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a b s t r a c t

A dimensionless damping parameter, cn ¼ 2co=rU2, is defined for cylinders experien-

cing flow-induced vibration. It overcomes the limitations of ‘‘mass-damping’’ para-

meters, which first came into use in 1955. A review of the history of mass-damping

parameters reveals that they have been used in three principal variations, commonly

expressed as Sc, SG and a. For spring-mounted rigid cylinders all three forms reduce to a

constant times the following dimensionless group, 2c=prD2on , where ‘c’ is the

structural damping constant per unit length of cylinder and onis the natural frequency

of the oscillator, including, when so specified, the fluid added mass. All have been used

to predict An
max¼Amax/D, the peak response amplitude for VIV. None are useful at

organizing response at reduced velocities away from the peak in response. The

proposed alternative, cn, may be used to characterize VIV at all reduced velocities in

the lock-in range. The simple product of An and cn is shown to equal CL, the lift

coefficient, thus providing a simple method for compiling CL data from free response

measurements. Mass-damping parameters are not well-suited to the organization of

the response of flexible cylinders in sheared flows or for cylinders equipped with

strakes or fairings. cn is well-suited for use with sheared flows or for cylinders with

partial coverage of strakes or fairings. Data from three independent sources are used to

illustrate the applications of cn. It is shown that the method of modal analysis may be

used to generalize the application of cn to flexible risers. An example for a riser with

partial fairing coverage is presented.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The principal purpose of this paper is to introduce a damping parameter, cn ¼ 2co=rU2 that is useful in practical VIV
response prediction of flexible structures. An example is the fatigue life prediction of a petroleum production riser in the
Gulf of Mexico, exposed to the Loop Current with surface speeds in excess of three knots(1.5 m/s) and varying substantially
with depth. The solution to the equations of motion of the riser requires that the power dissipated by damping be in
balance with the power flowing into the riser as the result of vortex-induced lift forces. Although there are computer
programs used in design that apply the principle of power balance, there is no damping parameter currently available that
is able to capture the relationship between the predicted or measured riser response and the total damping, including both
structural and hydrodynamic sources. cn is shown to be able to characterize the excitation and response relationship in
these more general cases.
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Nomenclature

A* A/D, dimensionless response amplitude
A*max Peak A*
b* dimensionless damping parameter
c* dimensionless damping parameter
C, c Lumped damping constant, damping con-

stant/length
Ca Added mass coefficient
CF Total fluid force coefficient
CL Lift coefficient
CP Power coefficient
D Cylinder diameter
f Response frequency in Hz
fn Natural frequency(Hz) in vacuo
K, k Lumped spring constant, spring constant/

length
Ks, ka Alternative symbols for mass-damping

parameters
Kd Roughness height
M, m Lumped mass and mass/length, both without

added mass

ma Added mass of fluid per unit length
m* Mass ratio
r Damping constant/length in some references
Sc Scruton number
SG Skop-Griffin mass-damping parameter
S Strouhal number
y(t) Cross-flow response coordinate
u Turbulence intensity
u=U Turbulence level
U*¼U/fnD Reduced velocity at a fixed fn

Vr¼U/fD Reduced velocity at the response frequency, f

a Govardhan & Williamson mass -damping
parameter

d logarithmic decrement
z damping ratio
m Griffin’s mass parameter and viscosity
r density of fluid
o response or excitation frequency in radians /

second
on natural frequency in radians/second
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A secondary purpose is to understand the limitations of mass-damping parameters. In doing so the paper explores the
relationship between mass-damping parameters and cn, particularly in the context of the extensive body of research on the
response of spring-supported, rigid cylinders in uniform flow. A second parameter, bn

¼ 2c=DrU, is also found to be useful
in some applications. Both cn and bn have properties that give them advantages over mass-damping parameters. These
advantages are described in the paper.

The paper begins with a brief review of the early use of mass-damping parameters applied to flexible cantilevers in
wind. It then moves onto the use of mass-damping parameters in the study of spring-mounted cylinders in uniform flow.
cn is then derived for the spring-mounted cylinder in uniform flow. The performance of cn is illustrated with data from
three different sets of experiments. The paper closes with a numerical example in which cn is used to characterize the
response of a flexible cylinder, partially covered with fairings. When exposed to a uniform flow, this cylinder has a power-
in region over a fraction of its length and hydrodynamic damping over the remainder. The modal response amplitude is
shown to be a smooth function of cn.

2. A brief historical review of mass-damping from 1955 to 2006

The reader is referred to Williamson and Govardhan (2004) for a review of the principal contributors to the
development of mass-damping parameters. A very brief historical summary is provided here to provide a few essential
details.

2.1. Scruton, Vickery and Watkins, and Skop-Griffin

The mass-damping parameter was first introduced by Scruton in 1955 for the purpose of the characterization of the
flow-induced vibration of cantilevered, flexible structures in wind. It was quickly adopted by the research community and
over time came to be known as Sc, the Scruton number (Scruton, 1955, 1956, 1965, 1966); (Vickery and Watkins, 1964);
(Zdravkovich, 1982):

Sc ¼ 2md=rD2
¼ p2mnz: ð1Þ

The right-hand-side of Eq. (1) expresses the Scruton number in the currently used terms of mass ratio and damping
ratio and assumes that d¼ 2pz, which requires that the damping ratio be not greater than 0.3. The Scruton number was
shown to work very well in collapsing maximum response amplitude data for high mass ratio cantilevers to a single curve
of An

max versus Sc where An
¼A/D.

Griffin and colleagues attempted to expand the application of the mass-damping parameter to the prediction of the
maximum response amplitude of a wide variety of flexible structures, including cables in water(Griffin et al., 1973; Griffin
and Skop, 1976; Griffin and Koopman, 1977). They derived a new parameter, beginning from a wake oscillator model. After
several years of attempting to perfect the model they concluded in a 1975 paper that their parameter reduced to a
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constant times the Scruton number, which at the time, was referred to in the literature as ks(Griffin et al., 1975a, 1975b).
The Skop-Griffin parameter was given the symbol SG and is defined below in terms of various old and modern symbols:

SG � 2pS2ks ¼ 2pS2 2md
rD2

¼ 2p3S2mnz: ð2Þ

The symbol S is the Strouhal number for flow past a stationary cylinder and was intended by Griffin et al. to be taken as
a constant. The Griffin plots showed general trends of agreement between maximum response amplitude and SG but there
was lots of scatter to the data. This was in part due to mixing data from structures with different mode shapes and also
because the dependence on Reynolds number had not yet been appreciated.

By the late 1970s critics began to point out shortcomings of mass-damping parameters as predictors of VIV response
amplitude, particularly at low mass ratios (Sarpkaya, 1979). Criticism continued to accumulate, and in 1990 Zdravkovich
recommended that mass-damping parameters be used only for very high mass ratio cylinders, such as structures in air
(Zdravkovich, 1990). Sarpkaya gives a lengthy analysis of the deficiencies of mass-damping parameters in Sarpkaya (2004).
2.2. Two-dimensional cylinder studies by Williamson and colleagues

The goal for the use of mass-damping parameters has been to find a single parameter of the form mnz which would
collapse An

max experimental data onto a single smooth curve. It was not until Khalak and Williamson (1999) and Govardhan
and Williamson (2006) that real progress was made in reducing the scatter in the Griffin plots. One reason for their success
was the elimination of mode shape as a variable, when they simplified the problem to that of understanding the vortex-
induced vibration (VIV) of two dimensional, spring-supported, rigid cylinders, in a uniform flow. They refined the familiar
mnz parameter to account for the influence of added mass. Their revised parameter was given the symbol a and is defined
in Eq. (3):

a¼ ðmnþCaÞz: ð3Þ

This is the most general form of mass-damping parameter proposed to date. It reduces to mnz when Ca¼0.0. When the
value of Ca is changed, one must also modify the expressions for natural frequency and damping ratio as shown in Eqs. (5)
and (6). Govardhan and Williamson (2006) set Ca equal to 1.0, when using a. An alternative form of a may be obtained by
expressing it in terms of dimensional variables, as shown in Eq. (4):

a¼ ðmnþCaÞz¼ 2c=ðprD2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k=ðmþmaÞ

q
Þ ¼ 2c=rpD2on: ð4Þ

With precise experiments Govardhan and Williamson showed that this parameter smoothly collapsed the measured
peak response, An

max, when Reynolds number was taken into account. They also showed that if Reynolds number and mass-
damping were held constant, then An

max was independent of mass ratio for values from 1 to 20 (Govardhan & Williamson,
2006). The introduction of added mass in the parameter changes only the natural frequency, by a fixed amount according
to the value of Ca used. For a given test arrangement and a fixed value of Ca, the natural frequency is constant, leaving the
damping constant, c, as the only experimentally varied parameter, as revealed in the right-hand-side expression in Eq. (4).
Because the Scruton, Griffin and Govardhan-Williamson parameters differ by only a constant factor from one another, then
they all must share the same strengths and weaknesses in revealing correlations with peak response data.

The long-lasting appeal of the mass-damping parameter is due in part to an extraordinary property, as can be seen in
Eq. (4) above. The parameter includes no information about the flow speed of the fluid. It is quite remarkable that without
knowing the flow speed the mass-damping parameter may be used to predict the maximum response amplitude. It will be
shown that this is the result of fortuitous properties of two dimensionless parameters, Un

¼U/fnD and U/fD. These
parameters do contain flow information, but tend to take on constant value when at the peak response amplitude,
independent of the mass ratio and the level of damping, permitting the mass-damping parameter to collapse peak
response data onto a smooth curve.

The spring-mounted cylinder is used in this paper as the canonical problem which may be used to compare the
performance of mass-damping parameters with the proposed alternatives bn and cn. The analysis of the spring-mounted
cylinder is presented in some detail in the next section and draws significantly on the work of Govardhan and Williamson
(2006), Khalak and Williamson (1999) and Klamo et al. (2005).
3. The VIV response of spring-mounted rigid cylinders in cross-flow motion

Fig. 1 shows a simple oscillator, consisting of a uniform cylinder of structural mass M, length L, and diameter D,
mounted on springs, connected to a damper and restricted to cross-flow motion. The linear dashpot constant is C. It has
units of force/velocity. In this paper a lower case c is use to denote the damping constant per unit length. Hence, c¼C/L. In a
similar fashion the equivalent mass and stiffness per unit length are defined in terms of lower case letters as, m¼M/L and
k¼K/L. These per unit length metrics will be used henceforth. Additionally, definitions are needed for damping ratio,
natural frequency and mass ratio. These are provided in Eqs. (5), (6), and (7) in which m and ma are the structural mass and
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Fig. 1. Spring supported rigid cylinder with VIV in the cross-flow direction only.
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fluid added mass per unit length of cylinder. r is the fluid density.

z¼
c

2ðmþmaÞon
¼

c

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðmþmaÞ

p , ð5Þ

on ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

ðmþmaÞ

s
where ma ¼ CarpD2=4, ð6Þ

mn ¼
4m

rpD2
: ð7Þ

For damping ratios less than 0.3 the logarithmic decrement is given by the simple expression d¼ 2pz. For larger

damping ratios the following relationships are useful:d¼ 2pz=
ffiffiffiffiffiffiffiffiffiffiffiffi
1�z2

q
, z¼ d=ðð2pÞ2þd2

Þ. For most realistic cases of VIV

the damping ratio is less than 0.3 and the simpler equation will suffice. This is true for all examples used in this paper.

3.1. Dynamic equilibrium conditions for a spring-supported cylinder

The analysis of the response of a spring-mounted cylinder to VIV has been published many times including Scruton
(1956). It is briefly repeated here. The equation of motion in the cross-flow direction for the cylinder shown in Fig. 1 may
be written as

M €yþC _yþKy¼
1

2
CYrU2DL sinðotþjÞ: ð8Þ

The principal assumption is that the cross-flow excitation is a steady-state, periodic force, which may be decomposed
into a Fourier series. Because Eq. (8) is a linear, ordinary, differential equation, then by the principle of superposition the
response to each Fourier component may be computed individually. The hydrodynamic force shown on the right hand side
of Eq. (8) is in this case assumed to be the principal Fourier component of the cross-flow excitation. After dividing by the
length, the equation may be expressed in an equivalent per unit length formulation, which will be used in the remainder of
this analysis:

m €yþc _yþky¼
1

2
CYrU2D sinðotþjÞ: ð9Þ

The steady state particular solution to this equation is given by yðtÞ ¼ AsinðotÞ, which upon substitution into Eq. (9)
leads to two Eqs. (10) and (11), shown below, in which the time dependent terms have cancelled out. Eq. (10) establishes
the equilibrium relationship between the component of the fluid excitation in phase with stiffness and inertial forces in
the system:

ðk�mo2ÞA¼
1

2
CYrU2D cosðjÞ: ð10Þ

Eq. (11) expresses the dynamic equilibrium that exists between the fluid lift force/length in phase with the cylinder
velocity and coA, the force/length required to drive the dashpot:

coA¼
1

2
CYrU2D sinðjÞ: ð11Þ

Both Eqs. (10) and (11) are valid at any steady state excitation frequency. Eq. (10) contains all of the system information
about mass, stiffness and resonance and contains no damping information. Eq. (11) has no information about the
resonance properties of the system, just damping. Eq. (11) may be solved for An as shown in Eq. (12):

An
¼

A

D
¼
rU2

2coCY sinðjÞ ¼ rU2

2coCL ¼
CL

cn
: ð12Þ
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Within the limitations of the assumption that the lift force is steady-state and periodic Eq. (12) provides the
dimensionless group that governs the response amplitude. That group is called cn in this paper and is given by:

cn ¼
2co
rU2

: ð13Þ

In Eq. (12) the lift coefficient is defined as CL � CY sinðjÞ. This leads to Eq. (14), a remarkably simple expression for the
lift coefficient:

CL ¼ Ancn: ð14Þ

Eq. (12) shows that An depends only on CL and cn. CL accounts for many factors including Reynolds number. The
equilibrium between lift force and damping force is accounted for by cn. If cn expresses the correct relationship between
damping and response amplitude, it is difficult to believe that a much simpler mass-damping parameter might also work.
It is shown in the next section, that under the restricted conditions which permit mass-damping parameters to
successfully organize An

max data, cn and the mass-damping parameter are simply proportional to one another, as shown
in the following equation: cn ¼ GðmnþCaÞz, where G is a constant, which depends on Un and U/fD.

cn has been suggested previously in the literature, though represented by different symbols. In Vandiver (1993) the
author derived a parameter which was equal to cn/2. In Vandiver (2002) it was shown how the parameter, called cn in this
paper, could be implemented in a modal analysis prediction of the response of a flexible cylinder in sheared flow. In
Vandiver and Marcollo (2003) it was shown that the parameter appears in solutions for the response of finite and infinitely
long flexible cylinders in sheared flow. Although the parameter was previously derived, for the first time in this paper the
applicability of the parameter is supported with experimental evidence.

3.2. Modeling cylinder response with the mass-damping parameter

Versions of Eq. (12) have been expressed by many authors, including Scruton (1956); Khalak and Williamson (1999),
and Govardhan and Williamson(2006). In Govardhan and Williamson (2006) it appears as eq. 1.4 as given by
An
¼ 1=ð4p3ÞðCY sin f=ðmnþCaÞzÞÞðUn=f nÞ2f n, where fn¼ f/fn and Un

¼U/fnD. Eq. (15) is the equivalent formulation in terms
of U/fD and Un

¼U/fnD:

An
¼

1

4p3

CY sin f
ðmnþCaÞz

U

f nD

� �
U

f D

� �
: ð15Þ

Equating Eqs. (12) and (15) and solving for cn yields:

cn ¼ 4p3 f nD

U

f D

U

� �
ðmnþCaÞz
� �

¼ GðmnþCaÞz: ð16Þ

In Govardhan and Williamson (2006) the authors state that the goal of a successful mass-damping parameter is ‘‘to
reasonably collapse peak-amplitude data An

max in the Griffin plot’’. To achieve success they go on to say ‘‘Therefore the
assumption is often made that both (Un/fn) and (fn) are constants under resonance conditions’’, giving:

A
n

maxp
CY sinf
ðmnþCaÞz

: ð17Þ

This is equivalent to saying that G in Eq. (16) is a constant, given by G¼ 4p3ðf nD=UÞðf D=UÞ. The experimental data from
Govardhan and Williamson (2006) show that at An

max, U/fnD and U/fD remain constant as a is varied, thus verifying that G is
a constant in Eq. (16). Example data from the experiments described in Govardhan and Williamson (2006) are reproduced
with permission of the authors in Figs. 2 and 3. Fig. 2 presents response An versus Un for seven different values of a. The
experiment was conducted on a spring-mounted vertical cylinder at a Reynolds number of 4000, measured at An

max. For the
seven values of a at An

max the mean and standard deviation of Un are 5.90 and 0.16, respectively. The mean value is shown
by a vertical line in the figure. At the same peak locations the mean and standard deviation of U/fD are, 5.86 and 0.16. Thus,
as assumed in Eq. (17), U/fnD and U/fD are constant at An

¼An
max. The factor G is therefore a constant, as given by

G¼ 4p3ðf nD=UÞðf D=UÞ ¼ 3:5970:18.
Govardhan and Williamson then go on to show that by accounting for Reynolds number it is possible to express An

max as
a function of a as shown in Eq. (18) and plotted in Fig. 3:

An

max ¼ ð1�1:12aþ0:30a2Þlogð0:41Re
0:36
Þ: ð18Þ

Fig. 3 is a plot of An
max versus a for three different values of Reynolds number, 1250, 4000, and 12000. The curve fits in

the figure satisfy Eq. (18). Since it has been shown that for the data in Fig. 3,a¼ cn=G where G is a constant, then a simple
substitution for a provides an expression equivalent to Eq. (18), but formulated in terms of cnand G:

An

max ¼ 1�1:12
cn

G

� �
þ0:30

cn

G

� �2
" #

logð0:41Re
0:36
Þ:

Thus the effect of Reynolds number on An
max is independent of the choice of cn or a in the equations above.



Fig. 2. A* versus U* for Re¼4000, m*¼10.9 and various values of damping constant. Adapted from Govardhan and Williamson (2006) Fig. 8, Vertical bar

at U*¼5.90.

Fig. 3. A*max versus log(a) for Re¼1250(m*¼15.3), 4000(m*¼10.9) and 12000(m*¼10.3). Adapted from Fig. 12, Govardhan and Williamson (2006).
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Eq. (18) shows that the effect of damping on response may be separated from that of Reynolds number. However, it
does not provide an explicit connection between lift coefficient and Reynolds number. This is provided by Eq. (12), which
says that Ancn¼CL. Because cn is not dependent on Reynolds number, then the dependence of An

max on Re as revealed in Eq.
(18), must be embedded in a variation of CL with Re.
3.3. Modeling cylinder response as a function of the parameter bn

The damping parameter bn was first defined by Shiels et al. (2001) and then first used with experimental results by
Klamo et al. (2004 , 2005). It is defined as bn

¼ 2c=DrU and is easily related to cn as in shown in Eq. (19):

cn ¼
oD

U

� �
2c

DrU

� �
¼onbn, where on ¼oD=U ¼ 2pf D=U: ð19Þ

Klamo et al. (2005) have shown that bn collapses the plot of An
max just as well asðmnþCaÞz. This is shown in Fig. 4, used

with permission from Klamo et al. (2005). This is peak amplitude data from spring-supported, rigid cylinder experiments.
The authors showed that the effect of Reynolds number could be separated from the effect of damping. The figure shows a
plot of An

max as a function of bn for various combinations of Re and mn. In order for bn to successfully collapse peak response
amplitude data, cn in Eq. (12) must be expressible as a constant times bn. This means that the parameter on must be



Fig. 4. A*max versus b*, as a function of Reynolds number and mass ratio. Error bars show uncertainty in measured damping. From Fig. 2,

Klamo et al.(2005).

Fig. 5. A*max versus a, A*max versus c*, A*max versus b*, and CL versus c* for Re¼4000 and m*¼10.9. Derived from data provided by Govardhan and

Williamson (2006).
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constant, which is equivalent to the requirement that U/fD be a constant, which was shown to be true in the earlier
discussion of the relationship between An

max and a.
bn may prove to be more robust than ðmnþCaÞz in collapsing An

max data, because using bn requires only that U/fD be
constant as bn is varied. When using ðmnþCaÞz, both U/fD and U/fnD must remain constant in order for Eqs.(16) and (17) be
satisfied.

3.4. The equivalence of bn, cn anda at An
max

It has already been shown that for the Re¼4000 data in Figs. 2 and 3, cn ¼ 3:59a. For this same data the mean value of
on ¼ 1:072. Therefore, at An

max cn¼1.072bn. Fig. 5 is a plot on a linear scale of An
max versus bn, cn and a for the Re¼4000 data

from Govardhan and Williamson (2006). Note that the horizontal axis serves for all three damping parameters, bn, cn and a.
The a and bn curves differ only by constant factors from the cn curve. The curves for bn and cn are very nearly equal. This is
because on, the factor from Eq. (19) which relates bn to cn, is very nearly equal to 1.0 at An

max. Thus, when the response
frequency is not available, one may roughly approximate cn by substituting bn or one may estimate on and obtain an
estimate of cn from cn ¼onbn.

The use of cn has two particular advantages over ðmnþCaÞz or bn. The first is the relationship from Eq. (14), Ancn¼CL. This
relationship makes it clear that the response An

max is inversely proportional to cn and that the constant of proportionality is



Fig. 6. CL versus A*max: (a). Re¼4000, m*¼10.9 and fD/U¼0.1706; (b). SHEAR7 Table 1 for Conservative Design.

J.K. Vandiver / Journal of Fluids and Structures 35 (2012) 105–119112
CL. This relationship was used to create the fourth curve in Fig. 5, a plot of CL versus cn at An
max. The values of CL shown in the

figure are the magnitudes of the periodic dynamic lift coefficients that must have occurred in the spring-mounted cylinder
experiment, so as to produce the observed peak response. These lift coefficients have been obtained, not from forced
response data, but from free vibration response data. Eq. (14) is only true under dynamic response equilibrium conditions.
For any given combination of damping, flow speed and natural frequency, a freely-vibrating, spring-mounted cylinder will
respond at some value of An, corresponding to a value of CL. In other words Eq. (14) may not be used for arbitrary
combinations of An and reduced velocity, but only those combinations that represent dynamic equilibrium conditions.

In order to make CL curves useful in response prediction programs, such as SHEAR7, it is necessary to tabulate CL in
terms of An and on. Fig. 6 is an example in which the CL data from Fig. 5 is plotted versus An

max at on ¼ 1:072. Also shown is
a CL curve which is implemented in SHEAR7. The SHEAR7 curve has been deduced from the analysis of a variety of sources
of experimental data and has been shown to yield a conservative prediction of response of flexible cylinders at the wake-
synchronized vortex shedding frequencies in uniform and sheared flows. The contributions from higher harmonics are not
included. This SHEAR7 CL curve will be used in a final example in the paper, a prediction of response for a flexible cylinder.

The second advantage is that when using cn, no assumptions require that either Un or on be constant, thus allowing use
of cn at all frequencies.
3.5. Dimensional analysis for the spring-mounted cylinder.

A list of common dimensional quantities known to be important in predicting VIV response of a spring-mounted
cylinder includes: A, c, D, k, L, m, U, kd, u, o, r, and m: Of these the only variables previously not defined in this paper are
kd, u, and m. They are respectively the roughness height, the root-mean-square turbulence velocity, and the fluid viscosity.
All twelve parameters are composed of at most the three fundamental units, mass, length and time, and therefore one
expects to be able to find nine dimensionless groups.

The dimensional analysis proceeds by choosing three parameters to be the primary variables. In this case the three
primary variables D, U and r were selected, and then used to obtain dimensionless groups from the nine remaining
parameters. The particular selection of D, U and r as the primary variables guarantees that the Reynolds number is found
directly. Of the nine dimensionless groups obtained by the procedure An was selected as the dependent parameter, which
may be expressed as an unknown function of the remaining eight independent dimensionless groups, as shown in Eq. (20):

An
¼ F Re ¼

DrU

m ,
L

D
, mn ¼

4m

prD2
,

u

U
,

kd

D
, bn
¼

2c

DrU
, kn
¼

2k

rU2
, on ¼

oD

U

" #
: ð20Þ

The first five of the eight groups are those commonly used in the VIV literature and are respectively, the Reynolds
number, the length to diameter ratio, the mass ratio, turbulence intensity and the roughness. The last three are less
common. bn and kn are the dimensionless damping and stiffness used by Shiels et al.(2001) and Klamo et al.(2004, 2005,
2006). The final group is on a variant of the reduced velocity: on ¼ ðoD=UÞ ¼ 2pðf D=UÞ. In three of the nine groups
numerical constants have been added so as to make them more useful later in the paper, and to make them consistent with
common usage such as in the definition of mass ratio. This does not affect their validity as independent dimensionless
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groups describing the system. The reader should take note that mn as defined here is different from that used in Klamo
et al. (2005), such that mn

Klamo ¼ pmn=2.
The theory of dimensional analysis tells us that, assuming an important physical parameter has not been omitted, the

eight independent parameters found above are sufficient to completely characterize the response in terms of the
dependent parameter An. These parameters are appropriate for all experimental conditions that might occur for the case of
the spring-mounted cylinder depicted in Fig. 1.

The dimensional analysis is revealing for what does not appear: cn, Un, f n, and z. These parameters and many others in
common usage are not useful for all experimental conditions. They become useful only under restricted conditions. For
example, the mass damping parameter, ðmnþCaÞz, is useful only at An

max, which occurs only at restricted values of Un and fn.

cn becomes useful when the assumption is made that the response corresponds to a steady state, periodic excitation. This
was the assumption made at the beginning of this paper. This assumption is valid over a wide range of conditions which
allow synchronization of the wake with the cylinder motion. When that condition is met then collapsing two normally
independent dimensionless parameters into one yields a useful derived parameter: cn ¼onbn.
4. Circumstances in which mass-damping parameters fail

4.1. The Bernitsas experimental setup

Prof. Michael Bernitsas has constructed an experimental facility for the purpose of perfecting devices, which use flow-
induced vibration to extract power from flowing water, as described recently in Mechanical Engineering (Bernitsas, 2010).
The full description of the experimental apparatus and data used here with the permission of the authors are presented in
the references (Lee et al., 2011a, 2011b).

In the Bernitsas laboratory one or more single degree of freedom oscillating cylinders may be exposed to the flow in a
channel. The data shown here are from a series of runs in which a single cylinder was used. The particular test conditions
and system properties are given in Table 1. The experimental apparatus is mechanically equivalent to a real spring-
mounted cylinder in the sense that the springs and most of the damping are not provided by actual springs and dashpots,
but by virtual stiffness and damping produced by an actuator, which is feedback controlled. The feedback control system is
described in Lee et al.(2011a). The system has a small amount of real mechanical damping, Cbear, due to sliding
components and bearings. Additional damping, Charn, is set in the control system, as is the virtual spring constant, Kvirtual.
Bernitsas has chosen the symbol Charn to represent the damping coefficient which accounts for the power which the
system is able to extract or ‘harness’ from the flow.

In this paper, the total damping is of interest. By defining Ctotal¼CbearþCharn, the equation of motion for the equivalent
mechanical system takes on exactly the same form as given previously in Eq.(8), describing a spring mounted cylinder:
Mtotal €yþCtotal _yþKvirtualy¼ ð1=2ÞCFrU2DL sinðotþjÞ.

All of the previous conclusions about the response of a single-degree-of-freedom cylinder exposed to a uniform flow
apply to the Bernitsas system as well. Division by the length produces the equation of motion in terms of m, k and c, the

mass, stiffness and damping constants per unit length: m €yþc _yþky¼ ð1=2ÞCFrU2D sinðotþjÞ. For this system the in

vacuo natural frequency is given by f n ¼ ½1=2p�ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðKvirtual=MtotalÞ

p
Þ ¼ ½1=2p�ð

ffiffiffiffiffiffiffiffiffiffi
k=m

p
Þ.

This experimental technique has many new features, and the data shown here has yet to be corroborated by
independent experiment. Some readers may not be convinced that a feedback control system is able to replicate the actual
free vibration response of an oscillator excited by real flow. Others may be surprised by the unusually large response
amplitudes measured in these experiments. Controversial or not, these data are very well suited to the purpose of this
paper, which is to demonstrate that cn is able to reveal the relationship between An and damping over the entire
synchronization range and to do so effectively, even under conditions for which mass-damping parameters would fail.
For example, these data violate the assumption that U/fnD is a constant at An

max.
Table 1
Test parameter values corresponding to examples from Lee and Bernitsas(2011b).

Mtotal(kg) Total system dry mass 10.94 kg

Madded(kg) Added mass for Ca¼1.0 5.676 kg

m* Mass ratio(specific gravity) 1.927

D(m, inches) Cylinder diameter 0.0889m, 3.5 inches

L(m, Feet) Cylinder length 0.9144 m, 3.0 feet

Kvirtual(N/m) Virtual spring constant 400, 600, 800, 1200, 1400, 1600 and 1800 N/m

Cbear(N-s/m) Fixed mechanical damping 4.4 N-s/m

Charn(N-s/m) Adjustable virtual damping (0.0, 7.48, 14.97, 22.45, 29.94)

Ctotal(N-s/m) Total damping (4.4, 11.88, 19.37, 26.85, 34.34)

ctotal(N-s/m2) Total damping per meter (4.81, 12.92, 21.18, 29.37, 37.56)

U(m/s) Variable flow velocity Range from 0.4 to 1.4 m/s

Re Reynolds number 40,000 to 120,000

u kinematic viscosity, water 1.1389*10�6 m2/s
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4.2. Illustrating the use of cn with data from lee and Bernitsas (2011b)

The data presented here were taken for one system mass and one mass ratio, mn
¼1.93. All results shown in Figs. 7 to 10

used a single value of stiffness, K¼800 N/m. Data were taken for five different values of damping coefficient, ctotal, as
summarized in Table 1. The length of the test cylinder was 3.0 feet or 0.9144 m. Table 1 also presents the damping
constant per unit length of cylinder, noted as ctotal. The damping constant per unit length is given in the legends of the
figures, because it is used in the computation of cn. For each value of damping, response was measured over a range of
velocities spanning the entire VIV synchronization range.

Figs. 7 and 8 show conventional plots of An versus Un and An versus U/fD. In these figures the five traces correspond to the
five different values of ctotal. The natural frequency used in the definition of Un in Lee and Bernitsas (2011b) is the natural
frequency in still water(Ca ¼1.0), which was fn¼1.104 Hz for K¼800 N/m. The corresponding natural frequency in air was
fn,air¼1.361 Hz. For each value of ctotal the current speed was varied in 20 to 24 discrete steps. At each speed step An and f were
measured. To find a more complete presentation of the data, the reader is referred to Lee and Bernitsas (2011b).

The An values shown here are the average of the top ten peaks in the approximately steady state sample of time series
data at each flow velocity. For the lowest value of damping constant the peak response, An

max, shown in Figs. 7 and 8 was in
excess of 1.5 diameters. One reason for the unusually large response is that the cylinder was intentionally roughened in
the region between 60 and 80 degrees, measured in both positive and negative directions back from the leading edge of the
Fig. 7. A* versus U* for K¼800 N/m and various values of damping constant, ctotal; source data described in Lee and Bernitsas (2011b).

Fig. 8. A* versus U/fD for K¼800 N/m and various values of damping constant, ctotal; source data described in Lee and Bernitsas (2011b).



Fig. 9. A* versus c* for K¼800 N/m and various values of damping constant, ctotal; source data described in Lee and Bernitsas (2011b). The hyperbola

Ancn ¼ CL,max ¼ 0:79 is also shown.

Fig. 10. CL versus c* for K¼800 N/m and various values of damping constant, ctotal; source data described in Lee and Bernitsas (2011b).

J.K. Vandiver / Journal of Fluids and Structures 35 (2012) 105–119 115
cylinder. In earlier work Bernitsas and his doctoral student K. Raghavan showed that roughness in this region would
enhance maximum response (Bernitsas et al., 2008) and (Raghavan, 2007).

In a very recent paper (Chang and Bernitsas, 2011), it is explained that intentional use of roughness patches induces
galloping of the spring-supported cylinder. In contrast to VIV, galloping is characterized by unusually large response
amplitudes, lower than usual response frequencies and shedding of greater numbers of single and paired vortices per half
cycle. The response shown in Figs. 7 and 8 is a mixture of ordinary VIV and galloping. The galloping tends to be associated
with lower values of damping, higher values of An and higher values of Un.

Examination of Fig. 7 reveals that the value of Un at An
max does not remain constant as damping is varied. For the five

different values of damping, ordered from highest to lowest damping, the values of Un corresponding to the values of An
max,

were (7.94, 8.25, 9.07, 9.37, 10.19).Similarly, Fig. 8 reveals that at An
max U/fD does not remain constant as the damping is

varied. However, the variation in U/fD is much less than with Un in Fig. 7. If one were to attempt to collapse this An
max data

using a mass-damping parameter, the assumption that Un and U/fD are constant would be violated. One would have to
separately account for Un and U/fD as shown in Eq. (15).

The parameter bn is more robust. Recall that cn ¼ ðoD=UÞbn
¼ 2pðf D=UÞbn. In order for bn to correlate well with An

max the
factor U/fD should remain constant as the damping is varied. For the data shown in Fig. 8 U/fD varies from 8.13 to 8.77 as
the damping varies from largest to smallest. This is only a standard deviation of 3.3% with respect to the mean value of
8.45. Figs. 7 and 8 are plotted to the same horizontal scale, revealing visually that the variation with respect to U/fD is
much less than with respect to Un.



Fig. 11. CL versus A*max for K¼400, 800, & 1600 N/m and various values of damping constant per unit lenth, ctotal. Average Reynolds number shown for

each value of K. Source data described in Lee and Bernitsas (2011b).
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By using cn, the relationship between damping and response may be portrayed for the entire synchronization range, as
shown in Fig. 9, a plot of An versus cn. Each point in Fig. 9 represents the dynamic equilibrium that exists between the
damping force and the fluid dynamic lift force in phase with the cross-flow velocity of the cylinder. This equilibrium is
expressed by the relation CL¼Ancn, which is the equation of a hyperbola. On a plot of An versus cn lines of constant CL would
appear as hyperbolas. One such hyperbola is shown in Fig. 9, corresponding to the maximum observed lift coefficient of
0.79. In Fig. 10 the variation in CL with cn is shown for the five different values of damping.

Fig. 11 is the final one constructed from the Lee and Bernitsas data. It is a plot of CL versus An
max for three different values

of spring constant, 400 N/m, 800 N/m and 1600 N/m. For each value of spring constant the same five values of damping
constant, Ctotal, were used. Since the natural frequency varies with the square root of stiffness, this range of stiffness
translates into a doubling of the in air natural frequency, as K varies from 400 to 1600 N/m. The flow velocity and therefore
the Reynolds number at which peak response occurs should vary roughly in proportion to the natural frequency. In Fig. 11,
for each spring constant the values of CL versus An

max are plotted for the five different damping values. The average
Reynolds number corresponding to the five data points making up each curve is given in the legend. The variation of
Reynolds number ranges from 47,300 to 86,600.

Both Govardhan and Williamson (2006) and Klamo et al. (2005) have shown that An
max is dependent on Reynolds

number. From Eq. (14) it is also known that Ancn¼CL. Since cn is not a function of Reynolds number, then the Reynolds
number dependence of An is due entirely to a Reynolds number dependence of CL. This is revealed in Fig. 11.These results
may not be directly compared to smooth cylinder data, because the cylinder used in these experiments was selectively
roughened to increase response. Although the roughness has been modified, it is the same roughened cylinder for all data
shown here. Therefore, one may conclude that for these experiments the lift coefficient increased with Reynolds number,
which is qualitatively similar to the increase in lift coefficient that has been observed for smooth cylinders. However, much
more experimental work remains to be done to properly quantify the influence of Reynolds number on the lift coefficient.
5. A role for cn in the creation of CL tables for practical response prediction

The design of a drilling riser for high current areas requires the prediction of the flow-induced vibration of a flexible
cylinder in a sheared flow. Such predictions are the purpose of programs such as SHEAR7 (Vandiver et al., 2011), which has
been in industry use since the early 1990s. Example predictions may be found in Resvanis and Vandiver (2011b). The
program requires lift coefficient data tabulated as a function of An and on or fD/U. Historically CL tables have been compiled
from data taken in forced vibration experiments. The first such data to be widely used was compiled by Ram
Gopalkrishnan (1993). In his work a rigid cylinder was given an imposed, sinusoidal, cross-flow oscillation at a prescribed
flow velocity and frequency. Forces were measured at the cylinder ends. From these data lift and added mass coefficient
tables were created and became the basis for the earliest lift coefficient tables used in programs such as SHEAR7.

Eq. (14), CL¼Ancn, provides the means of compiling CL versus An data from free vibration response measurements. An
example is given in Fig. 6. It presents CL versus An

max for two cases. One is the Re¼4000 data from Figs. 3 and 5. It
corresponds to U/fD¼5.86 or on ¼ 1:072. The second curve in that figure is one that is currently recommended to users of
SHEAR7, when a conservative VIV response prediction is desired. The value of CL is a function only of An. It is used by
SHEAR7 to determine the CL value for any value of fD/U that is within the lock-in bandwidth for the responding mode being
analyzed. A numerical example in which this CL curve is used by SHEAR7 is presented in the next section.
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SHEAR7 has other CL curves the user may choose from when less conservatism is required in the response estimate. In
some of these curves CL is a function of both An and fD/U. SHEAR7 also has CL curves, which are intended for use in
modeling risers with strakes or fairings.

6. Extending cn to characterize the response of long flexible cylinders

It was stated in the Introduction that ‘the principal goal of this paper is to establish a damping parameter that will be
useful in practical VIV response prediction problems’. Although response prediction programs, such as SHEAR7 have been
in use for nearly twenty years, there is no damping parameter in current use that is able to collapse predicted or measured
response data for sheared flows or for risers with partial strake or fairing coverage. The following example shows how cn

may be adapted to serve this purpose.
Consider the following thought experiment. A flexible cylinder of length L¼38 m, diameter D¼12 mm, tension

T¼1000 N, and mass ratio mn
¼1.74 is exposed to a uniform flow. The cylinder is protected from VIV by a fairing attached

to it. With 100% fairing coverage the cylinder exhibits no VIV. Progressively the fairing is removed symmetrically from the
center outwards towards the ends. The exposed portion is known as the power-in region. The length fraction of the power-
in region is given by Lin/L, where Lin is the length of the central exposed region. The flow velocity is U¼1.5 m/s. For all
values of Lin/L greater than zero, the central region will be a source of potential VIV for several natural vibration modes. The
excited modes will be those for which Un falls within a lock-in range, such as 5.2 to 7.8, which is specified in the input data
file for the program. In this example at 1.5 m/s the possible modes included in the specified reduced velocity bandwidth
include modes 25 to 33.

A numerical experiment was conducted in which SHEAR7 was used to predict the response of modes 25 to 33 for
power-in length fractions that vary from 10% to 100% of the total length in increments of 5%. The program computed the
response of each mode individually. To do so required a lift coefficient model and a damping model, which are both built
into the program. The calculation is non-linear, because both the lift coefficient model and the hydrodynamic damping
depend locally on the response An(z). The program iterates until it converges on a solution. In this example the predicted
response is plotted as a function of cn to see if there is significant correlation between cn and the predicted response.
Previously in this paper, cn has been computed for uniform rigid, spring-mounted cylinders in uniform flow. A form of cn is
needed which is valid for flexible cylinders in sheared flow.

The lift coefficient is stored as a table in the program SHEAR7. The CL curve used in this example is that shown in Fig. 6,
as a plot of CL versus An. CL is set to be zero for regions of the riser with fairings. In the power-in zone, which is the central
section without fairings, each of the modes from 25 to 33 may be excited, because they have a value of Un that falls in the
range of 5.2 to 7.8. For each mode in turn the CL table, shown in Fig. 6, is used in an iterative algorithm, which converges to
an estimate of the modal response, qn/D, and the corresponding CL distribution along the length of the riser. qn is the mode
participation factor for mode n.

For each excited mode the total modal damping comes from the structural sources and from hydrodynamic damping on
the portion of the riser with fairings. The structural damping is specified as z¼ 0:003 for this example. The hydrodynamic
damping, introduced by the fairings, is computed from a formulation that is a function of the local reduced velocity and the
local response amplitude as described in Vandiver (2002). The hydrodynamic damping diminishes as the power-in region
grows in length. In this example the total modal damping ratio varies from 0.1 to 0.003, as Lin/L varies from 10 to 100%.

Vandiver (2002) describes in detail the method for the computation of modal damping coefficients, Rn, including the
structural and hydrodynamic effects. The computation of the corresponding values of the modal cnn is described in that
reference as well, although the symbol cn was not used in that paper. The final expression for the nth mode value of cn is
presented here:

cn

n ¼
2Rno
rU2Lin

: ð21Þ

Conceptually, cnn may be thought of as the cn parameter for an equivalent spring-mounted rigid cylinder of length Lin,
and having a modal damping constant per unit length of Rn/Lin.

In this example SHEAR7 was used to compute the response of each mode one at a time. The modal amplitude
multiplied by the corresponding mode shape yields an expression for the response of the riser due to that mode only. The
non-dimensionalized modal amplitude of mode ‘n’ is defined as qn/D. Fig. 12 plots qn/D versus cnn: this is the magnitude of
the predicted modal amplitudes (also called mode participation factors) versus the modal value of cn.

To obtain all of the points shown in Fig. 12 the exposure fraction Lin/L was varied from 0.1 to 1.0 in increments of 0.05.
For each value of exposed length fraction, there are approximately nine potentially responding modes, each with its own
value of qn/D and cnn. For each of these nine modes, the flow velocity is the same and the power-in length is the same.
However, because each mode has a different natural frequency and mode shape, the solution for qn/D and cnn for each mode
yields slightly different results. When plotted in Fig. 12, the nine modal responses will make up a small group of points
spread along a section of the curve. As the power-in length is changed, different portions of the curve, shown in Fig. 12, will
be populated by points. In general the response with the smallest power-in or exposed length is at the right of Fig. 12,
where cnn is large. The response with 100% power-in length has the highest response, as shown on the left of the curve at
minimum cnn. This is a very simplified example, constructed to illustrate the way one would go about computing a modal



Fig. 12. Modal amplitude, qn/D versus c*n from the predictions of SHEAR7 using the CL curve from Fig. 6.
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value for cnn, which when plotted versus qn/D collapses the data in a way that may be easily understood and interpreted.
Such an approach will work equally well for flexible cylinders in sheared flows and for structures with partial or full strake
coverage.

In some SHEAR7 design computations the lift coefficient tables that are used are functions of fD/U as well as An. The
direct consequence of this is to favor some modes in the excitation bandwidth with larger lift coefficients than others.
If the lift coefficient table were made a function of both fD/U and An, then some of the cases shown on the curve in Fig. 12
would occur at less favorable values of fD/U, and would therefore have much lower CL values than those used to plot
Fig. 12. The curve shown in Fig. 12 would be an upper bound on the response predictions. Only those modal predictions
which have ideal values of fD/U would fall near the upper bound. Many predicted modal response amplitudes would fall
beneath the curve in the figure.
7. Conclusions

For spring-mounted 2-D cylinders,
i.
 under steady state, periodic response conditions, cn is the damping parameter which captures the dynamic equilibrium
between lift force and damping force;
ii.
 when mass-damping parameters are able to successfully collapse An
max data the mass-damping parameters reduce to a

constant times cn;

iii.
 variations in response, An, with Reynolds number are associated with a variation in lift coefficient with Reynolds

number. The effect of cn on A/D is separate from that of Reynolds number.

iv.
 cn is valid at all frequencies in the synchronization range, not just at resonance.

v.
 cn has a direct relationship to CL via the equation Ancn¼CL. This allows CL data to be compiled from free response

experiments.

vi.
 when the response frequency is not known, cn may be approximated by bn

¼ 2c=DrU.

cn may be generalized to characterize the response of flexible cylinders in sheared or uniform flow, with or without
strakes and fairings.
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