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Abstract 
Corporate properties require wide surveillance, but traditional surveillance systems are expensive. 
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Swank’s three modules continue to process under widely varying camera loads, unstable algorithms, 
and inconsistent spotters. 
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Executive Summary 

Problem, Constraints, and Solution Overview 
Surveillance@Home requires a web-surveillance platform that provides fault-tolerance, load-

balancing, and reasonable performance in its delivery of camera data to spotters around the world. 

The Swank system meets and exceeds these criteria with its multithreading kernel and robust three-

module design. Swank’s kernel enforces hard-modularity and fault isolation between modules, while 

providing safe connections such as pipes between them. Swank’s three core modules, ReadCameras, 

Transcode/Detect, and SwankWeb, respectively read camera data, transcode data and detect anomalies, 

and serve resulting images to spotters over the Internet. A fourth module serves two purposes: it 

initializes the three core modules, and allows Swank to recover from serious and unusual errors by 

periodically monitoring and restarting problematic processes. 

Swank System

Intranet/Internet

Continuously reads camera data
into large buffers
Decides if system is overloaded
If not overloaded, creates
Transcode/Detect process with
camera data
If overloaded, discards some
data

ReadCameras

Transcodes data
Detects anomalies
sends data via pipe to SwankWeb

Transcode/Detect

Camera

Camera

Camera

Spotter

Spotter

Spotter

create processes
with pre-existing data

write to one shared pipe
with atomic writes
and multiplexing

spotter
HTTP connections

Accepts data from Transcode/Detect
If data is correctly formatted, adds to
priority queue

Accepts data from spotters
Accumulates spotter results; notifies
authorities if necessary
Sends anomalous images from
priority queue to spotters

SwankWeb

PQ
Priority queue and

operational array of
anomalous data
(shared object)

NIC

spotter
HTTP connections

camera
HTTP connections

camera
HTTP connections

Gigabit Ethernet

 
Figure 1: A complete Swank system diagram, with purposes of and connections between ReadCameras, 
Transcode/Detect, SwankWeb, and the system hardware. Each module pictured occupies a separate address space. The 
kernel and guardian process are not explicitly pictured; see Section 2.4 on page 10 for details. 

These user modules and system components are illustrated in Figure 1 above, and are 

described in the following sections. ES.1 summarizes Swank’s kernel and hardware, and then describes 

a general evolution of processes from system boot-up to steady-state. Subsequent sections disclose the 
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features and design rationales of Swank’s three modules. Finally, ES.5 illustrates Swank’s performance 

by measuring how much of the processor a camera sequence would require in the steady-state. 

System Design, Reliability, and Performance 

ES.1. Kernel and Hardware Specifications 
Swank operates on the commodity PC outlined in Design Project 1, including a 2.4GHz 

Intel® Pentium® 4 processor with Hyper-Threading Technology [1], a clock chip programmed to send 

25ms “heartbeats,” and a system bus arbiter for TSL support [2]. The Gigabit NIC implements an 

8MB buffer, a size large enough to hold 50ms minimum of camera data with 1.75MB to spare. 

Swank’s kernel follows Design Project 1’s specification, with the following enhancements and 

clarifications in Figure 2. 

The multithreader supports both pre-emptive and cooperative thread switching, as well as 

thread coordination for shared variables. Both read_stream and write_stream are 

nonblocking. They return negative values if the stream is closed or an error has occurred, otherwise 

reporting 0 or more bytes read or written (for details, see Section 3.1 on page 11). Write_stream 

guarantees to write up to _POSIX_PIPE_BUF bytes atomically per call [4]: Swank assumes a value 

of 256KB, which is several standard deviations larger than an average JPEG sent through the system’s 

pipes. Finally, ReadCameras relies on the system interrogators when it determines whether or not to 

drop camera data. 

Swank’s computer boots up and loads the kernel as outlined in the 6.033 notes [5]. A general 

process evolution is provided in Figure 3 below. Note that Swank, the main user process, never 

terminates. After creating a shared pipe and forking ReadCameras and SwankWeb with the 

// Swank Kernel additions: multithreading, streams, interrogation 
 
// pre-emptive multithreading scheduler with TSL 
yield();    // see 6.033 Notes 2.D [3] 
acquire(L);   // see 6.033 Notes 2.E [2] 
release(L);   // see 6.033 Notes 2.E [2] 
 
const _POSIX_PIPE_BUF ← 256KB;              // atomic writes 
n ← read_stream(stream_id, buffer, size);   // nonblocking 
n ← write_stream(stream_id, buffer, size);  // nonblocking 
 
howmanychildren ← countpschildren(); // number of forked processes 
           // from caller in O(1) time 
memory ← howmuchmemoryfree(); // number of bytes of unallocated 

// memory in system, O(1) time 

Figure 2: Additional and clarified functions in Swank kernel. 
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pipe_id of the pipe, Swank serves as a “guardian angel” that restarts those processes with a fresh 

pipe, if they terminate abnormally. 

Swank 1 (continue to monitor processes for abnormal termination)

Kernel 1

time

BIOS
+NIC

SwankWeb 1

ReadCameras 1

Transcode/Detect <10,000

wtp 1

Transcode/Detect

Transcode/Detect

Transcode/Detect

Transcode/Detect

Transcode/Detect

Transcode/Detect

Transcode/Detect

Transcode/Detect

wt80 <inf wt80 wt80 wt80
wt80

wt80
wt80

wt80

wt80
wt80

wt80
wt80

wt80 wt80
wt80

wt80
wt80
wt80 wt80 wt80 wt80

opencamera <1,000opencamera
opencamera

opencamera
opencamera

opencamera

opencamera

processes

 
Figure 3: Process evolution diagram. Bold values indicate the maximum concurrent instances of each process or thread; 
italicized names indicate threads in a process. Each process occupies a separate memory space, illustrated as a solid line. 

ES.2. ReadCameras 
After initialization by Swank, ReadCameras establishes connections to the cameras, retrieves 

camera data, and decides whether or not to send camera data to Transcode/Detect. If a camera 

connection is unavailable, ReadCameras creates an asynchronous opencamera thread to establish the 

HTTP request/response chain, since open_stream may block for several seconds. ReadCameras 

copies all available data in camera streams in a round-robin fashion, well before the NIC’s small buffer 

overflows. Connections are permanently held open; however, if a connection fails, ReadCameras will 

spawn a new opencamera thread to reopen a connection. If the system is not busy, as defined by 

countpschildren and howmuchmemoryfree, and if the camera buffer has accumulated 

enough data, ReadCameras will fork a new Transcode/Detect process. When it forks, ReadCameras 

sets the copy_on_write bit to analyze a “chunk” of camera data without copying a large buffer; it 

also passes pointers to the correct data “chunk,” and supplies metadata such as the camera ID. In the 

worst case, ReadCameras takes 400µs to pass through the loop and fork 1,000 processes. At the end 

of each loop, ReadCameras calls yield to allow other processes to execute before emptying the NIC 

buffer again. 
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ES.3. Transcode/Detect 
Transcode/Detect calls transcode and detect_anomaly, gets the result of these 

routines, marshals the result into the format (size of all data), (camera ID), 

(time), (threat), (frame_size), (JPEG frame), sends the data through a shared 

pipe if the total size is no greater than _POSIX_PIPE_BUF, and terminates. Transcode and 

detect_anomaly are guaranteed to fail at some time. Placing them in separate address space will 

allow them to fail independently of all other processes, at which point the kernel will teardown the 

crashed process’ memory space. Performance-wise, process setup and teardown time is negligible 

compared to the time to run transcode and detect_anomaly. 

ES.4. SwankWeb 
SwankWeb perpetually maintains one shared priority queue, pq, and one additional thread 

called wtp that reads on the shared pipe. Wtp continuously reads and unmarshals data. If data is 

invalid or out of sync, wtp will close the pipe and call exit to terminate SwankWeb; the main Swank 

process will recognize this condition and create fresh SwankWeb and ReadCameras processes. While 

drastic, it is conceivable that a spurious Transcode/Detect process could actually rewrite part of its 

marshaling code without failing, thus sending corrupt data through the pipe. Restarting SwankWeb 

and ReadCameras is highly inefficient, but this case is expected to be so rare that a restart will almost 

never be required. 

If values in the message appear valid, wtp calls a public method pq.Add to add data to the 

queue. Pq– implemented in an object-oriented programming language—achieves soft-modularity, 

information hiding, and acceptable performance: the web server must read data from pq concurrently 

if it is to serve thousands of spotters at once. Internally, pq contains a priority queue implemented as a 

heap and a dynamically-resizable “operational array.” The “operational array” allows the web server to 

send JPEGs to spotters concurrently: pq replaces anomalous data in the array from the top of the heap. 

If the only “operational data” for the web server were at the top of the heap, the data would bottleneck 

the whole process for at least ten seconds per image, the delay from sending out a JPEG to receiving a 

spotter’s response. 

For every request that SwankWeb receives, it creates a wt80 thread designed like a “single-

instance” MT in the Flash paper [6]. Wt80 writes the preliminary HTTP header and HTML start to 

notify the client that is has started to service the request. Following this action, wt80 calls 
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pq.Update to update metadata for anomalous images based on the request’s HTTP POST. 

Finally, wt80 calls pq.Output to output a new image to the spotter, closes the stream, and 

terminates. 

ES.5. Performance 
Under a few, well-justified assumptions, Swank spends an average of 0.31% of processor 

resources on each request. For a 10-second stream of video, the system cannot spend over 10ms per 

request. Swank spends 31µs, plus an estimated average of 6ms on transcode and 

detect_anomaly. Section 4.4, “Performance for a data sequence,” in the main text provides 

details on these assumptions.  

NIC

fork()
0.4µs

pipe
10ns

cameras

Add

ReadCameras
30µs

Transcode/Detect
6ms + 12ns

wtp
94ns

wt80
.73µs

pq
spotters

Output/Update

 
Figure 4: A simplified processor-consumption diagram for each module and connection, including wasted processor time 
due to memory accesses.  For details, see Figure 12 on page 21. 

Conclusion 
Swank splits the design for a web-surveillance server into three multithreaded, fault-isolated 

modules, with additional components monitoring and supporting the base design. These modules are 

connected with several different mechanisms, including shared pipes and acquire/release semaphores. 

Although the Swank design cannot eradicate long-term overload, it can handle sudden spikes by 

eliminating data early in the data pipeline. Swank can also recover from broken connections using the 

opencamera thread and the Swank guardian process. These features make Swank an ideal choice for a 

web-surveillance system. 
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1. Introduction 
Swank provides fault-tolerance, load-balancing, and excellent performance in its delivery of 

camera data to spotters around the world. Swank accomplishes these objectives with a multithreading 

kernel and a robust three-module design, breaking tasks up into camera-reading, signal processing, 

and web-serving stages. Each module executes independently of the others, achieving fault isolation 

through the hard-modularity that the kernel and hardware enforce. Within each module, software 

contracts ensure soft-modularity and fault tolerance in spite of potential threading hazards and 

corrupt data. Each module successively filters data to improve performance across the whole system. A 

fourth module adds recoverability to Swank, periodically monitoring and restarting problematic 

processes. 

2. Design Overview 

2.1. Modularity in Design 
Swank distributes its workload among three different modules, each separated by hard-

modularity contracts established by the kernel and the network. Although Swank’s design depends 

upon this three-module abstraction, Swank further specifies methods for interprocess communication, 

a guardian process for error recovery, and a kernel for multithreading and memory-mapping. These 

critical pieces grew naturally out of the three-module abstraction, and are described below. 

2.2. Three Components 
The three core functions of Swank are to read camera data, to transcode and analyze data, and 

to serve data to and from spotters. These functions correspond to Swank’s three modules: 

ReadCameras, Transcode/Detect, and SwankWeb, which are explored in this section. Swank’s three-

module abstraction appears in Figure 5 below, sorted in the order of camera dataflow. 

2.3. Multiple Connections 
Figure 5 illustrates the many interconnections between components in the Swank system: each 

connection is tailored for fault-tolerance, performance, and interoperability as each module demands. 

ReadCameras communicates to Transcode/Detect by forking new Transcode/Detect processes from 

itself: by forking with the copy_on_write bit set, both processes isolate faults without incurring a 

buffer-copy penalty. Transcode/Detect processes send marshaled data to SwankWeb via a shared 
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pipe, which guarantees that properly-marshaled data will be written to the shared resource. The 

HTTP connections follow semantics defined in the HTTP/1.0 standard [7], permitting seamless 

communication with other network applications. Intra-module connections, such as those between 

helper threads in ReadCameras, are explored in detail in section 3, “Design Description.” 

Swank System

Intranet/Internet

Continuously reads camera data
into large buffers
Decides if system is overloaded
If not overloaded, creates
Transcode/Detect process with
camera data
If overloaded, discards some
data

ReadCameras

Transcodes data
Detects anomalies
sends data via pipe to SwankWeb

Transcode/Detect

Camera

Camera

Camera

Spotter

Spotter

Spotter

create processes
with pre-existing data

write to one shared pipe
with atomic writes
and multiplexing

spotter
HTTP connections

Accepts data from Transcode/Detect
If data is correctly formatted, adds to
priority queue

Accepts data from spotters
Accumulates spotter results; notifies
authorities if necessary
Sends anomalous images from
priority queue to spotters

SwankWeb

PQ
Priority queue and

operational array of
anomalous data
(shared object)

NIC

spotter
HTTP connections

camera
HTTP connections

camera
HTTP connections

Gigabit Ethernet

 
Figure 5: A complete Swank system diagram, with purposes of and connections between ReadCameras, 
Transcode/Detect, SwankWeb, and the system hardware. 

2.4. Monitor Above, Kernel Below 
In addition to the three modules and multiple connections above, the Swank system contains 

two additional, critical components: the monitor process Swank and the Swank kernel. Swank serves as 

a “mother” and a “guardian angel.” The process contains all executable user-mode code for the Swank 

system, but forks off child processes to run the code. After launching its child processes, Swank 

perpetually monitors the health of ReadCameras and SwankWeb. If either process terminates, Swank 

will restart them and will provide them with fresh, uncorrupted resources. 

The Swank kernel holds the system together: all user processes rely on it to establish 

interprocess and network communication, to report status of the system, to map, expand, and revoke 

memory as needed, and to rapidly switch between threads of execution. 
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3. Design Description 

3.1. Details of the Kernel and Protocol Stack 
Swank implements the Unix-like kernel described in Design Project 1, with several 

enhancements to support multithreading, process interrogation, and nonblocking streams.  

The kernel supports pre-emptive and cooperative multithreading with kernel-threads and 

locks, as outlined in the 6.033 notes [5]. The pre-emptive scheduler relies on the computer’s clock 

chip, which sends a regular “heartbeat” of interrupts every 25ms. While Swank’s internal modules are 

built to follow cooperative multitasking principles, transcode() and detect_anomaly() 

may not return for long periods of time. Therefore, a single Transcode/Detect process cannot 

consume the system for more than 25ms. The scheduler favors executing lower-order processes—that 

is, parent processes of the interrupted process—when a 25ms interrupt occurs. Yield() is 

supported: when a program calls yield(), the scheduler will transfer execution to another process 

at random. If fork() or fork_thread() are called, the parent process or thread resumes 

execution before the new process or thread. The Swank kernel also implements acquire(L) and 

release(L) for thread-locking as outlined in [2]; the system’s bus includes an arbiter to support 

these calls. Release(L) has no effect if the thread did not acquire the lock. 

The protocol stack of the Swank kernel implements the same functionality described in 

Chapter 4 of the 6.033 notes [8]. The TCP portion of the stack in the end-to-end layer has an 

identical buffer size as the Gigabit NIC; both buffers are 8MB, a size large enough to hold 50ms 

(twice the pre-emptive interrupt period) minimum of camera data with 1.75MB to spare. 

To access the NIC and memory, the kernel implements nonblocking 

read_stream(stream_id, buffer, size) and write_stream(stream_id, 

buffer, size) calls. Read_stream() attempts to read size bytes from the stream into the 

buffer provided; the function returns n, the number of bytes actually read into the buffer. If less than 

size bytes are immediately available, n will be less than size. If read_stream() returns 0, the 

stream is open and available, but no bytes are waiting in the stream. If the stream is not available or an 

error occurs, read_stream() returns a negative value. 

Write_stream() writes bytes to the specified stream, returning the number of bytes that 

the underlying stream believes will be written successfully in finite time. If stream_id refers to a 

TCP socket [9], write_stream() returns asynchronously with the TCP guarantee that n bytes 
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will eventually be sent to the sender in order. If stream_id refers to a kernel pipe created by 

pipe(), write_stream() guarantees immediate writing to memory before returning n. As 

with read_stream(), write_stream() failures return negative values. Pipes do not close 

unless the process that created the pipe crashes. According to the POSIX standard [4], 

write_stream() further guarantees that up to a certain _POSIX_PIPE_BUF of bytes will be 

written atomically: if multiple processes each attempt to write qi bytes to the same stream, and if qi is 

less than or equal to _POSIX_PIPE_BUF, then qi bytes will remain in order in the stream. If qi is 

greater than _POSIX_PIPE_BUF, then each _POSIX_PIPE_BUF chunk of bytes are guaranteed 

to be in order. Swank’s kernel specifies the _POSIX_PIPE_BUF) as 256KB, or 218 bytes: this value 

corresponds to several standard deviations larger than the average JPEG output from 

transcode(), plus the size of some metadata associated with the image. 

The kernel implements two additional functions: howmanychildren ← 

countpschildren() and memory ← howmuchmemoryfree(). 

Countpschildren() returns the number of running child processes created with fork() by 

the current process. The function returns in constant time: the kernel keeps a total of running child 

processes of every process. Howmuchmemoryfree() returns the number of free bytes of total 

memory. Total memory includes addressable physical memory and memory swapped to disk: since the 

Swank system has no disk, total memory is physical memory. ReadCameras will use these functions to 

selectively discard camera data during periods of high stress. 

3.2. Initial Process Evolution 

3.2.1. Swank Initialization 
The computer boots up and loads the kernel as outlined in the 6.033 notes [5]. The kernel 

loads the Swank process as the first user program in memory. Swank creates three variables: a restart 

counter for SwankWeb, a restart counter for ReadCameras, and a pipe.  The pipe structure will 

eventually be shared by the three modules in the swank system. Swank then acts a stub, starting up the 

SwankWeb and ReadCameras processes using fork(). Swank enters an infinite loop, usually calling 

yield() to yield control to other processes. Periodically, however, Swank checks the system to see 

if processes have terminated abnormally, in which case Swank will spawn fresh shared pipes and 

replacement processes as necessary. 
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3.2.2. SwankWeb Initialization 
After Swank forks the SwankWeb process, the code branches off in its own function, 

SwankWeb(), which takes the shared pipe and SwankWeb restart count as arguments. SwankWeb 

creates the priority queue data structure illustrated in Figure 5 on page 10. SwankWeb calls 

fork_thread(wtp, pipe_id) to create the workhorse thread for reading on the shared pipe 

(wtp); the wtp thread takes the shared pipe as an initial argument in the same fashion as clone() 

[10]. SwankWeb assumes the role of the external web server, waiting for requests to come in on port 

80 after calling listen(80) and accept_stream(80). SwankWeb calls 

fork_thread(wt80, http_stream_id) for every request received. Each wt80 processes 

data in the MT-style described in the Flash paper [6], except that wt80 starts with an open stream, 

and terminates after servicing its request. 

3.2.3. ReadCameras Initialization 
The ReadCameras process accepts the shared pipe and restart count as initial arguments. 

ReadCameras creates 1,000 large buffers (camera_buffer[1000]), pointers to current buffer 

“chunk” positions and current read positions (cb_chunk[1000] and cb_pos[1000]), 

remaining size of the buffer (cb_rs[1000]), failure counters (camera_failures[1000]), 

and stream_ids (camera_streams[1000]) corresponding to the 1,000 cameras from which 

it reads. Each camera buffer is 1.5MB long (1.5GB for 1,000 cameras), corresponding to 12 to 240 

seconds of raw camera data (at 1Mbps peak rate, or 50Kbps minimum rate). The process has camera 

IP addresses in its initial boot image (camera_IPs[1000]), which are loaded into memory. As 

ReadCameras receives camera data, it will continuously fork() new Transcode/Detect processes to 

analyze the data. 

3.3. Details of ReadCameras 
After initialization by Swank, ReadCameras establishes connections to the cameras, retrieves 

camera data, and decides whether or not to send camera data to Transcode/Detect (see Figure 6). 

ReadCameras processes each camera in a round-robin fashion, essentially implementing a cooperative 

user-level multithreader without context-switching overhead. If camera_streams[i] is 0, 

ReadCameras creates a new thread opencamera to open an HTTP stream to the ith camera and sends 

the request “GET /video HTTP/1.0,” then saves the stream_id to the ith position in the 

camera_streams array (see Figure 7). Open_stream() may block if the camera takes a long 
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time to respond, necessitating a separate thread. No race condition can occur, since only opencamera 

writes to camera_streams, and ReadCameras critically depends on camera_streams at only 

one point per cycle. ReadCameras calls read_stream(), passing data from the protocol stack’s 

small buffers to ReadCamera’s sizeable buffers well before the protocol stack’s buffers overflow. 

If a camera does not respond, ReadCameras resets the buffer, increments the failure counter, 

and attempts to reconnect to the camera. The failure counter is periodically decremented after 

successful connections. If ReadCameras cannot connect to a camera after many repeated attempts, it 

reports an error message directly to SwankWeb in the same format as the JPEG/metadata struct 

vision_result. Problems with the shared pipe are more serious: as a precautionary measure, 

such problems cause ReadCameras to terminate, which has the side-effect of closing all camera 

streams. 

After reading, ReadCameras calls countpschildren() and 

howmuchmemoryfree() to determine how busy the server is.  If countpschildren() is 

greater than 10,000 (assuming the average latency of each Transcode/Detect process is about 10ms in 

a multithreaded environment), or if howmuchmemoryfree() is less than 250MB, ReadCameras 

// in initial boot image 
const camera_IPs[1000]; const CAMERAS ← 1000; 
// available to both functions in process 
camera_streams[1000]; 
 
void ReadCameras(pipe_id, restart_count) { 
 // initialize camera_buffer[1000], cb_chunk[1000], 

// cb_pos[1000], camera_failures[1000], and 
// cb_rs[1000] using resize_heap() as necessary 
if (write_stream(pipe_id, 0, 0) < 0) exit(1); 
for (int i; i < CAMERAS; i++) { 
 // NOTE: at any point, if the return from a syscall 
 // is negative, the failure count is incremented and 
 // camera_streams[i] is set to 0; excessive problems 
 // induce an error message to be written to the shared pipe 
 // open stream: initialize camera connections 
 if (camera_streams[i] <= 0) { 

fork_thread(opencameras, i); 
 } else { 

// read stream 
sizeread ← read_stream(camera_streams[i], cb_pos[i], 

cb_rs[i]); 
cb_rs[i] ← cb_rs[i] – sizeread; 
 
// drop data, or fork Transcode/Detect process 

 }  } // end if camera_streams, end loop over all cameras 
 yield(); 
} 

Figure 6: General pseudocode for ReadCameras process. Note that italicized comments are placeholders for more 
pseudocode. 
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will discard bytes from its camera stream after reading them, and will use inverse exponential backoff 

to discard existing bytes in the camera’s buffer. 

If ReadCameras determines that the data in a buffer is “ready” (400KB long for 3-30 seconds 

of data, or the buffer has reached its 1.5MB limit), fork() is called with the copy_on_write bit 

set [11], creating a new Transcode/Detect process to operate on the “chunk” of data and its 

companion camera and time-completed information. By using copy_on_write, the massive 

camera buffer available to the Transcode/Detect becomes available without the penalty of copying 

that buffer. The kernel enforces memory isolation, preventing Transcode/Detect from modifying the 

data associated with ReadCameras. ReadCameras increments the “chunk” after forking, so that the 

remainder of the buffer can be used for the next bytes of the stream without forcing the kernel to copy 

memory pages for Transcode/Detect. This drop/fork process is illustrated in Figure 8 below. 

3.4. Details of Transcode/Detect 
After forking from ReadCameras, each Transcode/Detect process begins with 

TranscodeDetect(pipe_id, camera, time, bufferpointer, size), as 

illustrated in Figure 9. Transcode/Detect calls transcode() and detect_anomaly(), gets 

the result of those routines, and if successful, sends the result to SwankWeb via the shared pipe. The 

Swank design places these two routines in their own module for fault isolation and efficient 

void opencamera(camera_id) { 
activestream ← open_stream(camera_IPs[camera_id], 80); 
write_stream(camera_streams[camera_id], “GET /video HTTP/1.0\n”, 

stringsize); 
// read_stream() until the null line separating the entity body  
// is encountered 
// avoid race conditions assigning shared variable just-in-time 
camera_streams[camera_id] ← activestream; 

} 

Figure 7: Pseudocode for opencamera thread, which “primes” the HTTP request/response chain for raw reading. 

// drop data, or fork Transcode/Detect process 
if (countpschildren()>10K || howmuchmemoryfree()<250MB) { 
 // binary exponential backoff: go back on buffer 
} else if (cb_pos[i] - cb_chunk[i] >= 400KB) { 
 switch (fork()) { 
 0:  // Transcode/Detect 

TranscodeDetect(pipe_id, camera_IPs[i], time(), 
cb_chunk[i], cb_pos[i] – cb_chunk[i]); 

  break; 
 default:  // still in ReadCameras 

// reset or increment as necessary arrays[i] 
  break; 

 } } // end switch on new process, end if server busy 

Figure 8: Drop/fork pseudocode. This code expands the pseudocode in ReadCameras. 
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multithreading. The routines are guaranteed to crash at some time. Placing them in separate address 

spaces will allow a routine to fail independently of all other processes, at which point the kernel will 

teardown the crashed process’s memory space. The kernel consumes a negligible amount of time to 

setup and teardown a Transcode/Detect process relative to the lifetime of that process, so there is 

virtually no performance hit associated with creating separate processes. 

If values in vision_result are invalid (e.g., JPEG has no size, or threat_level is 

outside [0.0, 1.0]), or if the pipe has been closed, Transcode/Detect terminates silently as if it had 

failed to determine a result. Otherwise, Transcode/Detect marshals the vision_result data into 

the format in Figure 9 when sending it through the pipe to wtp. 

3.5. Details of SwankWeb 
SwankWeb perpetually maintains one shared data structure, pq for priority queue, and two 

threads of execution (see 3.1 above); this analysis considers the pipe-reading thread wtp first, since it 

follows in the data path from Transcode/Detect. Discussions of pq and SwankWeb follow. 

When Wtp initializes, it attempts to read one long value from the pipe, corresponding to the 

length of the rest of the message. Wtp continually calls read_stream(pipe_id, 

readbuffer, (remaining size)) and yield() until it reads an entire message. The 

message is unmarshaled and its component values are examined; finally, wtp calls a public method 

pq.Add(camera, time, threat, JPEG, size). Wtp repeats this process until no 

// about 30KB/jpeg * 10 seconds * 5 jpegs/second 
MAX_JPEGBUFFER_SIZE ← 1.5MB; 
MAX_JPEG_SIZE = _POSIX_PIPE_BUF – sizeof(float) – sizeof(long)*4; 
 
void TranscodeDetect(pipe_id, camera, time, bufferpointer, size) { 

jpegbuffer ← new jpegbuffer(MAX_JPEGBUFFER_SIZE); 
transcode(bufferpointer, size, jpegbuffer, 

MAX_JPEGBUFFER_SIZE); 
yield(); 
vision_result vr; 

vr ← detect_anomaly(jpegbuffer, MAX_JPEGBUFFER_SIZE); 
// see page 18 for definition of THREAT_MINIMUM 
if (THREAT_MINIMUM <= vr.threat <= 1.0 && 0 < vr.frame_size < 

MAX_JPEG_SIZE && vr.frame_pointer is valid) { 
 sizeofeverything ← vr.frame_size + float and 4 longs 
 streambuffer ← new streambuffer(); 

// put (size of everything), (camera), (time), (threat),  
// (frame_size), and JPEG into streambuffer 

 write_stream(pipe_id, streambuffer, sizeofeverything); 
}  exit(0); 

} 

Figure 9: Pseudocode for Transcode/Detect. Note the marshaled format of the data. 
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more data can be read, at which point it calls yield(). If any data in this sequence is invalid, e.g., 

the first long is longer than _POSIX_PIPE_BUF - 1, wtp will attempt to resynchronize with 

the pipe’s data, although the specifics of resynchronization are beyond the scope of this document. For 

now, wtp closes the shared pipe and forces SwankWeb to terminate with exit(1), signaling to 

Swank that SwankWeb and ReadCameras need to be restarted. 

For system stability and modularity, pq is implemented as an object in an object-oriented 

programming language such as C++. This design choice lets pq hide its private data—a priority queue 

implemented as a heap [12] and an “operational array” of initial length 6,000, much larger than 

MAX_CAMERAS—and expose public methods to add, update, and output the data. The operational 

array ensures that SwankWeb can serve many highly-suspicious images concurrently, rather than 

blocking on the top of pq’s heap for the full latency between Swank and the distant spotter. 

Swank’s design makes a tradeoff for the sake of performance: pq could be in a completely 

separate process, thus achieving hard-modularity between the three SwankWeb components. 

Specifying pq as an object enforces only soft-modularity through contracts. As a shared object, 

however, pq can be read by multiple wt80 threads at once, rather than serially. With potentially 

thousands of spotters accessing the server at once, optimizing parallel reads is much more important 

than parallelizing writes, which is the province of the serialized wtp design. Figure 10 below illustrates 

the complete class specification, with especial attention to locking of shared data. 
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Wtp calls pq.Add(), which adds data to the priority queue if it matches certain criteria. 

One criterion is that the threat-level exceeds a certain minimum, which would be found by inspection 

at each Surveillance@Home site. To eliminate data as early as possible in the pipeline, Swank tests 

this criterion in Transcode/Detect (see Figure 9 on page 16), since the criterion is not dependent on 

the state of user responses. Other criteria may be specified depending on per-camera or per-time data: 

for example, if one camera has a scarecrow in front of it, and if spotters report that the data is clearly 

not suspicious, other criteria can dynamically set a higher minimum threat-level for that camera for a 

period of time. 

In contrast, wt80 calls write_stream(http_stream_id, HTTP response & 

HTML beginning, data size), then pq.Update() and pq.Output() as shown in 

Figure 5 below. Before making these calls, wt80 unmarshals values found in the “POST url 

HTTP/1.0” request from the client, if such a request exists. Wt80 will only call Update() if the 

unmarshaled values are valid, and Update() will only update the item if the spotter is submitting 

data for the identical item. If a spotter submits data after the item in the “operating server array” is 

removed or replaced, the spotter’s data is discarded. 

class PQ { 
// in addition to Transcode/Detect data, stores net 
// suspiciousness of image, and how many views image has had 
struct {camera, time, threat, JPEG, size, suspiciousness, 

views} pqseq; 
 PQ() { // initialize heap and servarray } 
 ~PQ() { // lock all heap, all servarray, delete all items } 
  
 Add(camera, time, threat, JPEG, size) { 

if (other criteria met) { 
if (threat > heap[0].threat) acquire(toplock); 
acquire(bottomlock); 
// create new pqseq and add to heap in O(log n) 
release(bottomlock); 
release(toplock); 

 }  } 
 
Update(sa_i, camera, time, threat, size, suspiciousness); 
boolean Output(sa_i, stream_id); 
Resize_Op_Array() { // dynamically resize high-priority array } 
long SizeOfHeap() { // size of heap } 
long SizeofOpArray() { // size of operational array } 

private: 
 pqseq** heap;       // the internal heap 
 pqseq** servarray;  // high-priority array, currently serving 
 otherdata cameradata[MAX_CAMERAS]; // data per camera 
}; 

Figure 10: Priority Queue with information hiding and thread-safe methods. 
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After Update(), sa_i is incremented modulo the size of the operational array. In the 

absence of an HTTP POST, sa_i takes a random value in the interval [0, oparraysize). 

Output((sa_i + 1) mod pq.SizeOfOpArray(), http_stream_id) sends the 

next item’s identifying information along with the embedded JPEG image [13] and HTML end-text, 

so that Update() can validate data received from “POST url HTTP/1.0” requests. When 

output() terminates, wt80 may choose to dynamically resize the operational array to handle 

greater or fewer concurrent requests. Wt80 finally calls close_stream(http_stream_id) to 

complete the HTTP request/response chain. 

4. Design Tradeoffs and Performance 
Swank’s design includes certain tradeoffs. This section considers three alternatives that were 

rejected because they did not meet performance criteria, or could have left the system unstable. The 

last subsection illustrates expected performance of a single data sequence through Swank, 

demonstrating that Swank exceeds performance criteria. In all cases, the Swank system is assumed to 

const MAX_VIEWS_BEFORE_DECISION ← 5   // five witnesses is enough 
 
PQ::Update(sa_i, camera, time, threat, size, suspiciousness) { 

acquire(servarraylock(sa_i)); 
if (servarray[sa_i] = this data) { 

servarray[sa_i].suspiciousness ← 
servarray[sa_i].suspiciousness + suspiciousness; 

servarray[sa_i].views ← servarray[sa_i].views + 1; 
if (servarray[sa_i].views > MAX_VIEWS_BEFORE_DECISION) { 
 // alert authorities if pqseq is extremely suspicious 
 // store some per-camera data if desired 

// delete pqseq from memory 
servarray[sa_i] = NULL;    // nullify pointer 

}  } 
release(servarraylock(sa_i)); 

} 
 

boolean PQ::Output(sa_i, stream_id) { 
  acquire(servarraylock(sa_i)); 

// if OpArray item is null, repopulate with top of heap 
if (servarray[sa_i] = NULL) { 

acquire(toplock); acquire(bottomlock); 
servarray[sa_i] = heap[0]; 
// remove top of heap, sort heap in O(log n) 
release(bottomlock); release(toplock); 

} 
// if still no data, write_stream a “no data” JPEG 
write_stream(stream_id, servarray[sa_i] & HTML end, size); 
release(servarraylock(sa_i)); 
return (servarray[sa_i] != NULL); 

} 

Figure 11: Update and Output methods called by wt80: these public methods protect pq’s internal data from race 
conditions and arbitrary manipulations. 
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include a 2.4GHz Intel® Pentium® 4 processor with Hyper-Threading Technology [1], a 533MHz 

front-side bus [14], and a bus-mastering 64-bit PCI bus: the NIC transfers data to and from main 

memory with minimal CPU intervention. 

4.1. ReadCameras round-robin scheduling and camera connections 
An alternative to one ReadCameras process is 1,000 threads that read on all 1,000 cameras. 

Running 1,000 threads requires 1,000 extra context switches, however, and there is no guarantee that 

one thread will not switch to another expensive Transcode/Detect process. Furthermore, all 1,000 

threads read from a shared resource, the NIC. In contrast, the single ReadCameras process requires 

ten to five hundred instructions per camera per loop-cycle. Assuming the worst-case for the fork() 

operation, each loop must execute a maximum of 500K instructions. At 2.4GHz, the loop latency is a 

mere 400µs, or 26.4ms if a Transcode/Detect process stalls; both values are far below the 50ms it 

would take for the NIC’s internal buffer to overflow. 

ReadCameras also never drops camera connections, although it can recover from dropped 

ones. This optimization prevents the overhead of renegotiation on every cycle. 

4.2. Shared pipe reset 
Although explicitly disallowed by Swank’s design, mysterious errors in Transcode/Detect—

for instance, overwriting of very specific executable code in memory—could cause corrupt data to be 

sent through the shared pipe to SwankWeb. For this reason, Swank has a way to reset the shared pipe 

by restarting both SwankWeb and ReadCameras, and by recreating the shared pipe. ReadCameras 

will terminate when it realizes that its shared pipe is invalid. However, even if a concurrent 

ReadCameras process continues to execute, the Transcode/Detect processes it forks will silently 

terminate after attempting to write to the closed pipe. The reset method described is extremely 

inefficient, but the circumstances for its execution are also extremely rare. 

4.3. Priority queue, lock-blocking, and wt80 
Although SwankWeb creates wt80 threads for every request, it seems that most wt80 threads 

will eventually be serialized waiting for the toplock lock. While serialization is expected in most 

circumstances, Swank must be engineered to continue accepting new web requests, even in periods of 

high stress. In most cases, wt80 will complete before returning control to SwankWeb. However, in 

cases where wt80 takes exceptionally long to complete, such as when it is waiting on many queued 
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Add() operations from wtp, SwankWeb will still be able to handle additional requests. wt80’s first 

write_stream() ensures that the client gets some static data, so it knows that the server has not 

timed out. 

4.4. Performance for a data sequence 
Given a few well-justified assumptions, this subsection predicts the average time a piece of data 

takes to travel through Swank, and determines that this time exceeds performance requirements. One 

camera sends data at the rate of 50Kbps-1Mbps, which enters the NIC and is quickly copied into the 

camera_buffer[i] of ReadCameras. At average data rates, 400KB (3.2Mb) of data from about 

10 seconds is sent to Transcode/Detect, meaning each data sequence must consume a maximum of 

10ms of processor time. ReadCameras consumes 30µs for this operation: 4ns for 10 instructions and 

2ns for memory copy (over the 533MHz front-side bus) [15], executed 5,000 times over loops in 

ReadCameras in the worst case, plus 1,000 instructions to fork a Transcode/Detect process. 

Guidance from Design Project 1 suggests that an average (not peak) 10-second data stream would 

take 2ms to transcode, and that the resulting JPEGs would take about 4ms to detect anomalies. 

Writing to the shared pipe may also take some time, perhaps about 25 instructions or 10ns-worth 

plus a memory write hit of 2ns. 

Accumulate and
filter 30µs

ReadCameras

Transcode 2ms
Detect 4ms
Filter, Marshal 12ns

Transcode/Detect

Accumulate 14ns
Filter 10ns
Add to pq 70ns

wtp

Output (5x)  .33µs
Update(5x) .33µs
->Delete (1x) 70ns

wt80

NIC

Ethernet/Internet

fork()
0.4µs

pipe
12ns

stream
(see accumulate)

pq

Add

Output/Update

spotter

 
Figure 12: The round-trip processor time for the Swank system. Without Transcode/Detect, the system consumes 0.31% 
of processor resources. 

Next, wtp unmarshals the data, adds it to the priority queue, outputs the data to spotters, 

accumulates the results, and then deletes the data or notifies the authorities. Reading and 

unmarshaling from the shared pipe takes 14ns of dedicated processor time in the worst case. Although 

the data rate through the pipe is only 3MB/sec (30KB/10 seconds per camera × 1,000 cameras), the 
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processor spends considerably less time waiting on the pipe once wtp calls yield(). Therefore, on 

every pass wtp will unmarshal many messages. Add() spends only 70ns in the worst-case scenario. If 

a full pq occupies 500MB of memory (4GB - 1.5GB - 1.5GB with 500MB slack), and if the average 

JPEG occupies 30KB, then there may be as many as 16,667 entries in pq. Add() takes O(log n) time, 

so log 16,667 = 4.22 × 25 instructions/operation = 50ns, plus 20ns for memory access. Output() 

and Update() without run in finite time of about (100 instructions + 24ns memory reads) × 5 

times = 0.33µs each; the recursive delete operation, like Add(), requires an additional 70ns. 

Summing the loop, each 10-second camera “chunk” requires 6.031ms of dedicated processor 

time, or 0.31% without transcode() and detect_anomaly(). The Transcode/Detect 

process contributes the vast majority of this delay, suggesting that Swank is indeed a light, fast, and 

efficient architecture. 

5. Conclusion 
Swank splits the design for a web-surveillance server into three multithreaded, fault-isolated 

modules, with additional components monitoring and supporting the base design. The three core 

modules execute in their own address spaces, preventing failures in one module from immediately 

propagating to others. Swank components are connected with several different mechanisms, including 

shared pipes for interprocess communication and acquire/release semaphores for single-process 

multithreading. If these inter-thread or interprocess channels fail, Swank can also restore the system 

through a variety of means. ReadCameras can spawn new opencamera threads to restore network 

connections, while Swank can reinitialize all three core modules if the shared pipe fails. 

Swank also addressed performance in its module-centric design. Although this design cannot 

eradicate long-term overload, it manages to degrade gracefully under periods of high stress. Swank 

further reports these chronic overloads to users. Armed with this knowledge, an informed operator 

can expand the system’s resources as the system serves wider areas and processes more complicated 

camera feeds. 
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