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ABSTRACT 

This paper presents a methodology for the generation of 

building occupancy schedules and trips in urban areas 

based on regional activity-based travel surveys. Using 

eigendecomposition-based Principal Component 

Analysis (PCA) and the k-means clustering algorithm, 

the method identifies activities as well as city resident 

types. The outputs are typical occupancy schedules for 

building performance simulation, and activity profiles 

for mobility modeling in urban-scale simulation. As a 

proof of concept the framework is applied to the 

2010/2011 Massachusetts Department of Transportation 

(MassDOT) travel survey. Four clusters of occupants 

were identified, and an example building occupancy 

schedule and complementary activity distributions were 

determined. A discussion about how such activity 

profiles can be used to generate a set of user behavior 

profiles for neighborhood and city models is presented. 

INTRODUCTION 

The current human world is, and will continue to be, 

mostly urbanized; with cities being planned, build and 

inhabited at an unprecedented rapid rate (WHO, 2013). 

In order for this urbanization process to be sustainable, 

architects and planners apply measures of energy 

efficiency and carbon emissions reduction on an urban 

scale. The employment of Building Performance 

Simulation (BPS) tools supports such methods by 

predicting the annual energy use of buildings using 

mathematical representation of thermal and luminous 

environments, within an acceptable margin of error 

(Fabi et al., 2013). These programs use complex models 

of occupant behavior within buildings to predict the 

control of various components, such as window opening 

(Fritsch et al, 1990), lighting controls and blind 

adjustments (Reinhart, 2004) and space heating/cooling 

demands (Hoes et al, 2009). However, examining 

individual buildings when modeling urban 

developments is insufficient, as there is a need to study 

how buildings interact with each other when modeling 

hundreds of buildings. In an urban context, occupants’ 

movements between buildings during daily activities 

affects transportation energy. This makes the simulation 

of activities in urban areas critical to the assessment of 

trips made for local transportation and consequent mode 

choices (walking, biking, automobile, etc.) based on 

proximity. 

Travel behavior and forecasting is a topic of interest for 

urban planners and transportation engineers, and links 

to the built environment have been established in the 

literature.The relationship between land use and travel 

behavior based on utility-based and activity-based 

theory of transportation was discussed (Maat et al, 

2005), the impacts the built environment has on travel 

behavior have been presented (McCormack, 2001; 

Handy 2002), and microsimulation of activity-based 

travel patterns was developed for travel forecasting 

(Kitamura et al, 2000). However, BPS has not benefited 

from the relationship between urban mobility and 

occupants travel. This work argues that understanding 

travel behavior in urban areas can enhance simulation of 

energy flows in and around groups of buildings in BPS, 

and can provide architects, urban designers and 

planners with the tools to promote sustainable mobility 

in terms of promoting the walkability and bikeability of 

cities. 

This paper presents a framework to generate building 

occupancy profiles based on analysis of human activity 

patterns in metropolitan areas. The method is developed 

for building and urban performance simulation, where 

the outputs are twofold: typical occupancy schedules for 

operational energy use simulation of buildings, and 

activity distributions for urban simulation. The paper is 

divided into four sections: the methodology details data 

mining and analysis procedures for typical activity-

based travel databases, followed by the results of 

research focused on the Massachusetts Department of 



   

 

Transportation (MassDOT) travel survey that illustrates 

BPS relevant occupancy schedules and activities for 

urban modeling simulations. A discussion is presented 

next, highlighting potentials and limitations, followed 

by a conclusion of the presented framework which 

suggests future work. 

METHODOLOGY 

Figure 1 demonstrates the developed framework. An 

activity based mobility database is analyzed in order to 

identify what kind of activities exists in the chosen 

urban area, as well as to derive occupant behavior 

archetypes. Schedules and behavior profiles for 

different occupants are then generated. The details of 

each stage are described next. 

Input: Activity Based Mobility Database –  

Travel Survey 

In order to understand complex activities that occur in 

urban areas and the dynamics of its inhabitants, an 

activity-based travel database is used. The use of cell 

phone traces (Calabrese et al, 2013), online social 

media check-ins (Noulas et al, 2011) and position 

tracking (Gonzalez et al, 2008) to comprehend human 

mobility and associated activities are emerging urban 

sensing techniques. The authors forsee that the future of 

activity-based mobility databases to be used in this 

workflow will be based on such technologies, but at the 

time of writing this paper, they are still being developed 

and are hindered by access to such data due to privacy 

restrictions and limitations of cell phone technologies. 

Traditional travel surveys are publically available and 

are the standard means of understanding mobility in 

cities. In this paper, we use the MassDOT Travel survey 

as the database that will be analyzed in order to 

understand trends and patterns in urban human mobility.  

The activity survey data used included 15,000 

households between June 2010 and November 2011, 

where participants were asked to identify where and 

how they traveled on a specific, designated travel day 

(24 hours).  The sample was carefully chosen to 

represent the Massachusetts population by asking each 

participating houshold a series of detailed questions 

about their socioeconomic characteristics and access to 

transportation. Data mining techniques used to analyze 

this database are presented in the following section. 

Note that the only survey travel days assigned were 

weekdays, so our analysis excludes weekends. Our 

analysis also excludes Friday reports, as Friday travel 

behavior substantially differs from that of other 

weekdays. 

Identifying Urban Activities and Occupant Types 

In order to generate occupant profiles from the survey 

data, we use the mathematical approach presented by 

Jiang et al for the the Chicago metropolitan area. An 

overview is provided here, but readers desiring a 

rigorous mathematical treatment (including specific 

methodological justifications) are encouraged to refer to 

that paper (Jiang et al, 2012). 

The method’s thrust is the clustering of survey 

respondents based on behavior patterns, and this 

grouping is accomplished by the application of the k-

means clustering algorithm (Wu et al, 2008). This 

process organizes groups of points in some (potentially 

high-dimensional) space into clusters, and a way to 

apply it to categorical data, such as transportation 

activity participation, is non-obvious, since there is no 

clear metric for “closeness” between any two particular 

travel activities. The method devised by Jiang et al is 

similar to a proposal by Ralambondrainy, encoding the 

activities using binary attributes in a manner that creates 

an implicit and sensible distance metric so that k-means 

can then operate (Ralambondrainy, 1995).  

MATLAB was used as the numerical computing 

environment. First, each respondent’s day is broken into 

ninety-six 15-minute intervals, and each interval is 

assigned the activity that the respondent is performing 

at the beginning of it. (The original 25 activity choices 

were compressed into nine – see Table 1.) For this 

purpose, travel is assumed to be instantaneous, with 

each activity beginning as soon as the traveller leaves 

their previous activity. 

Figure 1 Presented framework 



   

 

From this activity description, nine 96-element vectors 

are then generated, one corresponding to each activity. 

In each of these vectors, the ith element is set to 1 if the 

respondent is performing its associated activity during 

time interval i, and 0 otherwise. Finally, these nine 

vectors are concatenated, producing a single, 864-

element vector of zeros and ones that describes the 

respondent’s activity throughout the day. 

Table 1 Aggregated activities types and original trip 

purposes 

 

ACTIVITY ORIGINAL PRIMARY TRIP PURPOSE 

Home - Working at home (for pay) 

- All other activities at home 

Work - Work/job 

- All other activities at work 

- Volunteer work/activities 

- Work business related 

School - Attending class 

- All other school activities 

Transit - Changed type of transportation 

- Drop off passenger from car 

- Pick up passenger from car 

- Loop trip 

Shopping/ 

Errands 

- Service private vehicle (gas, oil lube, etc.) 

- Routine shopping (groceries, clothing, 

convenience store, HH maintenance) 

- Shopping for major purchases or specialty 

items (appliance, electronics, new vehicle, 

major HH repairs) 

- Household errands (bank, dry cleaning) 

Personal - Personal business (visit government 

office, attorney, accountant) 

- Health care (doctor, dentist) 

Recreation/ 

Entertainment 

- Eat meal outside of home 

- Outdoor recreation/entertainment 

- Indoor recreation/entertainment 

- Visit friends/relatives 

Civic/ 

Religious 

- Civic/religious activities 

Other - While traveling – other 

- Other 
 

As performing k-means clustering on these 864-

dimensional activity vectors would be computationally 

expensive, we turn to eigendecomposition-based 

Principal Component Analysis (PCA) (Hastie et al, 

2009) in order to dimensionally reduce the input data so 

that clustering can be performed. Some quantity of 864-

dimensional eigenactivities is generated such that each 

daily activity vector can be represented as a linear 

combination of them. Each linear combination can be 

“reconstructed” into a daily activity vector by 

identifying the highest-valued activity of each time step, 

setting the corresponding reconstructed vector elements 

to 1, and setting all other vector elements to 0. As the 

number of eigenactivities increases, the error between 

reconstructed activity vectors and original activity 

vectors drops to zero. Following Jiang et al, we choose 

h eigenactivities such that the error is <1%. We can 

represent each activity vector using only the coefficients 

of its linear combination of eigenactivities, of which 

there are h, so we have reduced the dimension of our 

activity representation from 864 to h. As as long as h is 

small enough, k-means is now fast enough to be 

applicable. 

Application of the k-means clustering algorithm 

requires a determination of an appropriate number of 

clusters. In order to define this, we examine Cluster 

Silhouettes (Rousseeuw, 1987), which are measures of a 

cluster’s tightness and separation, and can be used to 

identify the optimal numbers of clusters. 

 Output: Occupant Schedules and Behavior Profiles 

Two outputs are created through the previous data 

mining workflow. First, a typical at-work BPS 

occupancy schedule based on a “Worker” cluster, where 

an office building occupancy percentage of each 

timestep is the percentage of respondents in the cluster 

who are at work during that timestep. Second, an 

activity distribution profile for each of the clustered 

users. This sets the basis for modeling mobility in an 

urban area by identifying the type of activities people 

engage in and their expected activity-based travel within 

the city. We applied the framework in the state of 

Massachusetts, and results are detailed next. 

RESULTS 

Figure 2 shows time of day activity variations 

aggregated for all samples of the MassDOT travel 

survey. This is the first step to construct eigenbehaviors, 

cluster participants and produce schedules. 

 

Figure 2 Temporal rhythm of activities on a weekday in 

Massachusetts 



   

 

Eigenactivities 

In order to understand the structure of basic human 

activity patterns in the survey, eigenactivities were 

computed for all sample individuals. Twenty three 

eigenactivities were derived for the weekday, and 

Figure 3 demonstrates the first three  as an example. 

The first eigenactivity (left) represents a high 

probability of staying home and not going to work 

between 7 AM and 5 PM. The second eigenactivity 

shows that between 8 AM and 3 PM there’s a high 

probability of going to school and a low probability of 

staying at home, and the third eigenactivity displays 

relatively higher probablity of staying at home from 3 

PM to 11 PM coupled with a low probability of going 

for recreation, and a high probability of working from 7 

AM to 12 PM. In order to group individuals based on 

activity sequences during the weekday, the k-means 

clustering algorithm is used 

 

Figure 4: Four clusters of activity patterns 

 
Figure 3 the first three eigenactivities of a weekday 



   

 

Clustering Users  

The examination of cluster silhouettes for various 

cluster counts suggested four clusters for individuals, 

and they were observed as Stay at Home, Worker, 

Adventurer and Student as demonstrated by Figure 4. 

As their names suggests, each cluster spends most its 

time of day engaging in the activity that its title 

proposes. However, it is important to note that other 

activities should not be disregarded, as specific patterns 

emerge with each cluster. For example, a student is 

likely to go for a recreational activity after school hours 

and up until 10 PM and an adventurer, who spends most 

of his/her time on recreation still goes to work later in 

the day. 

Occupancy Schedules and Behavior Profiles 

Through the presented analysis of activity patterns in 

the city, two outputs are extracted to be used in the field 

of BPS: 

 Occupancy Schedules 

Typical schedules used for energy simulation use 

diversity factors for weekday and weekend patterns in 

using buildings. Such diversity factors were extracted 

from the Worker cluster to demonstrate the pattern of 

office building types weekday according to analysis of 

the MassDOT survey, and are presented in Figure 5.  

The schedule starts at 6 AM, where 10% of occupants 

are expected to arrive at their work place, with a linear 

increase until 11 AM, where 97% of the users are 

present, and an expected decrease around noon takes 

place for lunch time, but it is only a change of 5%. A 

steady decline then of workers leaving the work place 

takes place until 6 PM, where only 20% of the 

occupants remain and decrease to 5% 8 PM to reach 1% 

at 10 PM.  

  

Figure 5 Office building occupancy schedule as 

extracted from the Worker cluster 

 

 Behavior Profiles 

For the simulation of activities taking place in urban 

areas, behavior distribution profiles are also extracted 

from the clusters. Figure 6 demonstrates the distribution 

of urban activities for the Worker cluster. While 

members of this cluster spend most of their time either 

at home or at work, other activities present themselves 

temporally, which gives a better understanding of the 

kind of activities this cluster would engage in a city. 

The Worker cluster activity profile gradually replaces 

staying at home temporally with work, with the rise of 

time specific activities mainly represented in transit 

from home in the morning and to home in the afternoon. 

A significant portion of other activities goes to 

recreation starting 4 PM up to 10 PM.  

Figure 6 Activity patterns distribution in urban areas 

according to the Worker cluster 

 

Such activity time series for individual clusters are 

translated into a BPS occupancy schedule by mixing 

clusters for different building types. Through such 

combinations occupancy patterns emerge that differ 

with change in building use. Figure 7 shows an example 

occupancy schedule for a single family house composed 

of a “Worker,” a “Stay at Home” and two “Students.” 

Since this schedule focuses on “home” all other 

activities were disregarded, and the produced profile 

represents the basis for a residential building type 

schedule aggregated from a variety of clusters through 

their activity patterns. If one then assigns to which 

school and workplace three members of the household 

go, complementary building occupancy schedules for 

these buildings can also be generated. 



   

 

 

 

Figure 7 Single family house occupancy schedule as 

composed from three clusters and four occupants 

 

DISCUSSION 

This section will discuss the framework, potentials in 

generating activity-based occupancy schedules and will 

speculate on the use of complete behavior profiles for 

urban modeling.  

Framework 

The presented framework links two domains of 

knoweldge, BPS and activity-based transportation 

analysis. While the demonstrated workflow is not 

intended to replace any practice standards, it attempts to 

create common grounds for architects, planners and 

transportation engineers innovatively by utilizing 

activity-based travel surveys and databases to produce 

useful occupancy information for energy modelers. The 

field of urban modeling and simulation is currently 

growing, and that is why having an approach, such as 

the presented framework, that addresses people as both 

building occupants and as travelers is becoming 

essential. 

Occupancy Schedules  

Occupancy schedules are considered indispensable for 

whole energy use simulation and consequent potential 

for energy savings (Oldewurtel et al, 2013). Numerous 

models have been previously developed based on 

occupancy monitoring (Duarte et al, 2013), which is 

plausible when a building is erect, and simulation is 

being done for that structure specifically. However, the 

presented method aims to understand occupant behavior 

as part of a time-series of activities in the city. This 

makes the traditional occupancy schedule part of a 

bigger scope for urban simulations based on clusters of 

users. For example, An office building in an 

“innovation district” may have 50% workers and 50% 

adventurers. A more traditional office has a mix of 90% 

workers and 10% adventurers. By mixing the clusters 

for different spaces new occupancy patterns emerge, 

since simulation software don’t place emphasis on what 

type of users are in a space at a point in time, just the 

number of occupants. 

Basis for Activity Centered Agent Based Modeling 

Behavior profiles are an activity-based approach to 

visualize the type of activities clusters undergo 

temporally. This is a useful output for mobility-based 

simulations in urban modeling, as a previous challenge 

to this type of simulations was the unavailability of a 

workflow that addresses “trip chaining” in relevance to 

simulation on the building and neighborhood scale 

(Rakha et al, 2013). With the cluster-based profiles 

each activity is not considered a “trip” on its own, 

activities are now linked to each other temporally. 

However, it is presented in this framework as a 

deterministic output, while simulating occupant 

behavior and user activities in the city are better 

addressed using a stochastic process capable of 

producing probabilistic outcomes that are more in-line 

with real human behavior. (Wang, et al, 2010).  

Figure 8 shows how this approach can be used as part of 

a Markov transition matrix, where each activity is 

linked to the previous not just temporally, but also 

probabilistically based on characteristics of the cluster 

and expected behavior. For example, as the work day 

comes to an end occupants leave their building with 

probabilities of various activities. While this is of little 

value to building scale simulations, as modelers are 

only interested in when occupants arrive and leave, for 

urban modeling this approach allows for realistic micro 

simulation of mobility behavior based on the analysis of 

real human activity patters. This sets the basis for a 

probabilistic workflow, where a stochastic process, such 

as Markov Chains, could be used as a generator for 

agent-based activities for urban mobility simulations. 



   

 

CONCLUSION 

Urban performance simulation is an exciting 

interdisciplinary field on the rise. Current and future 

researchers and practitioners face numerous challenges, 

as urban landscapes change and transform rapidly. This 

motivates us to produce tools and workflows that bridge 

the gap between the various disciplines involved in the 

creation of sustainable and energy efficient built 

environments. 

This paper presented a framework for the generation of 

occupancy profiles based on activity-based travel 

behavior analysis. The aim was to approach the issue of 

human behavior modeling for BPS based on patterns of 

activity in cities. While the technology needed to track 

real-time human behavior in order to design stochastic 

models for probabalstic simulation is under 

development, this workflow was explored through a 

traditional travel survey for Massachusetts as a proof of 

concept, and extracted results were shown to be useful 

for both BPS and urban modeling. Future research 

should address the shortcomings of using travel surveys 

such as weekday and weekend patterns, and progress in 

urban sensing technologies and its reflection on 

simulation workflows should be observed as a means to 

support such an interdisciplinary approach to urban 

modeling. 
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