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HIGH MODE NUMBER VIV EXPERIMENTS 

 
Abstract.  A simple equation is presented which provides the maximum achievable mode number for a 
flexible cylinder, towed by the top end with a weight at the bottom end.  The maximum achievable mode 
number, while towing in still water, is shown to depend primarily on mass ratio, length to diameter ratio 
and the maximum allowable angle of departure from vertical at the top end.   Modal overlap in lock-in 
regions is shown to depend strongly on mass ratio in uniform flow, but not in sheared flow.  The reduced 
velocity bandwidth parameter is introduced to quantify the extent of lock-in regions in sheared flow.  
Two shear parameters are shown to be useful in characterizing low and very high mode number response.  
Finite length lock-in regions are described for cylinders with infinite length dynamic properties.  

 
 

1. INTRODUCTION 
 

As offshore oil and gas production pushes into deeper water, drilling, production 
and export risers as well as TLP tendons have become critical elements in the design 
of these facilities.  All of these long cylinders are susceptible to significant vortex-
induced vibration.  Gulf of Mexico loop currents and detached eddies are the source 
of considerable concern to engineers having to design for fatigue resistance to VIV.  
     The prediction of VIV is currently based on data from relatively short cylinders 
tested in laboratory environments. The most successful VIV prediction programs for 
long cylindrical marine structures are empirically based and make use of the data 
from these laboratory models. Many assumptions are required to extend the 
simplified experimental results to the prediction of long cylinders in ocean currents. 
For the most part the prediction programs are intentionally quite conservative, 
sometimes resulting in the unnecessary use of VIV suppression. 
     Model tests with long flexible cylinders, responding at high mode number are 
highly desirable and are needed to help validate and fine-tune the prediction 
programs.  There are many difficult challenges faced in conducting experiments at 
high mode numbers. The challenges range from the design of the experimental 
apparatus, to the identification of the key fluid and structural parameters essential to 
the understanding of the model test results.   
     This paper deals with some of the challenges posed in the experimental design 
and then addresses the important physical parameters that help one to understand the 
response of a long cylindrical structure to VIV. By carefully examining the 
dynamics of the expected behavior, several new parameters have been formulated. 
These parameters make it easier to understand the behavior of long cylinders in 
shear flows.  
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2.  EXPERIMENT DESIGN 
 

2.1 Objectives 
 
High mode number experiments are expected to address a variety of questions, 
including: 

�� Does lock-in occur at high mode number? 
�� How much VIV suppression coverage is needed over the length of a riser to 

prevent high damage rate VIV events? 
�� What is the probability of single versus multi-mode response? 
�� What is the relationship between in-line and cross-flow response? 

 A Phase I testing program, sponsored by an industry consortium of companies, 
known as Deepstar, is being planned for the deep waters of Lake Seneca in Upper 
New York State. These tests will serve as a ‘proof of concept’ opportunity to test the 
sensors, the data acquisition system and the testing methods. The model will be 
towed behind a boat in a near vertical configuration with a large weight hanging off 
the bottom. The test matrix will address some of the issues mentioned in the 
questions above.  Both uniform and sheared flow tests will be attempted.   
     Phase II testing is being discussed for a real, sheared current profile in the 
offshore environment, such as the Loop or the Gulfstream.  The offshore 
environment introduces challenges and conditions beyond our control, such as the 
presence of surface waves.   
  
2.2 Maximum mode number 
 
In order to investigate the effects of high mode number VIV with model testing it is 
desired to design the model so that relatively high mode numbers are achievable. By 
performing some simple rearrangements of formula with approximations, the mode 
number, n, can be estimated giving insights into the important physical parameters 
required for the model. 
      For long cylinders where the tension dominates the bending stiffness effects in 
determining the natural frequencies, the natural frequencies may be approximated by  
 

2n
T

n Tf
L m

�                           (1) 

 
where L and T are the length and average tension, while mT  is the mass per unit 
length including added mass. For the lake experiments the tension is nearly constant 
along the length. 
     The highest shedding frequency,  fv,max is related to the highest velocity, Umax , the 
diameter, D and the Strouhal number, St as follows: 
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The frequency of the highest mode number possibly excited will be approximately 
the same as the highest excitation frequency. Equating the frequencies and 
rearranging gives: 

 

max
max 2 TU mn St L

D T
� .    (3)  

 
In the case of a towed riser model, the horizontal component of the towing force 
required at the top end of the riser is equal to the total drag force, and is given by 
 

max sin( )DF T ��      (4) 

 
The total drag force, FD, is the accumulation of local drag forces integrated over the 
length of the cylinder.  Solving for T  yields   max
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Assuming the tension is approximately constant requires that �  be small.  By 

squaring expression   (3) and substituting for T  from  (5) yields an expression for 

, the highest achievable mode number for the specified conditions. 
max

2
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If T is not approximately constant, then Equation (6) is a lower bound.  The 

expression 2U is the spatially averaged square of the velocity, � �2 zU , over the 

length of the cable. s� and f� are the densities of the structure and fluid, while Ca 
is the added mass coefficient. 
     Expression (6) has several different parameter groups. For uniform flows the 
ratio of the maximum velocity to the average velocity equals one, for sheared flows 
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the ratio is higher and thus the maximum mode number achievable is higher. The 
equation also reveals that the maximum mode number increases with top angle, 
mass ratio and aspect ratio. It may be desirable to limit the top angle so that the 
incident inflow remains close to perpendicular to the pipe axis. The mass ratio 
should be near to realistic prototype risers. The easiest parameter to systematically 
vary is limited to the aspect ratio. Larger aspect ratios lead to higher responding 
mode numbers. 
     For the proposed experimental model the aspect ratio is about 4100.  By limiting 
the top angle to 20 degrees, the achievable cross-flow mode number, as estimated 
from Equation (6) is 18. This is for a cylinder length of approximately 427 feet 
(130m), a diameter of 1.25 inches (0.0318m), a specific gravity of 1.5, an St of 0.17, 
a  of 2.0, and for a Ca of 1.0.  In-line frequency content is approximately a 
factor of two greater than the dominant cross-flow frequencies.  For a tension 
dominated system this means that if the cross-flow maximum mode number is 18 
then the maximum in-line mode will be approximately Mode 36.   

DC

 
2.3 Resolving in-line and cross-flow components 
 
Maximizing the aspect ratio naturally results in choosing as small a diameter as 
practical. With a small diameter, the ability to install instruments becomes more 
difficult. Additionally smaller diameters have lower torsional stiffness.    One of the 
objectives of the testing program is to be able to resolve both in-line and cross-flow 
motion components at every location that there is a sensor.  At each sensor one must 
also know the orientation.  This requires that the torsional stiffness be kept 
reasonably high.  The torsional stiffness K

�
 is given by 

 
    GJK

L�
�

      (7) 

 
where G is the shear modulus and J is the polar area moment of inertia. 
     The proposed model is Aluminum tubing (6061) with a 1.25 inch O.D. x 0.120 
inch wall thickness. The length will be 130 m for the Phase I tests and 
approximately 400 m for the Phase II tests. The respective values of torsional 
stiffness are 9.1 and 3.0 N-m per radian.  This is adequate for the shorter model, but 
might be a problem at longer lengths. 
   
2.4 The Number of required Sensors 
 
A current topic under evaluation is the number of sensors required to describe the 
vibration in space and time.  If the mode shapes are approximately sinusoidal in 
shape, then a spatial Nyquist criterion would suggest a minimum of two 
measurement points per wavelength.  The number of wavelengths in each mode 
shape is n/2.  Therefore, a rough estimate of the number of required sensors is the 
maximum mode number.  In the example computation in Section 2.2 that number is 
36 biaxial sensors for the 130-meter long model.  For a fixed maximum top towing 
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angle the number of required sensors increases approximately in proportion to the 
square root of the length.   
    The large number of sensors required to resolve the response at high mode 
numbers is both a financial and technical challenge. Current technology provides a 
choice among strain sensors, accelerometers and angular rate sensors.  The 
installation of a large number of sensors requires a serial, digital, data transfer.  
Otherwise there would be too many conductors running down the center of the pipe. 
Additionally if there is too much information to be passed along the serial 
connection, as would happen with a high sampling rate and high number of sensors, 
then the information must be stored at each sensor location.  Synchronous data 
acquisition among all sensors is extremely important if modal analysis is to be 
performed. For this reason a common trigger has to be designed into the acquisition 
system so that the sensors sample together.  

 
 
3. DIMENSIONLESS PARAMETERS IMPORTANT TO THE PREDICTION OF 

VORTEX-INDUCED VIBRATION OF LONG, FLEXIBLE CYLINDERS IN 
OCEAN CURRENTS 

 
The heading above is the title from a paper (Vandiver, 1993) which  discusses 
several important parameters including the reduced damping or mass-damping 
parameter, mass ratio, shear fraction, � �max/V V� , the number of modes within the 

shear bandwidth � �sN , and the wave propagation parameter � �nn� .  Some 
additional discussion and some new parameters follow. 
 
3.1  The Reduced Velocity Bandwidth 
 
Also introduced in that paper is the concept of “the lock-in bandwidth of the wake”.  
This is a measure of the ability of the wake to synchronize with the motion of a 
vibrating cylinder in a sheared flow.  It is based on the concept that at a specific 
vibration frequency and amplitude there is a flow velocity, V , which is ideally 
suited to supporting lock-in.  Furthermore, this ideal flow velocity is centered in a 
range of flow velocities which make up the lock-in region.  At this center velocity 
an ideal reduced velocity may be defined as   

c

 

c
Rc

v

VV
f D

�      (8) 

 
It is important to note that this reduced velocity is defined in terms of the vibration 
frequency, and not any fixed natural frequency.   
 
 In the presence of a shear, the velocity varies in the axial direction along the 
cylinder in both directions from this most favorable position.  Lock-in or wake 
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synchronization is able to persist over a limited range of velocity values, which is 
defined as � .  This variation when divided by the center velocity provides a 
definition of the lock-in bandwidth, 

V
RdV . 

 
,R U R L

R
c Rc

V VVdV
V V

��
� �

,     (9) 

 
     The second part of this equation is in terms of the upper and lower reduced 
velocities corresponding to the limits of wake synchronization.  This lock-in 
bandwidth parameter has also been referred to as the “reduced velocity bandwidth” 
in the user guide to the response prediction program SHEAR7 (Vandiver et al, 
2002).  This is a parameter used in design computations to predict the extent of a 
potential lock-in region.  A commonly prescribed design value for this number is 
0.4.  This specific value is to be interpreted as meaning lock-in may exist in a 
sheared flow over a range of flow velocities, which may vary +20% around the most 
favorable velocity. 
     Figure 1 is a conceptual sketch borrowed with permission from Prof. Michael 
Triantafyllou of MIT (2003).  It shows how the lock-in bandwidth and the strength 
of the excitation might vary with reduced velocity, defined in terms of the measured 
vibration frequency and cylinder vibration amplitude. Outside of the positive energy 
region the lift coefficient will be negative and will produce hydrodynamic damping.  
Outside of the wake capture region, the wake will not be correlated to the motion of 
the cylinder.  Experimentally such information has been obtained by driving 2D 
rigid cylinders, at constant frequency and amplitude in a constant speed uniform 
flow.    
  A very useful dimensionless frequency has been described by (Govardhan and 
Williamson, 2000).  It is v vof f  where vf is the vibration frequency and vof  is the 
stationary cylinder Strouhal frequency associated with the ideal center velocity, Vc , 
and is given by 

    t c
vo

S Vf
D

�                      (10)

   
If Uf  and Lf  are the upper and lower bounds of the lock-in range, then an 
experimentally determined estimate of the lock-in bandwidth is given by 
 

U L
R

vo vo

f ffdV
f f

��
� �                  (11) 
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Figure 1.  Wake capture range in terms of A/D and reduced velocity. From Triantafyllou, 

2003. 

This way of expressing the bandwidth has the advantage that  and therefore  
may be allowed to be a function of Reynolds number.  Equations 9 and 11 are 
equivalent if within a lock-in region the spatial velocity variation along a vibrating 
cylinder in a sheared flow is equivalent to a slowly changing frequency variation 
over time in a uniform flow.  This cannot be strictly true, but there is considerable 
experimental evidence to suggest that, as an engineering model of the real world, it 
is adequate for use in designing risers to resist VIV.   

tS vof

 In section 3.3 the role of reduced velocity bandwidth in determining response of 
a flexible cylinder in sheared flow is addressed.  Before engaging that discussion it 
is important to address the role of added mass, because it is often not correctly 
understood.  
 
3.2 The Role of Added Mass in Uniform Flow 
 
The reduced velocity bandwidth discussion above made no reference to added mass.  
The effect of added mass on lock-in of spring-mounted cylinders in uniform flow is 
well understood.  (Vandiver, 1993) describes it quite carefully.  In brief, the most 
significant aspect is that in a uniform flow added mass decreases dramatically as the 
reduced velocity is increased through the lock-in range.  A decrease in added mass 
results in an increase in the natural frequency of the cylinder.  A very common form 
of the reduced velocity is one defined in terms of a fixed frequency, such as the 
natural frequency in vacuo or in still water.  The symbol used for this form in this 
paper is VRn. 
     A plot of response A/D versus VRn, for a flexible cylinder vibrating in first mode 
with pinned ends is shown in Figure 2a.   
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Figure 2a.  RMS response/D versus reduced velocity, VRn, based on the natural frequency in 

air.  First and second mode cross-flow vibration of a flexible cylinder From a 1981 
experiment conducted by Exxon Production Research. Published with permission from 

ExxonMobil.  
 
 

 
 

Figure 2b.  Vibration frequency versus reduced for the 1981 EPR experiment on a flexible 
cylinder in water.  VRn defined using the fn in air. Published with permission from 

ExxonMobil. 
 

 This is data from an experiment conducted by Matt Greer of Exxon Production 
Research in 1981 at the Skibstekmisk Laboratorium in Denmark.  Ten hollow 
aluminum segments (outside diameter=0.12m, inside diameter=0.11m) were 
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mounted on a central tensioned steel rod. Plastic spheres were placed inside the 
segments to achieve the desired mass ratio, when flooded. The model was 9.93 
meters in length and had an external diameter of 0.120 meters. The composite 
cylinder had a specific gravity of 1.0 and a mass per unit length, including trapped 
water, but not including added mass of 11.3 kg/m. The cylinder was tensioned 
between struts beneath a towing tank carriage.  The damping ratio of the first mode 
in air was approximately 1.0 to 1.5% of critical and the natural frequency in air was 
1.936 Hz.  The tension was 16.7 kN.  The tension increased by as much as 8% due 
to drag force during the tests.  The value of fn used to compute VRn in Figures 2a and 
2b included the variations caused by tension variation, but does not include the 
variation in natural frequency caused by added mass variation. 
     When reduced velocity is defined in terms of a fixed natural frequency such as 
the natural frequency in vacuum, air or still water, the extent of the lock-in range 
depends on the mass ratio.  When this definition of reduced velocity is used, low 
mass ratio cylinders have a much greater value of the upper limit of the reduced 
velocity range than high mass ratio cylinders.  This is quite evident in Figure 2a.  
The upper end of the lock-in range is 9.5.  Williamson has shown that the maximum 
upper limit value of V  is given by Rn

 

   ,
*9.25 * .54

a
Rn u

m CV m
�

�
�

               (12) 

 
where the mass ratio, m*,  is defined as    
 
                          

� �2*
4f

mm
D��

�                                              (13) 

 
 The upper limit of the reduced velocity in Figure 2, for a Ca of 0.0, is predicted 
by equation (12) to be 13.6. The actual upper bound shown in the figure is 
approximately 9.5.  The reason the upper bound is not achieved is that the second 
mode of vibration asserts control of the wake synchronization.  The second mode 
amplitude is also shown in Figure 2a.  The second mode’s potential lock-in range 
overlaps that of the first, and for reasons not yet fully comprehended, the second 
mode becomes dominant at this particular reduced velocity.  This phenomenon is 
central to the behavior of high mode number response.  For typical risers with mass 
ratios of 1.0 to 3.0, lock-in regions will always overlap at high mode number.   
 Describing high mode number response under controlled uniform flow 
conditions is a high priority objective for the experiments and understanding mode 
to mode transitions is a particular focus. 
 Thus far two kinds of reduced velocity bandwidth have been described.  VRn is 
based on a fixed natural frequency and is relevant to determining the lock-in 
bandwidth and extent of modal overlap for uniform flow conditions only.  As the 
flow speed changes with time the natural frequency changes with the change in 
added mass.   Equation (12) reveals a significant disadvantage of using VR,n.  The 
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values depend on the Ca value the user prescribes.  Using an added mass coefficient 
of  0 or 1 to define the natural frequency used to compute VR,n  shifts the value.   
 VR, which depends on the actual vibration frequency, has a bandwidth defined as 
dVR.  This bandwidth will be observed in a uniform flow experiment in which the 
cylinder is forced to vibrate over a range of frequencies and it will also determine 
the range of the lock-in region on a cylinder in a sheared flow.  In uniform or 
sheared flow reduced velocity defined in terms of the actual vibration frequency 
does not change with added mass, added mass coefficient or natural frequency.  This 
topic is expanded upon in the next section. 

   
3.3  The Role of Reduced Velocity Bandwidth 
 
The reason that low mass ratio cylinders have such a broad lock-in range in uniform 
flows is that the natural frequency increases with flow speed.  This is because the 
fluid added mass decreases as the flow speed and reduced velocity increase.  If the 
mass ratio is less than 0.54, there is no upper bound of lock-in-reduced velocity 
(Govardhan and Williamson, 2000).  This is also evident from Equation (12). 
     If the reduced velocity is defined in terms of the actual observed vibration 
frequency, , then the dependence on mass ratio is removed. vf
 

R
v

UV
f D

�
                  (14) 

 
When plotted this way the bandwidth of the lock-in range is a function only of the 
ability of the wake to synchronize with the motion of the cylinder, and is not a 
function of added mass.  Plotted in Figure 2b is VRn versus the ratio of the actual 
vibration frequency to the natural frequency in air for the same experiment that 
produced the data in Figure 2a.  In Figure 2a the upper and lower bounds of the 
lock-in range in terms of VRn for Mode 1 are 3 and 9.5.  The same range in terms of 

 defined in Eq. (14) is 5.2 and 9.5.  This is a variation of RV +30% around a center 
value of 7.35.  Alternatively it could be said that the reduced velocity bandwidth, 
dVR, was 0.6. 
     If we define the ideal reduced velocity for the occurrence of lock-in as the 
inverse of the Strouhal number,  
 

   
� �
1
Re

c
R

t v

VV
S f

� �

oD
                    (15) 

 
then a reduced velocity lock-in bandwidth may be defined as 
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,
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HIGH MODE NUMBER VIV EXPERIMENTS 
 

11

which is another way of arriving at Equation (11). 
     Two phenomena influence the range of flow speeds over which a natural mode of 
response of a flexible cylinder may exhibit lock-in.  One is added mass variation and 
the other is the ability of the wake formation process to synchronize with the motion 
of the cylinder.  Both may affect the range of flow speeds that define the lock-in 
region, but at high mode number in sheared flow, it is only the ability of the wake to 
synchronize with the motion of the cylinder that is important.   
 The principle focus of this paper is to understand the vibration of flexible 
cylinders in sheared flow.  It is helpful to pose the problem as a question.  Over what 
spatial variation in flow speed is the wake able to synchronize with the vibration of a 
cylinder at one of its natural frequencies? 
     Figure 3 shows a linear sheared flow.  Mode ‘n’ of a riser exposed to the flow is 
likely to experience flow-induced excitation at its natural frequency in regions 
where the flow speed will give rise to cross-flow lift forces whose frequencies are at 
or near the natural frequency of the mode.  Such a region is shown in the figure.  
The region is characterized by upper and lower velocities which define the limits of 
the wake synchronization region.  Between these limits it is assumed that the wake 
is synchronized with the cylinder motion.  The length of this region can be described 
in terms of a reduced velocity bandwidth as given in Equation (9). 
 

U L

i c

V VVdVr
V V

��
� �                               (17) 

 
 The extent of the lock-in region in a sheared flow is not dependent on mass ratio 
or added mass.  It is principally dependent on the ability of the wake to synchronize 
with the cylinder vibration.  It is not dependent on added mass variation because that 
effect would require the natural frequency to vary with position along the riser, 
whereas there can be only one natural frequency for each mode in a given sheared 
profile.  In a shear the added mass does vary with reduced velocity all along the 
riser, but at steady state the modal mass including added mass is a constant, given by 
 

� � � �� � � �2
L

n a n
o

M m x m x x dx�� ��                              (18) 

 
where m(x) is the riser material mass per unit length including contents and � �am x  
is the added mass/length.  The added mass distribution along the riser for a given 
shear profile and vibration frequency is fixed and so also is the modal mass and the 
associated natural frequency. 
  If the sheared flow profile were to change, for example as with a tidal variation, 
the position of the power in region would move for each mode.  This would cause 
the added mass distribution for each mode on the riser to vary slowly because 
outside of the lock-in region the added mass at high and low reduced velocities 
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Figure 3. Power-in region for mode 'n' in a linear sheared flow. 

 
changes slowly.  Therefore the modal mass and the natural frequency of each mode 
changes slowly with incremental changes in the sheared profile.   
 Added mass effects on the natural frequencies and therefore on lock-in behavior 
are only associated with actual changes in the flow profile.  For a steady state 
sheared profile the extent of power-in regions is governed only by the wake 
synchronization bandwidth as quantified in the parameter . When reviewing 
drilling riser data, this author has found that as the velocity profile changes slowly 
with time, only the first two or three modes show significant variation in natural 
frequency due to added mass variation.  The first mode shows the most variation, 
followed by the second and then others in descending order.  It is predicted that 
higher mode number response in sheared flows will show little variation in natural 
frequency due to variation in added mass.  

RdV

 
 
3.4  Shear Parameters and Correlation Length 
 
Another way to think about the power-in region defined by the bandwidth  is as 
the length over which vortex-induced lift forces are correlated with the vibration of 

RdV
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the cylinder at its natural frequency.  This length is assigned the symbol inL .  In a 

linear shear the change in velocity over a length  is given by X�

R

V
dx

 
dVV X
dx

� � �                                (19) 

 
When  is the lengthX� inL , then  is the variation of velocity over the wake-

synchronized power-in region.  Dividing both sides of Equation (19) by V , the 

center velocity for the lock-in region, provides a new expression for  in terms 
of the shear gradient. 

V�

c

dV

 
in

R
c c

LV ddV
V V
�

� �                               (20) 

 
Solving this equation for inL  yields 

1
R

in

c

dVL
dV

V dx

�
� �
� �
� �

                              (21) 

 
 A useful expression for vibration of a riser, which exhibits standing wave 
vibration over its entire length, is the ratio of the power-in length to the total length.  
Equation (21) is easily modified to yield such an expression. 
 

in R

c

L dV
L L dV

V dx

�
� �
� �
� �

                              (22) 

 
The quantity in square brackets is a shear parameter, which is conceptually useful 
when considering the structural dynamic response prediction problem.  For example, 
consider a linear velocity profile specified by 
 

� � maxVV x x
L

�                   (23) 

then 
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maxVdV
dx L

�                                (24) 

 
and from Equation (22) 
 

maxmax

in cR
R

c

L VdV dV
L VV

V

� �
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                             (25) 

 
This tells us that the fraction of the length occupied by the power-in region is larger 
at higher flow velocities.  This expression fails as the center velocity approaches 

 because the lock-in region cannot extend above V and LmaxV max in will be only half 
as long as predicted by Equation (25) when Vc = Vmax.  
     In summary Equation (25) is a conceptually useful tool in understanding the 
relationship between shear and the correlation length which is available to excite 
each mode of vibration.  It is probably true that the reduced velocity lock-in 
bandwidth, , is itself a function of the shear gradient, but that level of 
understanding must await future experimental research.  

RdV

 
3.5   Reduced Damping Parameter 
 
The mass-damping or reduced damping parameter as defined for uniform flows is 
given by 
 

2 2
2 8 2g t

f f

r mS S
U D
�

�
� �

� � s�                               (26) 

 
The expression on the right is from Griffin (1998) and that on the left is from 
Vandiver (1993).   r is the structural damping constant per unit length, �  is the 
vibration frequency, U is the flow velocity, s� is the structural damping ratio, and 

f�  is the fluid density.  The expression on the right is shown in Vandiver (1993) to 
reduce to that on the left.  It is well known that this parameter may be used to predict 
resonant response A/D.  Response decreases with increasing values of gS .  At 
values less than about 0.1, cross-flow VIV reaches limit cycle amplitudes of one to 
two diameters depending on the mode shape.  This parameter has been extended by 
Vandiver (2002) to the sheared flow case, and may be written as 
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2
n n

u
f i

RS
U L
�

�
�

n

                               (27) 

where nR  is the modal damping, � is the natural frequency, and n inL  is the power-
in length as defined earlier.  Vandiver (2002) may be checked for further details of 
the derivation and examples of its use. 
 
3.6   The Response of Dynamically Infinite Cylinders 
 
Infinite cylinders are defined in Vandiver (1993) as ones in which vibration waves 
excited in one region die out due to structural and hydrodynamic damping before 
reaching boundaries.  Thus, standing waves do not dominate the response as with 
low mode number short cylinders.  Vandiver (1993) provides a parameter, nn� , for 
assessing if a cylinder is likely to behave as of infinite length with travelling waves 
or of short length with standing wave mode shapes.  n is the mode number and n�  

is the modal damping ratio.  Above  the vibration approaches that of an 
infinite cylinder. 

1nn� �

     In a recent doctoral dissertation by Jung Chi Liao (2001), a theoretical solution is 
presented for an infinite cylinder excited over a finite region by an harmonic force 
applied in a standing wave pattern.  This is shown in Figure 4.  The excitation is of 

the form � � �
2, sin coso

x
�f x t F t�

�
�

� �
� � �

� �
 and is applied over a finite 

length, inL .  If it is assumed that the force is due to cross-flow VIV, oF  may be 
expressed as 
 

21
2o f LF U DC��                               (28 

 
CL is the local lift coefficient, which is A/D and reduced velocity dependent.  Liao’s 
solution is shown in Figure 4.  Within the power-in region a standing wave appears.  
Outside of the power-in region the solutions are traveling waves, which decay due to 
structural and hydrodynamic damping as they travel away from the power-in region. 
     The maximum amplitude of the standing wave at the center of the excitation 
region is given by Liao as 
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where in inN L ��  and �  is the wave length of vibration waves in the cylinder 

with frequency � .  The damping,� , is the structural damping only inside of the 
power-in region and is assumed to be reasonably small, less than 0.15.  This 
equation tells us that given a sufficiently long power-in region � �2inN � �  
maximum amplitude standing waves may be achieved.   
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Figure 4.  Harmonic excitation in a finite length power-in region on an infinitely long 
cylinder.  The wavelength of the excitation matches that of the standing waves in the cylinder 

at that frequency. 
 
 
 

Traveling wave
region

Standing waves

0
0

Axial coordinate, x

re
sp

on
se

 a
m

pl
itu

de

Traveling wave
region

Traveling wave
region

Standing waves

0
0

Axial coordinate, x

re
sp

on
se

 a
m

pl
itu

de

Traveling wave
region

 
 

Figure 5.  Magnitude of the response of the infinitely long cylinder, given the excitation 
shown in Figure 4. 

 
The lift coefficient is of course dependent on many factors including reduced 
velocity and A D .  If the power-in region is not long enough for the waves to reach 
the maximum value, Equation 7(29) tells us that the maximum amplitude response 
in the power-in region will be smaller.   
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     Such behavior is unlikely to be seen on typical offshore petroleum industry 
risers.  However, it is very likely to occur on cables used to tow heavily weighted 
deep survey vehicles behind ocean vessels.  The tow cable typically enters the water 
almost horizontally due to total system drag as given in Equation (4) but then curves 
downward, eventually becoming nearly vertical at the survey vehicle. 
     The survey vehicle serves as a reflecting boundary condition.  The near vertical 
region of the cable near the vehicle will have passing by it a nearly uniform flow 
crossing the cable perpendicular to its axis.  This flow will excite standing wave 
VIV near the boundary.  This is a semi-infinite cable problem.  The waves generated 
in a power-in region of length 2inL , starting at the attachment point on the vehicle 
are equivalent to those that would be generated in a power-in region twice as long 
on a cable extending to infinity in both directions.  Half of the wave energy travels 
in each direction for the infinite cable.  By symmetry arguments only half the 
power-in length is needed to supply the wave energy traveling in only one direction 
in the semi-infinite case.  
     Waves generated in the power-in regions propagate along the cable never to 
return.  At any equilibrium amplitude the power going into creating waves in the 
power-in region is equal to the sum of the power lost to damping in the power-in 
region and the power radiated away from the power-in region as traveling waves.  
     There is a convenient expression for inN  in terms of the local velocity gradient. 

     As before inL  may be expressed as 
 

1
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dVL
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                               (30) 
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LN
�

� , then 
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                                  (31) 

 
From this expression it is easy to see that the stronger the shear, the shorter the 
power-in region as measured in wave lengths.  From Equation (29) it is easy to see 
that as inN  increases so does the response amplitude in the power-in region. 

dV
V dx
�  is a very useful dimensionless parameter which expresses the shear gradient 

in a way which is significant to structural dynamic response on very long cylinders. 
     There is one situation applicable to offshore risers where the previous results may 
be appropriate.  Consider the example of a very long riser which is covered by 
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fairings over most of its length, except for one bare section.  How long must the bare 
section be in order for VIV to result in significant response amplitudes in the bare 
region?  An approximate answer is given by Equation (29). The faired region of the 
riser will have significant hydrodynamic damping for any traveling waves created in 
the region without fairings.  Due to the large damping in the faired region the riser 
will behave as if it were of infinite length.  No standing waves will occur outside of 
the bare region. As before a bare region at one end of a riser of length 2inL  is 

equivalent to a region of length inL  found in the middle of an infinite cable.  
 
 

4. CONCLUSIONS 
 
The purpose of this paper was to 
�� identify areas of weakness in our understanding of high mode number VIV, 
�� describe experiments that might help resolve some of the questions, and 
�� identify dimensionless parameters which might help in the planning of 

experiments and help us to better understand the results. 
 Four particularly useful parameters have been discussed:  a reduced velocity 
bandwidth parameter, a reduced damping parameter appropriate for sheared flows 
and, finally, two shear parameters which have significance in structural dynamic 
response prediction.  A simple formula has been provided for estimating the 
maximum achievable mode number.  It shows that L/D, mass ratio and top towing 
angle are the key parameters that control maximum mode number.  
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