riyadh is not 
extreme. Figure 7 shows an example daylighting 
presimulation curve. During gameplay, these curves 
are used analogously to those of operational energy 
consumption. However, sDA, being a percentage, is 
already a value between 0 and 1 and does not need to 
be mapped the way energy consumption does. Figure 
8 shows the possible daylighting color scores for each 
block type; note that each type has a much wider 
possible range, indicating daylighting’s greater 
sensitivity to sky view factor. 

Walkability 
Neighborhood walkability calculations are based on a 
modified version of the Walk Score algorithm, 
originally published in 2011 (“Walk Score,” 2011), 
adapted to the Saudi context. This algorithm assigns 
walkability scores to residential locations based on the 
proximity and quantity of local amenities, which are 
predefined properties of blocks with commercial 
buildings on them. To score, trips from a building to 
the closest amenities are first generated and scored 
according to their distance, with a maximum score at 
zero meters decaying to a zero score at 250 meters 
according to a particular fifth-order polynomial 
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Figure 6 Possible energy colors, by block category. Three poorly performing block types are simply always 
assigned a score of zero in order to allow for more variety among the other types 



function. The maximum trip length of 250 meters was 
chosen based on surveys distributed to Saudi residents 
asking them about their walking preferences. 70% of 
a building’s walkability score is the average of the 
scores of the shortest 24 trips to commercial amenities, 
and the remaining 30% is the score of the trip to the 
closest park. 
The original 2011 Walk Score algorithm relied on an 
explicitly defined pedestrian travel network, and its 
navigation is the most time-consuming step of the 
calculation. As the presented interface has no means 
of defining such a street network, the assumption is 
made that all Manhattan (orthogonal) pedestrian travel 
is possible, but no diagonal travel is. 

Figure 7 Presimulated daylighting performance of 
the commercial building on “ST2” blocks. 

CASE STUDY 
The case study entailed nineteen employees of the 
Arriyadh Development Authority (ADA), the 
planning authority for the city of Riyadh, Saudi 
Arabia, playing the game in March 2015. The 
employees had various backgrounds, including 
architecture, urban planning, geographic information 
systems (GIS), and information technology support. 
None of them had any building or neighborhood 
simulation experience. 

The employees were broken into four teams of four to 
six players each. Each team was given a few minutes 
of simple explanation of the system’s operation and 
then presented a scenario involving the complete 
redevelopment of the Dhahira neighborhood, a 
neighborhood in Riyadh that the ADA expects to 
experience significant redevleopment within the 
coming decades. Each team’s gameplay period was 30 
minutes long. The players were instructed to first build 
up a neighborhood and then optimize it according to 
any or all of the three performance metrics. At the 
conclusion of gameplay, all four groups came together 
to present and evaluate their respective designs. 

RESULTS 
Neighborhood design 
Figures 9, 10, and 11 show the performance of the 
designs of groups 2, 3, and 4 over time. (Group 1’s 
results have been omitted due to a camera calibration 
problem that caused incorrect color projection, 
rendering the recorded data unusable.) In each graph, 
the horizontal axis is the design iteration, and the lines 
show the neighborhood-wide values of the three 
performance metrics. The background color of the 
graph indicates which metric was “active” at each 
design iteration. The results show that groups with the 
energy and walkability metrics active were able to 
increase their designs’ performance with respect to 
those metrics (rising orange and blue lines), but the 
daylighting view was unhelpful (flat grey lines). A 
priority pattern among the three performance metrics 
emerges as groups spent the most time optimizing for 
neighborhood walkability, followed by energy, with 
daylighting receiving little attention. 

Approximation accuracy 
In order to quantify the ability of the presimulation 
method employed to approximate energy and 
daylighting performance, approximated values from 
the lookup tables were later compared to the results of 
the actual simulations that they were supposed to 
represent. Comparing every approximated value with 
a corresponding simulated value at every design 
iteration would have been intractable, so comparison 
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points were selected by identifying design iterations 
that players paused on for at least five seconds (under 
the assumption that during these periods players were 
examining board coloration for guidance) and then 
selecting blocks that had changed from the previous 
iteration, along with their neighbors. Some block types 
were therefore excluded from analysis, but this was 
symptomatic of these block types’ underuse during 
gameplay, and so the accuracy of their approximations 
is irrelevant to the case study. 

Figure 9 Group 2’s neighborhood’s performance 
over time with respect to all three metrics. 

Figure 10 Group 3’s neighborhood’s performance 
over time with respect to all three metrics. 

Figure 11 Group 4’s neighborhood’s performance 
over time with respect to all three metrics. 

Figure 12 compares approximated block energy scores 
to energy scores generated by post-facto simulation. 
Most approximations are quite good, and the more 
substantial errors are closely clustered by block type. 
One source of errors is R3 blocks, which is a block 

type containing two long, narrow buildings. Two 
instances of R3 blocks demonstrated little error, and 
these instances were uses of the blocks in the same 
orientation as they were during presimulation, while 
the others were rotated 90 degrees. The other two error 
clusters were of M2 and M4 blocks, both mixed-used 
blocks containing relatively complex building 
geometry. 
Figure 13 shows an analogous comparison of 
daylighting scores. The approximation method fared 
worse than it did for energy performance, although 
still acceptably, and blocks within a type still tended 
to demonstrate consistent errors. 
No examination of walkability approximation 
accuracy was performed, because there was no formal 
way to undo the simplification (the inference of an 
accommodating pedestrian travel network) applied. 

Figure 12 Approximated versus simulated energy 
scores. Errors are largely consistent for a given 

block type. 

Figure 13 Approximated versus simulated 
daylighting scores. Each color represents a different 

block type. 

DISCUSSION 
The gameplay results demonstrate that the described 
table interface can be an effective assistant for 
collaborative, simulation-guided neighborhood design 
by simulation novices. However, several avenues for 
improvement suggest themselves. 
The first relates to the table’s ineffectiveness at 
daylighting optimization assistance. This can likely be 
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explained by the game’s relative lack of 
responsiveness in this domain. A block’s energy score, 
while relatively unaffected by blocks around it, was 
substantially affected by the choice of a the block 
itself, and so players could identify “good” blocks to 
design with. A block’s walkability score, in contrast, 
was obviously and substantially affected by blocks 
arround it, so players could improve walkability 
scores by adding parks and dense commercial areas. 
Daylighting, however, had neither of these benefits; 
most blocks spent most of their time as some shade of 
dark orange. As a result, players could not learn how 
to improve their designs on either a local or global 
level, which they remarked was frustrating. Future 
iterations of the game should avoid this by ensuring 
that each performance metric is sufficiently 
responsive to player input. This might be achieved by 
a more sophisticated presimulation obstruction model, 
careful block design and testing, provision of 
parametric control to users during gameplay, or some 
other method. 
Players spent little time even trying to optimize for 
daylighting. This may be due to a cultural disregard 
for that building performance feature that stems from 
the way buildings are operated in Saudi Arabia (this 
was mentioned explicitly more than once by players). 
Future games should therefore carefully select 
culturally relevant metrics; in this case, water 
consumption or parking would have been better 
choices. 

It has been shown that the novel lookup table-based 
simulation approximation method works very well for 
the investigated climate and buildings, especially for 
the collaborative, early planning tasks intended, and it 
was fast enough for interactive use. However, its 
errors still deserve investigation. The fact that each 
block type demonstrated consistent errors for both 
energy and daylighting suggests that the errors stem 
from particular inadequacies in the relationships 
between the underlying simulation engines and the 
defined block geometries rather than a fundamental 
methodological problem. These relationships must 
therefore be comprehensively explored beforehand to 
ensure that the approximation works. That daylighting 
approximations were more error prone than energy 
approximation is unsurprising, as energy simulations 
in a cooling-dominated climate mainly depend on total 
annual solar radiation levels incident on a building 
whereas for daylight the temporal availability of light 
is more important. One improvement might have been 
to calculate the sky view factor at multiple points for 
each building, rather than just one. 

The approximation method itself relies on the very 
strong assumption that energy consumption varies 
mainly with insolation. This needs to be tested in 
climates other than Riyadh where electric lighting 
dimming, and more importantly, heating, are relevant. 
A mixed climate (e.g. Boston) or a cold climate (e.g. 
Anchorage) would be good candidates. 

Purely logistical improvements to gameplay are 
available. The simplest is the extension of design 
periods: Every group worked right up to the 30 minute 
limit, and seemed fully ready to take advantage of 
additional time. Longer session lengths, such as 45 or 
60 minutes, might be more useful. Additionally, the 
physical apparatus itself was quite susceptible to 
bumping, which caused incorrect reports to users until 
the the scanning camera was re-calibrated. Although 
this process is fast, the interruption to player focus is 
unsatisfactory, as is the possibility of users spending 
substantial time designing before the error is even 
corrected (as with the first group in the case study). 
Finally, the block libarary should be well-curated. Of 
the sixteen available block types, four found little to 
no use during gameplay. This can be partially 
explained by these blocks performing strictly worse 
than other, similar blocks, but not entirely, as other 
blocks with this characteristic – specifically, low 
density residential blocks – found heavy use. What is 
more likely is that players found no obvious urban role 
for the neglected blocks. The block library should be 
designed from the perspective of specific roles from 
the outset in order to minimize neglected block types. 
An incidental benefit of is this approach is that these 
roles can be directly presented to users to more clearly 
explain how the game works. 
This problem calls attention to another that fortunately 
did not materialize. The use of low-density residential 
blocks, in spite of their poor performance, indicated 
that players were using the tool to truly design a 
neighborhood, rather than simply solve an 
optimization problem. They adapted the game to their 
needs, using its quantitative feedback to guide their 
qualitiative analysis but not to replace it. 

CONCLUSION 
Presented here was a new tangible user interface 
“game” for fast, interactive, collaborative, simulation-
guided urban design suitable for use by a variety of 
potential stakeholders of an urban development 
project. The system currently provides design 
feedback in terms of operational energy costs, daylight 
availability, and neighborhood walkability, but could 
be easily extended to support other performance 
metrics. Interactive speeds for operational energy and 
daylighting calculations are obtained via a novel 
approximation approach based on presimulating 
buildings before gameplay, and while this approach 
appears suitable for the climate of Riyadh, Saudi 
Arabia, the location of the case study in which the 
game was initially deployed, it demands further 
validation and exploration in other climates. 

ACKNOWLEDGEMENT 
This work was made possible by the Center for 
Complex Engineering Systems at the King Abdulaziz 
City for Science and Technology in Saudi Arabia, the 
Massachusetts Institute of Technology, the Masdar 
Institute of Science and Technology, and the 



Alexander S. Onassis Public Benefit Foundation. The 
authors would like to thank Faisal Aleissa, Tariq 
Alhindi, Almaha Almalki, Riyadh Alnasser, Tarfah 
Alrashad, Areej Al-Wabil, Carlos Cerezo Davila, Ali 
Irani, and Ira Winder for their invaluable contributions 
to the design and development of the game. 

REFERENCES 
Al-Mumin, A., Khattab, O., Sridhar, G., 2003. 

Occupants’ behavior and activity patterns 
influencing the energy consumption in the 
Kuwaiti residences. Energy Build. 35, 549–
559. 

Assam, E.O., Al-Ragom, F., 2009. The effect of 
reinforced concrete frames on the thermal 
performance of residential villas in hot 
climates. Int. J. Energy Technol. Policy 7, 
46–62. 

Cerezo, C., Sokol, J., Reinhart, C., AlMumin, A., 
2015. Comparison of three methods for the 
characterization of building archetypes in 
urban energy simulation, in: Proceedings of 
Building Simulation. Hyderabad, India. 
(accepted) 

Davila, C.C., Reinhart, C., 2013. Urban energy 
lifecycle: An analytical framework to 
evaluate the embodied energy use of urban 
developments, in: 13th International IBPSA 
Conference. Chambery, France. 

Dogan, T., Reinhart, C., 2013. Automated conversion 
of architectural massing models into thermal 
“shoebox” models, in: 13th International 
IPBSA Conference. Chambery, France. 

Dogan, T., Reinhart, C., Michalatos, P., 2012. Urban 
daylight simulation: calculating the daylit 
area of urban designs, in: IBPSA-USA 
SimBuild 2012. Madison, USA. 

Hopkinson, R.G., Petherbridge, P., Longmore, J., 
1966. Daylighting. Heinemann. 

Huang, C.-J., Yi-Luen Do, E., Gross, D., 2003. 
MouseHaus Table: a Physical Interface for 
Urban Design, in: 16th Annual ACM 
Symposium on User Interface Software and 
Technology. ACM, Vancouver, BC, 
Canada. 

IESNA, 2012. LM-83-12 IES Spatial Daylight 
Autonomy (sDA) and Annual Sunlight 
Exposure (ASE). IESNA Lighting 
Measurement, New York, NY, USA. 

MEW, 2010. Energy conservation program. Code of 
Practice MEW/R-6/2010. Ministry of 
Energy and Water. Kuwait City, Kuwait. 

Nouvel, R., Schulte, C., Eicker, U., Pietruschka, D., 
Coors, V., 2013. CityGML-based 3D city 
model for energy diagnostics and urban 
energy policy support, in: 13th International 
IPBSA Conference. Chambery, France. 

Piper, B., Ratti, C., Ishii, H., 2002. Illuminating clay: 
a 3-D tangible interface for landscape 
analysis, in: Proceedings of the SIGCHI 

Conference on Human Factors in 
Computing Systems. ACM, Minneapolis, 
Minnesota, USA, pp. 355–362. 

Pucher, J., Buehler, R., Bassett, D.R., Dannenberg, 
A.L., 2010. Walking and cycling to health: a 
comparative analysis of city, state, and 
international data. Am. J. Public Health 100, 
1986–1992. 

Rakha, T., Reinhart, C., 2012. Generative urban 
modeling: A design work flow for 
walkability-optimized cities, in: IBPSA-
USA SimBuild 2012. Madison, USA. 

Reinhart, C., Dogan, T., Jakubiec, J.A., Rakha, T., 
Sang, A., 2013. Umi-an urban simulation 
environment for building energy use, 
daylighting and walkability, in: 13th 
International IPBSA Conference. 
Chambery, France. 

Robinson, D., Haldi, F., Kämpf, J., Leroux, P., Perez, 
D., Rasheed, A., Wilke, U., 2009. CitySim: 
Comprehensive micro-simulation of 
resource flows for sustainable urban 
planning, in: 11th International IBPSA 
Conference. Glasgow, Scotland, pp. 1083–
1090. 

Seichter, H., Schnabel, M.A., 2005. Digital and 
Tangible Sensation: An Augmented Reality 
Urban Design Studio, in: 10th International 
Conference on Computer Aided 
Architectural Design Research in Asia, 
CAADRIA, New Delhi, India. pp. 193–202. 

Strzalka, A., Bogdahn, J., Coors, V., Eicker, U., 
2011. 3D city modeling for urban scale 
heating energy demand forecasting. 
HVACR Res. 17, 526–539. 

Ullmer, B., Ishii, H., 2000. Emerging frameworks for 
tangible user interfaces. IBM Syst. J. 39, 
915–931. 

Underkoffler, J., Ishii, H., 1999. Urp: a luminous-
tangible workbench for urban planning and 
design, in: Proceedings of the SIGCHI 
Conference on Human Factors in 
Computing Systems. ACM, New York, NY, 
USA, pp. 386–393. 
doi:10.1145/302979.303114 

United Nations, 2014. World Urbanization Prospects: 
The 2014 Revision, Highlights. U.N. 
Department of Economic and Social Affairs, 
Population Division, New York, USA. 

US DOE, 2013. EnergyPlus. U.S. Department of 
Energy. 

Walk Score, 2011. 
Ward, G., 2014. Radiance. 
Winder, J.I., 2015. System for Real-time Digital 

Reconstruction and 3D Projection-Mapping 
of Arbitrarily Many Tagged Physical 
Objects (Technology Description). 
Massachusetts Institute of Technology. 


	A Tangible Interface for Collaborative Urban Design For Energy Efficiency, Daylighting, and Walkability
	ABSTRACT
	introduction
	Neighborhood performance
	Energy
	Daylighting
	Walkability

	SYstem setup
	Score calculation
	Energy
	Daylighting
	Walkability

	Case study
	Results
	Neighborhood design
	Approximation accuracy

	Discussion
	Conclusion
	acknowledgement
	References



