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ABSTRACT 

Significant research effort has gone into developing 
urban building energy modeling (UBEM) tools, 
which allow evaluating district-wide energy demand 
and supply strategies. In order to characterize 
simulation inputs for UBEM, buildings are typically 
grouped into representative “archetypes”. This 
simplification reduces the real diversity of usage 
patterns, potentially leading to results that 
misrepresent energy demands. Unfortunately, very 
little research has focused on identifying the impact 
of such process in the effectiveness of an UBEM to 
reliably predict savings from retrofit measures. 

This paper analyzes two deterministic common 
approaches for the definition of building archetypes 
in UBEM, and proposes a probabilistic third method 
based on the characterization of uncertain 
parameters related to building occupancy using 
measured energy data. Frequency distributions for 
number of occupants, lighting power and cooling set 
points are generated through parametric simulation 
of an urban sample, later used for Monte Carlo (MC) 
simulation of retrofit scenarios. Measured data for 
the yearly energy use of one hundred and forty 
residential buildings in Kuwait city is used as a case 
study for the evaluation of the three methods. Results 
for the proposed probabilistic method suggest a 
significant improvement in the fit of the model to the 
measured energy use distribution. 

INTRODUCTION 
In response to current global challenges in climate 
change, city governments worldwide have developed 
ambitious emission reduction targets for the next 20 
to 60 years. With buildings being a key contributor to 
urban GHG emissions, considerable effort has been 
invested in our ability to model the energy demand of 
existing neighborhoods. The purpose of those 
simulation methods is to reliably predict the impact 
of new developments, building retrofit interventions 
and energy supply strategies on GHG emissions. 

The analysis of current overall urban building energy 
demands can be realized via “top-down” or “bottom-
up” models. Top down models (Howard et al, 2012) 
while useful for the understanding of larger existing 
stocks, necessarily extrapolate from the status quo 
and are hence less suitable when future energy 

supply-demand scenarios are investigated, especially 
at the smaller scale of the neighborhood or with 
smaller temporal resolution. Bottom-up urban 
building energy models (UBEM), proposed as part of 
a larger field of “urban micro simulation” (Robinson 
et al, 2009), apply simulation methods to model 
individual buildings either as single (Nouvel et al, 
2013) or multi zone (Reinhart et al, 2013; Sehrawat 
and Kensek, 2014) dynamic thermal models. 

The process of generation of UBEM (Reinhart and 
Cerezo, 2015) requires the definition of model data 
inputs of buildings’ geometry, materials and usage 
patterns, as well as climate conditions. Weather data 
is largely standardized since the introduction of TMY 
format and EPW files (Crawley et al, 1999), and the 
automated generation of 3D building envelopes is 
readily available through the use of Geographic 
Information Systems (GIS), or more advanced urban 
information models such as CityGML (OGC, 2012). 
However, given the diversity of building 
constructions, systems and occupancy patterns in the 
urban environment, their characterization in UBEM 
typically requires the use of “building archetypes” 
i.e. sets of inputs representing a group of similar 
buildings. Archetypes have been extensively used in 
top-down modeling of national stocks (Tabula, 2012) 
classifying building by use, age and shape, and 
characterizing them according to average properties 
of a real buildings sample (Ballarini et al, 2014). 

The division of a group of buildings into archetypes 
is typically done in a deterministic fashion and based 
on generic assumptions. This exact nature of this 
division has a crucial effect on UBEM accuracy as 
well as the ability of a model to predict energy 
savings from proposed interventions of an existing 
neighborhood. At the aggregate level of large groups 
of buildings where uncertainties in occupant behavior 
and operation tend to average out, previous 
validation works have reported acceptable errors in 
total energy use of 5 to 20%, especially in heating 
dominated climates (DallO et al, 2012; Caputo et al, 
2013). Reported errors however increased up to 99% 
when results of UBEM were analyzed at the 
individual building level (Nouvel et al, 2013; 
Fonseca et al, 2015). These shortcomings, largely 
related to unknown occupant behavior (Robinson et 
al, 2011) become especially relevant in the analysis 
of hourly load profiles (Heiple and Sailor, 2008). 



 

The limitations of available building specific data for 
usage and operation patterns suggest a need for the 
introduction of uncertainty modeling in UBEM. 
Nevertheless, very limited research has focused on 
identifying the impact of simplification through 
archetypes and related uncertainties in the 
effectiveness and accuracy of UBEM in informing 
urban intervention decisions. 

Although given the existing uncertainties around 
occupant behavior it is unrealistic to expect 
individual building models to match real demand, the 
access to datasets of measured energy use can 
improve both the selection and characterization of 
archetypes (Aksoezen, 2015). Furthermore, if 
available at multiple temporal resolutions (Monthly, 
hourly, etc.) it can significantly improve the accuracy 
of dynamic simulation models through calibration 
(Samuelson et al, 2014). While common in single 
building modeling, the calibration of UBEM is an 
unrealistic goal, given number of uncertain 
parameters and the lack of data about use patterns in 
each building. How much do these issues limit the 
accuracy of the model? Does UBEM become too 
under defined to inform decisions about urban 
interventions and policies? 

This paper analyzes two deterministic common 
approaches for the definition of archetypes for urban 
energy simulation, and proposes a probabilistic third 
method based on the characterization of uncertain 
parameters related to building occupancy using 
measured energy data. The three approaches are 
compared in terms of their effectiveness to reproduce 
the diversity in the measured EUI distribution of the 
case study, and their impact in the evaluation of 
savings for a building retrofit scenario. In the 
following section the three methods are described in 
detail, and a case study of a residential neighborhood 
in Kuwait City is presented as a real test case. 

METHODOLOGY 

Case study in Kuwait City 
For the evaluation of archetype characterization 
methods a residential area was selected in Kuwait 
City. AlQadisiyah is a neighborhood formed by 2 to 
3 stories villas organized in 8 blocks of 200 houses 
each, plus a central block for public services. Figure 
1 shows block 8, the section selected for this study. It 
is representative of most residential areas in the city, 
with a majority of structures built as government 
provided housing between the 1960s and 80s, and is 
considered as a relevant sample. The residential 
villas in the neighborhood and in the city can be 
categorized in four main groups according to their 
age: (1) Original and (2) retrofitted government 
housing built before 1980s, (3) modern villas built 
between the 1980s and the 2000s, and (4) villas built 
according to code in the 2010s. 
 

 
Figure 1 Al-Qadisiyah neighborhood case study  

This classification based on local expertise will later 
be used in method B, and attends not only to the year 
of construction but also to the type constructive 
solutions and systems found in that category of 
buildings (See figures 2A, 2B and 2C).  
 

 

 

 
Figure 2 Villa age groups examples: 

Original/retrofit (A), modern (B) and to code (C) 
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Measured yearly electricity consumption was 
gathered in collaboration with the Kuwait Institute 
for Science and Research (KISR) for 158 buildings 
within the area. Out of that sample, 140 data points 
were selected (Depicted in black in figure 1) after 
eliminating those in which the quality of the data was 
uncertain. The EUI for each building was calculated 
based on built floor area, resulting in a distribution 
with an average of 210 kWh/m2, and values ranging 
between 73 and 597 kWh/m2 (Figure 3). Although 
both high and low extremes of the resulting 
distribution are uncommon for this building type, 
they have been validated as real consumption values. 
The figure below shows how code compliant 
buildings concentrate in the lower part of the 
spectrum. 
 

 
Figure 3 Measured EUI distributions 

Archetype characterization methods 
The definition of building archetypes for an UBEM 
requires the classification of the modelled built stock 
in groups, and the characterization for each group of 
all non-geometrical data inputs necessary for an 
energy model. These include mainly construction and 
glazing assemblies, HVAC systems, occupancy 
patterns and internal loads. The number of archetypes 
and the accuracy on their characterization depends on 
how much information is available about the 

buildings’ use, age, systems, etc. The following three 
scenarios of increasing level of documentation were 
modeled and evaluated through the case study. 

Method A – Available literature 

In case A, all buildings sharing the same use (e.g. 
residential, office, etc.) are modeled with a single 
archetype. The characterization of building and 
occupancy parameters is done deterministically based 
only on available literature. This includes local 
energy and construction codes and published 
research. Method A is the most common approach to 
urban modeling, and typically the only one possible 
since municipal or regional governments rarely 
maintain any more detailed descriptions of buildings. 
In the case study for Kuwait construction assemblies, 
coefficient of performance (COP), set point 
temperatures and occupancy schedules (Table 1) 
were defined according to published residential 
energy simulations (Assem and Al-Ragom, 2009; Al-
Ajmi and Hanby, 2008; Al-Mumin et al, 2003) and 
requirements from the 2010 Energy Code of Practice 
(MEW, 2010).  

Method B – Local expertise 

In case B, buildings of the same use are further 
divided using one or more additional classification 
parameters such as age or size. Method B requires a 
deeper knowledge of local construction and 
engineering practices and the documentation of a 
representative sample of buildings for each 
archetype. Simulation parameters are characterized 
deterministically based on these sources. 

In the case study, buildings were further divided in 
four archetypes based on the four periods of 
construction presented in the previous section.  The 
characterization of simulation parameters was 
developed in collaboration with the Kuwait Institute 
for Science and Research (KISR) and the 
Architecture Dept. in Kuwait University (KU), based 
on local expertise and two site visits in the 
neighborhood developed in 2014 (Table 1). The 
authors documented materials and systems in a group 
of 5 villas including already built, under construction, 
and in demolition structures. Window to wall ratios 
(WWR) for each building were individually assessed 
through photography analysis. In addition, detailed 
occupancy, plug loads, and lighting power density 
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Table 1 Building and occupancy simulation parameters 
 

METHOD / AGE 
Wall U Roof U Glazing Infiltr. Cooling SetPoint Occupancy Lighting PlugLoad 

W/m2K W/m2K  ach COP C occ/m2 W/m2 W/m2 

A Any 0.62 0.53 Dbl Ref 0.5 2.4 22 0.020 10.0 8 

B 

Original 2.50 1.56 Dbl Clr 0.8 2.2 22 0.013 6.6 7.0 

Modern 0.62 0.53 Dbl Ref 0.5 2.4 22 0.013 6.6 7.0 

Retrofit 2.50 1.56 Dbl Ref 0.5 2.2 22 0.013 6.6 7.0 

Code 0.32 0.40 Dbl LoE 0.3 2.9 22 0.013 6.6 7.0 

C 

Original 2.50 1.56 Dbl Clr 0.8 2.2 PROB PROB PROB PROB 

Modern 0.62 0.53 Dbl Ref 0.5 2.4 PROB PROB PROB PROB 

Retrofit 2.50 1.56 Dbl Ref 0.5 2.4 PROB PROB PROB PROB 

Code 0.32 0.40 Dbl LoE 0.3 2.9 PROB PROB PROB PROB 



 

(LPD) schedules were developed by residential room 
type based on a survey of 50 similar residences (Al-
Mumin et al, 2003) and average room sizes for 
government provided model residences (PAHW, 
2014), in order to refine the generic values in method 
A. This resulted in lower internal loads due to lower 
internal gains in circulation areas. 

Method C – Probabilistic occupancy parameters 

While detailed expert archetype classifications as 
presented in method B significantly reduce the level 
of uncertainty related to building envelopes and 
systems, they are still deterministically assuming 
average occupant behavior, and can hardly reproduce 
the diversity of EUIs existing in the built 
environment. In case C, an additional level of detail 
is introduced to archetypes by assigning probability 
distributions to key uncertain parameters in the 
model such as occupancy, lighting, plug loads or set 
point temperatures. Since distributions for these 
parameters are not readily available, the following 
method for “probabilistic estimation” is proposed, 
with the initial assumption that all unknown 
parameters have a uniform distribution. 
 

 
Figure 4 Probabilistic estimation method 

Method C combines UBEM simulation with 
measured energy data for a set of buildings with the 
same building use to estimate simulation parameters 
through the following steps (Figure 4): 

1. Parameter Definition: Unknown parameters (Xi) 
are selected, and acceptable limits for each one’s 
initial uniform distribution are defined. This 
distribution is discretized into a set of potential 
parameter values. 

2. Parametric Simulation: A parametric analysis is 
performed for each building in the sample 
through UBEM simulation for each combination 

of parameter values Yi = [x1, x2,…, xn]. Energy 
use results are obtained at the same temporal 
resolution (Yearly, monthly, hourly, etc.) of the 
real energy use data. 

3. Error Quantification: For each building result, 
the relative error (E) against the measured data is 
calculated as (EUIsim – EUImes) / EUImes. If E < α, 
with α being the maximum acceptable error in 
the model, the combination Yi is selected as a 
solution for that building. 

4. Test of Assumptions: The ratio of buildings (R) 
for which at least one solution was found within 
the parameter space is calculated. If R is smaller 
than an acceptable percentage of the sample, the 
general simulation model and step 1 should be 
revisited and refined. 

5. Building Revision: Once R is accepted, the 
remaining buildings which cannot be explained 
are revisited in an effort to identify variables 
unaccounted for or irregularities in the buildings. 

6. Distribution generation: All accepted values 
combinations Yi, regardless of the building they 
belonged to, are treated as random vectors and 
put together in a multivariate joint probability 
mass distribution. 

7. Monte Carlo Simulation: The UBEM or a 
sample is simulated multiple times, picking 
random combinations of parameters from the 
created distribution (Through simple random 
sampling), obtaining as a result a frequency 
distribution of building EUIs and/or total energy 
use for the model. 

In the case study three uncertainty occupancy related 
parameters (marked as “PROB” in Table 1) were 
chosen as critical to the variability of the UBEM: 
Cooling set point (STP; Between 18 and 25 C), 
installed lighting (LPD; Between 5 and 14 W/m2) 
and occupancy (OCC; Between 0.005 and 0.023 
occupants/m2). Plug loads (PLG) and maximum 
hourly domestic how water consumption (DHW) 
were modelled as linear functions of occupancy as 
shown in equations 1 and 2: 
 

PLG (W/m2) = 560 x OCC (occ/m2) (1) 

DHW (m3/m2 s) = 1.68E-6 x OCC (occ/m2)     (2) 
 

A parametric analysis of 640 simulations was 
performed for each building, in the case study. With 
an accepted error α = 0.05, 105 out of 140 buildings 
found one or more combinations of parameters that 
matched the measured EUI, showing that at least 
75% of the values could be explained within the 
proposed parameter ranges, while the rest will be 
revisited on the site in future research to identify 
shortcomings of the model. The resulting marginal 
probability mass distributions (PMF) are presented in 
the results section. 



 

Modeling and comparison framework 

For the comparison of methods full energy models 
were built of the urban case study. A multicomponent 
workflow was set up for this work to streamline the 
generation of UBEM, using municipal GIS datasets 
as a base input for building geometry, ground 
elevation and context, as well as database for 
building properties such as window to wall ratios 
measured on site (Figure 5). Multi-zone energy 
models for all buildings and well as 3D context 
shading were generated within the CAD environment 
Rhino 3D (McNeel, 2012). Custom C# applications 
were built for the automated generation of 3D 
models, generic zoning and shading calculations, 
within the parametric Rhino plugin Grasshopper. 
Simulation parameters for each archetype were 
stored and implemented in an XML template file 
format developed by the authors as a standard for 
urban energy modeling (Cerezo et al, 2014). Energy 
simulations were developed in EnergyPlus (Crawley 
et al, 2000) and energy models were generated using 
the Archsim plugin tool (Archsim, 2015). 
 

 
Figure 5 UBEM modeling framework 

The evaluation of the three methods was developed 
in two stages: (1) Goodness to fit against the 
measured distribution of EUIs, and (2) predicted 
absolute energy saving for the whole neighborhood: 

1. Measured EUI comparison: The urban model 
was simulated using weather data gathered for 
the year of the measurements, for methods A, B 
and C. In C, each building was modelled using 
Monte Carlo analysis and random sampling the 
joint parameter distribution a hundred times. The 
resulting frequency of EUIs for the 10,000 
EnergyPlus runs, plus the EUI distributions of 
methods A and B were compared with the real 
distribution for the 100 matched cases, in terms 
of average, standard deviation, and K-S statistic, 
defined as the maximum distance between two 
cumulative distributions for any value of EUI. 

2. Retrofit savings comparison: A hypothetical 
intervention scenario was assumed in which all 
buildings from periods before the current Kuwait 
energy code had their envelopes upgraded in 
terms of insulation, infiltration rates and glazing 

to modern requirements. Models A, B and C 
were simulated using the same procedures. In 
case C the distribution of total absolute savings 
for the model was calculated by taking 1,000 
random samples from the results. Finally results 
were compared between the three methods in 
order to quantify the impact of the occupancy 
uncertainties in calculated savings. 

RESULTS 

Measured EUI comparison 
The application of characterization method C 
resulted in a non-uniform distribution for the joint 
probability distribution of set points, lighting and 
occupancy. The resulting marginal PMFs of the three 
variables for the sample are depicted in figure 4, with 
respective average values of 22 C, 9.5 W/m2, and 
0.011 occ/m2.  
 

 
Figure 6 Marginal PMFs for cooling 

set point, LPD and occupancy 

These results represent the uncertainty of occupancy 
related parameters for the whole population of 
residential villas and were used in method C 
simulation. The simulation of the case study, given 
the previously presented assumptions and 
framework, provided EUI distributions for the three 
methods which were compared with measured ones 
(See figures 7A, 7B, 7C, and table 2). In case A, the 
average EUI of 246 kWh/m2 showed an error of 18% 
to the measured average of 210 kWh/m2. It also 
showed a completely different extent of the 
distribution, and standard deviation of 8 kWh/m2 
(91% error against 90 kWh/m2 in the sample) which 
could not reproduce the extreme energy consumption 
values in the sample, and a mean percentage error 
(MPE) of 70%. The K-S statistic obtained was 0.52. 

Case B showed that the increase in detail for template 
characterization introduced by dividing the buildings 
in periods on construction was enough to match the 
average of the real sample (3% error). However, 
there was still an error of 56% in the standard 
deviation which showed a much more concentrated 
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distribution as shown in the figure 7B. Results 
showed an MPE of 18% and a K-S statistic of 0.21.  

Method C resulted in an average EUI of 212 kWh/m2 
(4% error to the sample average). More importantly, 
it expanded the distribution spread according to the 
probabilistic characterization to a standard deviation 
of 62 kWh/m2 (30% error compared to the sample). 
The remaining difference in variance is explained by 
the isolated very high real EUIs (Over 450 kWh/m2).  
 

 

 

 
Figure 7 EUI distributions and averages for 
A, B and C against measured distribution 

Given the probabilistic approach to the simulation in 
which each building has been modelled multiple 
times, it is not possible to calculate a MPE for case C 
(* in table 2). Instead the K-S statistic is used to 
analyze its goodness of fit against the sample, with a 
result of only 0.10, showing the improved 
reproduction obtained with the method. Therefore 
model C was assumed as the most accurate baseline 
to compare A and B for the retrofit calculation in 
next section. 
 

Table 2 Comparison metrics by method 
 

METHOD Ave. / Std. Error MPE K-S 

A 0.18 / 0.91 0.70 0.52 

B 0.03 / 0.56 0.18 0.21 

C 0.04 / 0.30 * 0.10 
 

Retrofit savings comparison 
Based on the models built following methods A, B 
and C simulations were developed for the retrofit 
scenario described in the methodology below. For 
each case the total absolute savings for the original 
140 buildings sample were calculated, resulting in a 
single value for cases A and B, and a probability 
distribution of savings for case C (Figure 8). The 
deterministic result for case B of 32 kWh/m2 
matches the average savings for case C (31 
kWh/m2), while case A slightly overestimates them. 

More interestingly the uncertainty of savings 
associated with the occupancy parameters resulted to 
be relatively small (Within a 10% of the average) 
with a very small coefficient of variation CV = 0.02. 
This result coincides with that of case B and shows 
negligible risk caused by occupancy uncertainties.  
 

 
Figure 8 Total savings per m2 distributions for 

methods A, B and C 
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DISCUSSION 

Selecting uncertain parameters in UBEM 
This work has presented a method for improving 
UBEM model accuracy by reproducing uncertainties 
in occupant behavior related parameters based on 
measured yearly energy data. The results have shown 
that for this case study the goodness of fit of the 
aggregate distribution of EUIs is very significantly 
improved, allowing the modeler to further study 
urban interventions taking into account the impact of 
these occupant uncertainties. While the approach has 
proven to be successful, one critical reader might 
question the assumption that these 3 parameters are 
responsible for all uncertainties in the model and 
enough to explain it. Although it is true than other 
unknown parameters such as infiltration rates or 
window operation are equally responsible for the 
discrepancy between the model and the measured 
data, as a proof of concept the method was limited to 
a computationally manageable number of variables. 
The further development of the method and its 
effective implementation will however require a 
previous extensive step of sensitivity analysis and 
uncertainty screening at the urban scale. Such 
procedure would help identify which parameters can 
be treated deterministically without significantly 
altering the performance of the model. 

Equally important is the need for a more extensive 
analysis of the goodness to fit of the resulting 
distribution, by applying bootstrapping techniques to 
method C, selecting a large number of subsamples to 
simulate, and analyzing the resulting distributions to 
the remaining non sampled buildings. Such further 
work would be fundamental in understanding the bias 
of the obtained parameter distributions. Regardless 
the specific implementation, a new probabilistic 
modelling method for occupant related uncertainties 
needs to be streamlined in UBEM. So far though, 
only the CITYSIM modeling tool (Robinson et al, 
2009) has implemented such a model. 

The importance of measured energy data 
The model of AlQadisiyah has shown the relevance 
of validating and improving urban energy modeling 
techniques with individual building yearly measured 
energy data. Most research in the field of UBEM has 
so far focused on the processes of model construction 
and simulation, but such models have yet to prove 
their capabilities to accurately represent the built 
environment at the building level. Particularly 
relevant is the validation against hourly energy data, 
necessary to effectively model peaks in demand of 
interests for both urban planners and supply utilities. 
Unfortunately, privacy concerns make individual 
energy data still extremely difficult to access for 
large enough samples of buildings. 

In the opinion of the authors, a strong collaboration is 
necessary between municipal governments and 
utilities to address these accessibility limitations.  As 

part of that interaction, simulation parameter 
distributions could be generated through the 
approach here proposed, and general “archetype 
datasets” could be validated and refined for further 
analysis of urban interventions and policies. That 
somehow ideal scenario requires a significant effort 
to improve the current practices for documentation of 
the built environment, but it is a necessary step to 
produce useful urban models. 

Informed urban decision making and design 

Being a model’s capability to accurately represent 
real patterns of energy demand necessary, it is 
important to highlight that the main goal of any urban 
modeling exercise is to inform decisions about 
potential urban interventions. Both urban planners 
and policy makers wish to evaluate proposals for 
retrofits, energy systems and new constructions and 
understand their benefits and costs. In that context, 
occupant behavior often appears as a large 
uncertainty which introduces too much of a risk to 
justify and calculate energy savings and investment 
returns and for that reason characterizing those 
uncertainties has to be a priority in UBEM. The 
results for an envelope retrofit savings estimated 
considering method C in this work showed that, 
against what the wide range in EUIs suggests, 
aggregate yearly savings for the whole neighborhood 
have a very small variance and associated risk. They 
also suggest that aggregate savings can be predicted 
through the deterministic method B, as long as the 
average EUI obtained matches that of the real 
distribution. These assumptions however are only 
valid when aggregate savings are considered and 
cannot be applied to individual buildings, or smaller 
temporal scales such as hourly peaks. It is necessary 
for both modelers and decision makers to understand 
which level of detail and uncertainty modeling is 
necessary depending on the decisions under 
consideration. 

CONCLUSION 
This paper has proposed a probabilistic method for 
the characterization of occupancy related parameters 
in urban simulation archetypes, using dynamic 
energy simulations and yearly measured energy data. 
The resulting building archetypes were compared 
with two common deterministic methods of building 
archetype generation in the simulation of 140 
residential buildings in Kuwait city. The results have 
shown that the proposed method achieved a 30% 
reduction in error of the standard deviation when 
compared with the real EUI distribution, and was 
used to demonstrate that the uncertainty of the model 
does not significantly affect the cumulative savings 
for a building envelope retrofit intervention. 

NOMENCLATURE 
EUI    = Energy Use Intensity (kWh/m2) 
WWR = Window to Wall Ratio 
α        = Maximum simulation error 



 

R       = Ratio of buildings with acceptable α 

STP   = Cooling setpoint temperature (C) 

LPD   = Lighting power density peak (W/m2) 

OCC   = Occupancy density peak (occ/m2) 

PLG   = Plug load density peak (W/m2) 

DHW   = Domestic how water peak (m3/m2 s) 
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