Toward a More Sustainable Munich

Zach Berzolla, Niall Buckley, Claire Holley, and Tristan Searight 4.433 Final Presentation

Design Philosophy

Guiding Principles

- □ Efficient energy consumption, sustainable energy supply
- □ Vibrant, attractive, inclusive community to live, work, and play
- Design for climate resilient comfort

Munich Context

□ Respect historical context and surrounding scale

Mixed Use

- First-floor retail
- □ Six stories of residential

Munich Maxvorstadt Context

Arts and University District

- Typical population
 Students
 Working professionals
- Generally wealthy neighborhood

 Traditional energy supply
 Gas
 Electricity

https://upload.wikimedia.org/wikipedi a/commons/b/bc/MU_Maxvorstadt_Ri chardWagnerStra%C3%9FeA.jpg https://en.wikipedia.org/wiki/History_of BMW#/media/File:4_cilindros_y_mus eo_BMW, M%C3%BAnich, Alemania _2012-04-28, DD_02.JPG

Munich Maxvorstadt Context

Building age:
 1950s-1960s

- Population:1.5 Million
- Characteristic European city
- Desire to increase density

Walkable Neighborhood

UWalk Score: 78

U-Bahn Underground Rapid Transit

□ Surface Trams & Buses

\$

Protoblock Replicability

Block Sizes

□15,000 m² □Protoblock Design □6

□18,000 m² □3

□20,000 m² **□**6

□22,000 m² □7

Existing 15,000 m² Protoblock

 Mixed Use
 Retail first floor
 Residential floors two through six

□ 1,474 Occupants

Existing Protoblock: 105m x 140m

Enclosure U-Values (W/m²K)
Wall: 1.21
Roof: 0.51
Slab: 1.08
Windows: 3

 $\Box HVAC System$ $\Box Gas Boiler$ $\eta = 0.84$

❑ Window-to-Wall Ratio
❑ Residential = 20%
❑ Retail = 40%

\$

Munich Development Rules: Street View Preservation

All measurements in meters. Image courtesy: Edu Gascon-Alvarez

\$

Typical Floor Plan for Existing Buildings

Massing Evolution

Improve access to daylight
 Maintain access to greenspace
 Increase occupant density
 Preserve historic character

Massing Evolution for Daylight

First Set of Protoblock Iterations

Tradeoff between daylight and density

Massing Evolution for Greenspace

Tradeoff between density and green space for occupants

Courtyard Perimeter Buildings Daylight Studies

Existing buildings

Top two story addition

-0-

sDA 50.1 Mean Lux 1075

\$

Simulation Approach

S

Given Four models

9

50

Perimeter Buildings Initial Daylighting Results

Perimeter Buildings Initial Daylighting Results

Visual Comfort Analysis

Blind State Section of 4th Floor

Top Closed **Both Closed** Open

Illuminanace Spring Equinox 12pm

Annual Glare Spring Equinox 12pm

Visual Comfort Analysis

False Colour Glare

Interior view on 4th Floor

Blind State Section of 4th Floor

Final Perimeter Daylighting Results

1. Push back ground floor

2. Reduce WWR on top floors

3. Add Static Shading to top Floor

Illuminance Spring Equinox 12pm

Final Perimeter Daylighting Results

 \mathbf{F}

Central Building Daylighting Study

·-- Mid Point

 $\mathbf{\mathbf{b}}$

The Challenge

Central Building Daylighting Study

Central Building Initial Daylighting Results

27

\$

Shading Adjustments

 \mathbf{r}

25

\$

Shading for Solar Heat Gain Control

Shading for Solar Heat Gain Control

Needs Sunlight 🞸 ···

Heating Months Cumulative Sunlight

Cooling Months Cumulative Sunlight

Needs Shade

Winter Solstice 12pm Sunlight

Summer Solstice 12pm Sunlight

Shading for Solar Heat Gain Control

Central Building Middle Floor Daylighting Analysis

Needs Sunlight

«……»

Needs Shade

Illuminance on 5th Floor

 \mathbf{P}

\$

Central Building Middle Floor Daylighting Analysis

New Central Building Design

Summary of Proposed Retrofit

Enclosure U-Values (W/m²K) Wall = 0.13 Roof = 0.09 Slab = 0.23 Windows = 0.8

- □ HVAC Systems □ Heat Pump COP = 3.8
- □ Window-to-Wall Ratio
 - \Box Perimeter residential street-side = 20%
 - \Box Perimeter residential courtyard-side = 90%
 - \Box Central residential = 65%
 - \Box Retail = 40%

□ 1,778 Occupants

Daylight Availability

4

O-

S

Operational Energy

Residential EUI
 71% decrease

Retail EUI44% decrease

Overall EUI
 40 kWh/m²
 68% decrease

4

S

Climate Change Effects on EUI

□ Warmer winters □ Less heating energy

Warmer summers
 Need to add air conditioning

EUI decreases 9% from 2020 to 2065

■ 2020 ■ 2035 ■ 2065

Carbon Emissions Over Time

Retrofit has higher initial embodied energy

High EUI of existing buildings causes it to quickly overtake emissions from retrofit

Year

Potential Energy Systems

Ì

All-Electric Scenario

Diet Composition: Average Daily German Diet

4

43

S

Greenhouse Gas Comparison of Diets

Urban Mobility: Outdoor Thermal Comfort

 \Box Original protoblock outdoor thermal comfort = 28%

 \Box Final design outdoor thermal comfort = 43%

Urban Mobility

1,616 Amenities
 Open Street Map
 800 meter radius of site

 Limited parking
 On-site transit options eliminate additional needs

Highly walkable neighborhood

Financial Performance

- Average rent in Munich
 □ €24.6/m²/month
- □ Rent increases because sDA > 50%
 □ €26.1/m²/month
 □ 6% premium
- □ Rent from improving sDA in existing apartments
 □ +€73,900
- □ Rent from added residential space
 □ +€305,500/month
- □ Total residential rental income
 - $\Box \in 1.6$ Million/month
 - □ +€380,000/month
 - **-**+30%

Conclusions

 $\square 8,900 \text{ m}^2 \text{ of}$ retail (+
500 m²) $\square 61,700 \text{ m}^2 \text{ of}$ residential
(+11,700 m²)

□1,778 Occupants (+23%)

Retain
historical facade

Conclusions

Questions?

