
1 INTRODUCTION

In the past two years BP/Amoco and the Norwegian
Deepwater Project have made available vortex-
induced vibration (VIV) data from four drilling ris-
ers in the North Sea.  Although the velocity profiles
have shown great variation in speed and direction
with depth, single mode dominated response has
been frequently observed. The observed single-mode
response occasionally has lock-in properties similar
to those seen under uniform flow conditions.  In
particular the onset of lock-in is accompanied by an
increase in response amplitude, a dominance of a
single frequency and development of constant re-
sponse amplitude sinusoidal behavior.  Finding and
classifying these single frequency events can be a
tedious exercise, requiring sorting through thousands
of multi-channel records of response data. In this
paper it is shown that the statistic known as kurtosis
is especially useful in detecting lock-in events.  By
using this statistic it is possible to efficiently sort
VIV response according to behavior.

Once lock-in and non-lock-in events are identi-
fied, the next step is to understand and explain the
flow conditions and the structural dynamic proper-
ties that govern the occurrence of lock-in.  The final
step is to develop response prediction models that
are able to predict response behavior.

This paper first presents the use of the statistic
kurtosis in the identification of lock-in events.  Sec-

ond, simplified instructional examples are used to
reveal the relative importance of parameters, such as
damping and length of the lock-in region.  Third, the
MIT VIV response prediction program SHEAR7 is
used to predict vibration of a North Sea drilling
riser, using measured current profiles. Comparisons
are made between measured and predicted VIV.

The author thanks BP-Amoco for the Schiehal-
lion riser data, and the Norwegian Deepwater Pro-
gramme (BP-Amoco, Esso, Norsk Hydro, Saga,
Shell, Statoil, Conoco, Mobil) for the Helland Han-
sen Riser Data."

2 USING KURTOSIS FOR LOCK-IN
IDENTIFICATION

Typical drilling riser response measurements are
from instruments strapped to the riser at several dif-
ferent positions.  Assume that ( )x t  is a zero mean,
measured time series of transverse acceleration re-
sponse, resulting from VIV. The kurtosis of ( )x t  is
given by:

4

2 2 ,xkurtosis where time average
x
� �= � �≡
� �

(1)

Kurtosis is normally used to quantify deviation from
Gaussian behavior.  Zero mean Gaussian processes
have a kurtosis of 3.0.  Multiple frequency VIV re-
sponse is often Gaussian in behavior, and tends to

Predicting Lock-in on Drilling Risers in Sheared Flows

J. Kim Vandiver
Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139 USA

This paper is from the Proceedings of the Flow-Induced Vibration 2000 Conference, Lucerne, Switzerland,
June 18-22, 2000

Corrections to equations 20 and 21 made July 26, 2000.

ABSTRACT:  The kurtosis statistic is introduced as a sensitive tool for efficient preliminary analysis of flow-
induced vibration response data. The kurtosis of sequential blocks of time series data allows one to distin-
guish single mode lock-in events.  The problem of predicting lock-in is then discussed.  Instructional exam-
ples are introduced to illustrate the relative importance of flow-speed, power-in length and diameter, when
attempting to predict single frequency dominance.  When VIV from two different flow speed regions com-
pete, it is shown that the ratio of the flow speeds cubed is an important indicator, as is the ratio of the square
of the length of the power-in regions. Two example cases from measured response on a drilling riser in the
North Sea are presented.  SHEAR7 predictions are compared to measured results.



have kurtosis values of approximately 3.  The occa-
sional occurrence of a single frequency, lock-in
event  is characterized by steady sinusoidal behav-
ior.  When ( ) sin( )x t tω= , the kurtosis takes on the
value of 1.5.

By plotting the kurtosis of a typical response
measurement over time it is possible to quickly
identify transitions from multi-frequency behavior to
single-frequency, constant amplitude lock-in events.

Figure 1 is an example of VIV response data,
taken every 48 minutes on the Scheihallion drilling
riser in the North Sea.  Time, spanning several days,
is plotted horizontally in Figure 1.  The maximum
tidal current over all water depth is plotted with the
kurtosis of the transverse acceleration response
measured on the drilling riser at a position z/L = 1/8.
z is the axial coordinate on the riser as measured up
from the bottom, and L is the total riser length.  This
particular riser was in a water depth of 368 meters,
and depending on the strength of the current re-
sponded with VIV in the 1st to 4th modes.  The first
four modes all have substantial modal amplitude at
L/8.

Twice per day tides dominated the current and for
several days in a row as shown in Figure 1, current
conditions permitted one mode to dominate the vi-
bration.  At these times the response in the mode fa-
vored by the current profile built up to the point that
significant VIV at different frequencies from less
favorable regions of the riser was suppressed. Wake
synchronization was established in the power-in re-
gion and lock-in occurred.  As a result, the response
grew in amplitude, was dominated by a single fre-
quency, and the kurtosis approached 1.5, the ideal
sinusoidal value.  This is seen several times in Fig-
ure 1. Further discussion of the Scheihallion data is
to be found in Cornut & Vandiver(2000).

This particular data covers a span of eleven days.
The lowest line in the figure is the maximum cur-
rent, which occurred in the entire water column, as
measured by an acoustic Doppler profiler (ADCP).
There is not a simple correlation between maximum
current speed and lock-in events.

The prediction of a lock-in event requires exami-
nation of each current profile to determine the
power-in region of each possible contending mode.
One must then have a means of comparing the rela-
tive strengths of each mode.  When one mode has a
dominant position, then lock-in occurs and other
modes are squeezed out.  The next section presents a
model for the prediction of single mode dominance,
based on structural dynamic properties and the flow
profile.

3 PREDICTING MODAL DOMINANCE

3.1 Introduction
For uniform flow lock-in problems the reduced
damping parameter has long been recognized as be-
ing useful for response prediction.  It has various
names and forms, including the Scruton number, ks,
SG, and /sζ µ .  The later three are all related as fol-
lows:
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Vandiver(1993) showed that for uniform cylinders
in uniform flow this expression simply reduces to
the following:
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where U is the uniform flow velocity and ω is
the vibration frequency in radians/second.

This reveals that the reduced damping is simply a
ratio of the damping force per unit length to the ex-
citing force per unit length.  InVandiver(1985) a
generalized reduced damping parameter is proposed
for sheared flow conditions.   This generalized form
accounted for hydrodynamic contributions to
damping and provided for separate power-in and
damping zones for each potentially responding
mode.

At the time the formulation was not particularly
useful as a response prediction tool, because the
necessary understanding of both the hydrodynamic
damping and excitation was too primitive.  The state
of the art has advanced to the point that revisiting
this approach is now fruitful. The principles are il-
lustrated here in a series of simplified hypothetical
problems.

First, consider a riser excited by a flow profile
with two regions, each uniform in profile but with
different speeds, as shown in Figure 2.  It is assumed
that the riser can be modeled as a beam under ten-
sion and can be analyzed by a modal analysis tech-
nique. To begin a few definitions from modal analy-
sis are required.



3.2  Modal Analysis Definitions
It is assumed that some form of modal analysis may
be applied.  It could be done in terms of complex
modes, but simpler undamped normal modes are
adequate to illustrate the concepts.  Complex mode
analysis could be added later, with much the same
result. First, the modal mass, stiffness and damping
are defined, followed by modal force and modal
damping ratio for mode i.

( ) ( )2 , modal mass
L

i i
O

M m x x dxφ= � (4)

2 ,modal stiffnessi iiK M ω= (5)

( ) ( )2 ,  modal damping
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where m(x), r(x), and f(x,t) are the mass, damping
and excitation per length, and iω  is the natural fre-
quency of mode i. With these quantities defined the
dynamic response of any single mode may be writ-
ten in terms of a simple, single-degree-of-freedom
oscillator as shown next:

( ) ,i i i i i i iM q R q K q F t+ + =�� � (9)
where iq  is the modal response participation factor.

In general the response of the system is composed
of the superposition of the individual modal re-
sponses, as follows:

( ) ( ) ( ), i i
i

w x t q t xφ=� (10)

When  f(x,t), is a steady, single frequency force,
the steady state response of each mode, i, may be
obtained from the transfer function for mode i, as
shown below.
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When the exciting frequency is at the natural fre-
quency, the resonant response takes on the particu-
larly simple form:
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It is of course true that other modes will also re-

spond to the same force and at the same frequency,
but not resonantly.  The total structural response will
be composed of the summation of all of the modal
responses.  However, the purpose of this exercise is
to determine which response frequency will domi-
nate the response of the structure.  If there is a
dominant frequency in the response, then the mode
which is resonant at that frequency should be a good
measure of the relative response of the system at that
frequency compare to other frequencies.

3.3 Lift force and hydrodynamic damping
estimation  in a two-flow field.

Returning to the problem shown in Figure 2. As-
sume that one mode dominates the response and that
the power-in zone is the higher speed zone with ve-
locity Uhi and that the power-out region is the region
with velocity Ulow. The magnitude of the response of
the resonant mode may be computed from Equation
14. But first, expressions for the modal force and
modal damping must be found.

3.3.1 Lift force in a power-in zone
The lift force per unit length is given by:

21
,2( , ) sgn( )w L hi hi if x t DC Uρ ϕ= (15)

where sgn ( iϕ ) means sign of the undamped mode
shape iϕ .

Assuming the mode shape has a sinusoidal form,
then the modal force may be computed from Equa-
tion 7 as follows:

( ) ( ( )) ( , )
low
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where Lhi = L-Llow

The above final result is approximate because the
integral in equation 17 has been approximated by
2

hiL
π

, the average value of the magnitude of the sine

function multiplied by the length of the power-in re-
gion.

3.3.2 Hydrodynamic damping estimation
A formulation for hydrodynamic damping, appropri-
ate to cross-flow vibration, is required.  A suitable
model is to be found in Venugopal(1996). His for-
mulation was based on a survey of all damping data



available in the public domain literature.  An im-
proved version of his damping model is imple-
mented in the MIT, VIV response prediction pro-
gram SHEAR7, versions 2.2 & 3.0(Vandiver & Lee,
1999).  That formulation is described here.  Recent
experimental work by Kyrre Vikestad at Marintek
has provided an independent confirmation of the va-
lidity of this damping model, (Vikestad, Larsen, &
Vandiver, 2000).

The hydrodynamic damping for cross-flow VIV
has two forms, one appropriate for regions with re-
duced velocities above that found in the power-in
zone for any specific frequency, and another form
appropriate for regions with reduced velocity lower
than that in the power-in region.

3.3.2.1 Low- RV  model

( ) ( )low sw rl wr x r C DU xρ= + (19)

Where Crl = 0.18 is an empirical constant and
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is a vibration Reynolds number, and v  is the kine-
matic viscosity.  iω  is assumed to be the frequency
of the excitation in the power-in region associated
with Uhi.    

3.3.2.2 High-VR model
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The high-Vr damping model is not needed for the
present example, but will be needed later.

3.4 Response of a single mode in a two speed flow
Returning to the problem illustrated in Figure 2,
with the dominant frequency of excitation coming
from a power-in region associated with the high
flow velocity, the hydrodynamic damping comes
from a flow region with a reduced velocity below
that of the power-in zone.  Therefore, the modal
damping is of the low- RV  type given above.  The
excitation is at iω  and is due to VIV associated with
Uhi.

Solving for the modal damping

iR  = 2
,

0

( ) ( )i s low i

Llow
R r x x dxφ+ � (23)
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       , 2
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i s low
LR r≅ + (25)

where ,i sR  is the structural damping contribution,
which is usually small compared to hydrodynamic
sources in sheared flow.  The integral has again been
approximated by the average of the integrand times
the range, lowL .

In a later example, damping of the high-VR type
will be needed.  It will occur in the high speed re-
gion.  Doing a similar integral as above yields for
high-VR modal damping for a mode ‘j’, the value:

, 2
hi

j j s hi
LR R r≅ + (26)

It is now a simple matter to use Equation (14) to
find an estimate of the resonant response magnitude
for mode ‘i’.
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This equation provides considerable insight about
VIV response.  First consider the case that the
power-in region grows to include the entire length.

3.4.1 Full length lock-in, hiL L=

In this case 0lowL =  and Equation 27 simplifies to
the following form.
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If the structural modal damping is assumed to be
distributed equally along the length as a damping
constant sr , then
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and the above expression for response simplifies to
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where SG is that shown in Equation 3.  This makes
clear the reason that SG has had a strong empirical
connection to response.  Next consider what happens
when two modes compete.

3.5 Two competing modes in a two speed flow
Again using Figure 2 as the starting point, assume
the two regions of constant flow speed are each
power-in regions for different modes ‘i’ and ‘j’.  The
response due to the high velocity region has been
found in the previous example.

The purpose of this exercise is to see which mode
is likely to dominate the response.  Taking the ratio
of modal response amplitudes yields:
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The structural damping is usually very small com-
pared to the hydrodynamic and can often be ne-
glected leading to:
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Noting that j j low
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To proceed further requires evaluation of the ratio of
hir  to lowr .  The ratio of equations 22 to 19 leads to
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(35)

Where /i jω ω is from the ratio /s jω ω in equation
22.

In this example mode ‘j’ gets its power from the low
velocity region at the frequency jω and its damping
from the high velocity zone, where the local vortex
shedding frequency is at s iω ω= .

In many circumstances, the still water component
is small compared to the rest of the low-Vr damping
term and may be neglected.  In this case, the previ-
ous equation reduces to
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r C U
r S C Uπ

=                                             (36)

This yields a very useful expression for the ratio of
the modal responses:
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iq  is the mode participation factor for the mode
excited in the high velocity region.  Even though the
lift coefficients for the two competing modes are
unknown functions of RV  and /A D , this equation
gives considerable insight as to which of two com-
peting modes will dominate in a sheared flow.  The
mode driven by the higher velocity flow is favored
by the ratio of the flow velocities cubed.  The mode
with the greater power-in length is favored by the
length ratio squared.  The dimensionless, empirically
determined constants Crl and Crh are 0.18 and 0.2 re-
spectively and approximately cancel.

The lift coefficients in the above expression will
be determined by the outcome of the competition of
the two modes. For the purpose of predicting the
dominant mode, one might assume they are equal.
Thus the ratio of the velocities and the power-in
lengths are the principal parameters controlling
which mode, if either will win out.

In a linear sheared flow, the mode with the higher
natural frequency would tend to have the longer
power-in region for the following reason.  Assume
two modes are in competition.  If either dominates
the response, it will establish lock-in over a section
of the riser.  There is considerable experimental evi-
dence to suggest that the lock-in bandwidth in a
sheared flow allows a variation of speed above and
below the ideal lock-in speed of approximately 15 to
20%.  In a linear sheared flow, + 15 to 20% of the
local velocity spans a greater portion of the length if
the local velocity is high than when it is low.  One
might conclude that the mode in the higher flow will
always win out.  However, real flows are in general
not linear, and the actual profile will have to be
taken into consideration.



3.6 Uniform flow on a riser with two diameters
As a final instructive example, consider a uniform
flow speed U.  The flexible riser has two sections,
one with a large diameter, DL, such as a section with
buoyancy modules, and a small diameter region with
diameter, Ds.  The length of each region is LL and Ls
corresponding to the large and small diameters.  Vi-
bration in response to lift forces on the large diame-
ter is subjected to high-VR damping in the small di-
ameter region.  Vibration driven by lift forces on the
small diameter region is subjected to damping of the
low-VR type in the large diameter region.

Equations 15-18 with the appropriate diameters
inserted can be used to find the modal forces for
each diameter.  Equations 19 and 22 give the correct
high and low-VR damping expressions when used
with the correct diameters.  Assuming a different
mode is resonantly excited in each diameter region,
Equations 14, 25 and 26 can be used to compute the
resonant response of each mode.

If, as in the previous example, the structural and
still water damping are assumed small and ne-
glected, the following expression is found for the
ratio of the two modal responses:
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This shows that when a riser has two different di-
ameters the larger diameter region is highly favored
to dominate the response.  The practical result of this
is that the buoyant regions on a riser are most likely
to control the VIV response.  This was the case on
the Helland Hansen riser discussed later in this pa-
per.

3.7 Response prediction programs
In a response prediction program, such as SHEAR7,
the response of each mode may be computed with
no approximations made in the modal force and mo-
dal damping integrals.  In addition no terms need to
be ignored in the damping expressions.  The pro-
gram may include an algorithm, which decides when
one mode will dominate and all others will be sup-
pressed by the vibration at the dominant frequency.

This paper began by showing the measured re-
sponse from a real drilling riser.  When the kurtosis
drops towards 1.5,this is an indication that one fre-
quency is dominating the response and pushing out
participation at other possible vortex shedding fre-
quencies. The next section gives two actual exam-
ples, one is dominated by a single frequency and one
has two frequencies present in the response.

4 RESPONSE PREDICTION

Two examples are given here to illustrate how real
risers respond in real current profiles.  As a part of
the Norwegian Deepwater Project data was acquired
on the Helland-Hansen drilling riser in 1998.  It was
in 684 m of water in the Norwegian North Sea.  Six
instrument packages recorded acceleration.  The
riser was mostly covered by 1.13 m diameter buoy-
ancy, except for the top 100 meters and a few short
gaps elsewhere on the riser.

Figure 3 is a plot of kurtosis, maximum current
and RMS acceleration response at z/L=0.094 from
the bottom of the riser for a span of several days in
June of 1998.  Two examples, A and B, have been
selected at 1600 and 2000 hours.  At 1600 the com-
puted kurtosis, which used a 34 minute acceleration
record, dropped to 1.6, indicating nearly ideal sinu-
soidal behavior.  Four hours later the kurtosis rose to
2.1.  Figures 4 and 5 show the corresponding current
profiles, annotated with the estimated locations of
the potential power-in zones.

Mode participation analysis of the response rec-
ords by Froydis Solaas and Karl Erik Kaasen of
Marintek revealed that in Case A the response spec-
tra at all six measurement locations had a single
dominant peak at 0.0749 Hz, the natural frequency
of the third mode.
Many different combinations of critical reduced ve-
locity and reduced velocity bandwidth were tried in
order to find a combination that would predict the
correct dominant mode.  For the two examples
shown here a value of VR,crit=3.0(St=0.33) worked
the best when combined with a reduced velocity

bandwidth of + 20%( 0.4R

R

V
V
∆ = ).  Using these val-

ues, Figure 4 shows the possible power-in zones for
modes 1-4. The power-in zone for mode 3 is the
largest predicted.  Mode three did in fact dominate
the response at the exclusion of the other modes.
The RMS modal amplitude was 0.3 diameters.

Four hours later, Case B, the potential power-in
regions for modes 1, 2 and 3 were as predicted in
Figure 5, which also shows the velocity profile.  Re-
sponse analysis revealed two peaks at 0.0519 and
0.0734 Hz, the natural frequencies of modes 2 and 3.
In this case neither mode was sufficiently dominant
to suppress the VIV at the other frequency.  Two
frequencies appeared in the response spectra and the
kurtosis was 2.1.  The RMS response was approxi-
mately 0.28 diameters.

SHEAR7 Version 3.0 has built into it all of the
computations described in this paper, as well as an



experimentally determined lift coefficient table
which is dependent on A/D.  For these two cases the
SHEAR7 prediction is given in Figures 6 and 7, us-
ing the values of reduced velocity bandwidth and
Strouhal numbers cited above. SHEAR7 conserva-
tively overpredicts the response by a small amount.
However, it was necessary to match the measured
and predicted natural frequencies, as well as the
choice of Strouhal number and reduced velocity
bandwidth.  Natural frequency matching was done
by setting the added mass coefficient so as to cor-
rectly predict the measured third mode natural fre-
quency in each case, A and B.

On real drilling risers the observed natural fre-
quencies have very large variation for low modes
due to large variations in added mass with reduced
velocity. There is also emerging evidence that
Strouhal numbers are quite sensitive to Reynolds
number in the range from 100,000 to 1,000,000, as
has been observed in laboratory experiments on non-
moving cylinders.  The exact dependence for real
drilling risers is not yet known because it is a func-
tion of response A/D, roughness and turbulence.
This type of proprietary data is not yet available
from laboratory tests and it is very difficult to ex-
tract from full-scale measurements.  Work is con-
tinuing to resolve these unknowns.

5 CONCLUSIONS

It has been shown that single frequency lock-in
events may be detected in dynamic response data by
means of the kurtosis statistic. An analysis is pre-

sented which reveals that single frequency domi-
nance is most likely to be associated with the highest
velocities in the profile.  When a riser has variation
in diameter, such as when covered with partial
buoyancy, the larger diameter section is more likely
to dominate the response in a uniform current. Pre-
diction of lock-in events is difficult.  The Strouhal
number, reduced velocity bandwidth and natural
frequencies must be correct.  Natural frequency pre-
diction is difficult, because the added mass coeffi-
cient for each mode depends on the reduced velocity
distribution.

In two example cases taken from the Helland
Hansen drilling riser, the Strouhal number which
gave correct prediction of the dominant mode was
0.33.  This value is the result of Reynolds numbers
above100,000.(261,000 at 0.3 m/s).
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Figure 2.  Two slab flows competing for VIV dominance.

Figure3.  Helland Hansen kurtosis, RMS response and maxi-
mum current  June 2-10, 1998

Figure 4.  Case A. Third mode lock-in, 1600 hours, June 5,
1998

Figure 5.  Case B velocity profile for, June 5, 2000 hours

Figure 6. SHEAR7 A/D prediction for 1600 and 2000 hours on
June 5, 1998.

Figure 7.  SHEAR7 fatigue damage rate prediction for 1600
and 2000 hours on June 5, 1998.
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