

Swank
The Fault-Tolerant, Multithreaded, High-

Performance Surveillance Server for Growing
Businesses

An Integral Component of Surveillance@Home

Sean Leonard
6.033 Computer Systems Engineering

Spring 2004, 3/17/2004
Design Project 1

Recitation #4, TR11am
Recitation Instructor: Prof. Michael Ernst

Teaching Assistant: Kathryn Chen

Abstract
Corporate properties require wide surveillance, but traditional surveillance systems are expensive.
Swank provides a robust, scalable, fault-tolerant, and low-cost alternative for wide-area surveillance.
Swank’s three modules continue to process under widely varying camera loads, unstable algorithms,
and inconsistent spotters.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs License.

To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/2.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

 Sean Leonard TR11: DP1 3/17/2004

 Page 2 of 24

Table of Contents
Executive Summary... 4

Problem, Constraints, and Solution Overview.. 4
System Design, Reliability, and Performance.. 5

ES.1. Kernel and Hardware Specifications .. 5
ES.2. ReadCameras ... 6
ES.3. Transcode/Detect ... 7
ES.4. SwankWeb... 7
ES.5. Performance... 8

Conclusion ... 8
1. Introduction ... 9
2. Design Overview.. 9

2.1. Modularity in Design .. 9
2.2. Three Components ... 9
2.3. Multiple Connections.. 9
2.4. Monitor Above, Kernel Below...10

3. Design Description..11
3.1. Details of the Kernel and Protocol Stack ...11
3.2. Initial Process Evolution...12

3.2.1. Swank Initialization...12
3.2.2. SwankWeb Initialization..13
3.2.3. ReadCameras Initialization ..13

3.3. Details of ReadCameras..13
3.4. Details of Transcode/Detect..15
3.5. Details of SwankWeb ...16

4. Design Tradeoffs and Performance ..19
4.1. ReadCameras round-robin scheduling and camera connections ...20
4.2. Shared pipe reset..20
4.3. Priority queue, lock-blocking, and wt80...20
4.4. Performance for a data sequence..21

5. Conclusion..22
6. References...23

6.1. Acknowledgements..23
6.2. References ...23

 Sean Leonard TR11: DP1 3/17/2004

 Page 3 of 24

List of Figures
Figure 1: A complete Swank system diagram, with purposes of and connections between
ReadCameras, Transcode/Detect, SwankWeb, and the system hardware. Each module pictured
occupies a separate address space. The kernel and guardian process are not explicitly pictured; see
Section 2.4 on page 11 for details. ... 4
Figure 2: Additional and clarified functions in Swank kernel.. 5
Figure 3: Process evolution diagram. Bold values indicate the maximum concurrent instances of each
process or thread; italicized names indicate threads in a process. Each process occupies a separate
memory space, illustrated as a solid line.. 6
Figure 4: A simplified processor-consumption diagram for each module and connection, including
wasted processor time due to memory accesses. For details, see Figure 12 on page 22. 8
Figure 5: A complete Swank system diagram, with purposes of and connections between
ReadCameras, Transcode/Detect, SwankWeb, and the system hardware..10
Figure 6: General pseudocode for ReadCameras process. Note that italicized comments are
placeholders for more pseudocode...14
Figure 7: Pseudocode for opencamera thread, which “primes” the HTTP request/response chain for
raw reading. ..15
Figure 8: Drop/fork pseudocode. This code expands the pseudocode in ReadCameras.15
Figure 9: Pseudocode for Transcode/Detect. Note the marshaled format of the data.16
Figure 10: Priority Queue with information hiding and thread-safe methods..18
Figure 11: Update and Output methods called by wt80: these public methods protect pq’s internal
data from race conditions and arbitrary manipulations. ...19
Figure 12: The round-trip processor time for the Swank system. Without Transcode/Detect, the
system consumes 0.31% of processor resources. ..21

Word Count
Executive Summary: 1,190 words
Main Text: 3,745 words
Total: 4,935 words
These counts exclude figures, captions, headings, headers, and footers.

 Sean Leonard TR11: DP1 3/17/2004

 Page 4 of 24

Executive Summary

Problem, Constraints, and Solution Overview
Surveillance@Home requires a web-surveillance platform that provides fault-tolerance, load-

balancing, and reasonable performance in its delivery of camera data to spotters around the world.

The Swank system meets and exceeds these criteria with its multithreading kernel and robust three-

module design. Swank’s kernel enforces hard-modularity and fault isolation between modules, while

providing safe connections such as pipes between them. Swank’s three core modules, ReadCameras,

Transcode/Detect, and SwankWeb, respectively read camera data, transcode data and detect anomalies,

and serve resulting images to spotters over the Internet. A fourth module serves two purposes: it

initializes the three core modules, and allows Swank to recover from serious and unusual errors by

periodically monitoring and restarting problematic processes.

Swank System

Intranet/Internet

Continuously reads camera data
into large buffers
Decides if system is overloaded
If not overloaded, creates
Transcode/Detect process with
camera data
If overloaded, discards some
data

ReadCameras

Transcodes data
Detects anomalies
sends data via pipe to SwankWeb

Transcode/Detect

Camera

Camera

Camera

Spotter

Spotter

Spotter

create processes
with pre-existing data

write to one shared pipe
with atomic writes
and multiplexing

spotter
HTTP connections

Accepts data from Transcode/Detect
If data is correctly formatted, adds to
priority queue

Accepts data from spotters
Accumulates spotter results; notifies
authorities if necessary
Sends anomalous images from
priority queue to spotters

SwankWeb

PQ
Priority queue and

operational array of
anomalous data
(shared object)

NIC

spotter
HTTP connections

camera
HTTP connections

camera
HTTP connections

Gigabit Ethernet

Figure 1: A complete Swank system diagram, with purposes of and connections between ReadCameras,
Transcode/Detect, SwankWeb, and the system hardware. Each module pictured occupies a separate address space. The
kernel and guardian process are not explicitly pictured; see Section 2.4 on page 10 for details.

These user modules and system components are illustrated in Figure 1 above, and are

described in the following sections. ES.1 summarizes Swank’s kernel and hardware, and then describes

a general evolution of processes from system boot-up to steady-state. Subsequent sections disclose the

 Sean Leonard TR11: DP1 3/17/2004

 Page 5 of 24

features and design rationales of Swank’s three modules. Finally, ES.5 illustrates Swank’s performance

by measuring how much of the processor a camera sequence would require in the steady-state.

System Design, Reliability, and Performance

ES.1. Kernel and Hardware Specifications
Swank operates on the commodity PC outlined in Design Project 1, including a 2.4GHz

Intel® Pentium® 4 processor with Hyper-Threading Technology [1], a clock chip programmed to send

25ms “heartbeats,” and a system bus arbiter for TSL support [2]. The Gigabit NIC implements an

8MB buffer, a size large enough to hold 50ms minimum of camera data with 1.75MB to spare.

Swank’s kernel follows Design Project 1’s specification, with the following enhancements and

clarifications in Figure 2.

The multithreader supports both pre-emptive and cooperative thread switching, as well as

thread coordination for shared variables. Both read_stream and write_stream are

nonblocking. They return negative values if the stream is closed or an error has occurred, otherwise

reporting 0 or more bytes read or written (for details, see Section 3.1 on page 11). Write_stream

guarantees to write up to _POSIX_PIPE_BUF bytes atomically per call [4]: Swank assumes a value

of 256KB, which is several standard deviations larger than an average JPEG sent through the system’s

pipes. Finally, ReadCameras relies on the system interrogators when it determines whether or not to

drop camera data.

Swank’s computer boots up and loads the kernel as outlined in the 6.033 notes [5]. A general

process evolution is provided in Figure 3 below. Note that Swank, the main user process, never

terminates. After creating a shared pipe and forking ReadCameras and SwankWeb with the

// Swank Kernel additions: multithreading, streams, interrogation

// pre-emptive multithreading scheduler with TSL
yield(); // see 6.033 Notes 2.D [3]
acquire(L); // see 6.033 Notes 2.E [2]
release(L); // see 6.033 Notes 2.E [2]

const _POSIX_PIPE_BUF ← 256KB; // atomic writes
n ← read_stream(stream_id, buffer, size); // nonblocking
n ← write_stream(stream_id, buffer, size); // nonblocking

howmanychildren ← countpschildren(); // number of forked processes
 // from caller in O(1) time
memory ← howmuchmemoryfree(); // number of bytes of unallocated

// memory in system, O(1) time

Figure 2: Additional and clarified functions in Swank kernel.

 Sean Leonard TR11: DP1 3/17/2004

 Page 6 of 24

pipe_id of the pipe, Swank serves as a “guardian angel” that restarts those processes with a fresh

pipe, if they terminate abnormally.

Swank 1 (continue to monitor processes for abnormal termination)

Kernel 1

time

BIOS
+NIC

SwankWeb 1

ReadCameras 1

Transcode/Detect <10,000

wtp 1

Transcode/Detect

Transcode/Detect

Transcode/Detect

Transcode/Detect

Transcode/Detect

Transcode/Detect

Transcode/Detect

Transcode/Detect

wt80 <inf wt80 wt80 wt80
wt80

wt80
wt80

wt80

wt80
wt80

wt80
wt80

wt80 wt80
wt80

wt80
wt80
wt80 wt80 wt80 wt80

opencamera <1,000opencamera
opencamera

opencamera
opencamera

opencamera

opencamera

processes

Figure 3: Process evolution diagram. Bold values indicate the maximum concurrent instances of each process or thread;
italicized names indicate threads in a process. Each process occupies a separate memory space, illustrated as a solid line.

ES.2. ReadCameras
After initialization by Swank, ReadCameras establishes connections to the cameras, retrieves

camera data, and decides whether or not to send camera data to Transcode/Detect. If a camera

connection is unavailable, ReadCameras creates an asynchronous opencamera thread to establish the

HTTP request/response chain, since open_stream may block for several seconds. ReadCameras

copies all available data in camera streams in a round-robin fashion, well before the NIC’s small buffer

overflows. Connections are permanently held open; however, if a connection fails, ReadCameras will

spawn a new opencamera thread to reopen a connection. If the system is not busy, as defined by

countpschildren and howmuchmemoryfree, and if the camera buffer has accumulated

enough data, ReadCameras will fork a new Transcode/Detect process. When it forks, ReadCameras

sets the copy_on_write bit to analyze a “chunk” of camera data without copying a large buffer; it

also passes pointers to the correct data “chunk,” and supplies metadata such as the camera ID. In the

worst case, ReadCameras takes 400µs to pass through the loop and fork 1,000 processes. At the end

of each loop, ReadCameras calls yield to allow other processes to execute before emptying the NIC

buffer again.

 Sean Leonard TR11: DP1 3/17/2004

 Page 7 of 24

ES.3. Transcode/Detect
Transcode/Detect calls transcode and detect_anomaly, gets the result of these

routines, marshals the result into the format (size of all data), (camera ID),

(time), (threat), (frame_size), (JPEG frame), sends the data through a shared

pipe if the total size is no greater than _POSIX_PIPE_BUF, and terminates. Transcode and

detect_anomaly are guaranteed to fail at some time. Placing them in separate address space will

allow them to fail independently of all other processes, at which point the kernel will teardown the

crashed process’ memory space. Performance-wise, process setup and teardown time is negligible

compared to the time to run transcode and detect_anomaly.

ES.4. SwankWeb
SwankWeb perpetually maintains one shared priority queue, pq, and one additional thread

called wtp that reads on the shared pipe. Wtp continuously reads and unmarshals data. If data is

invalid or out of sync, wtp will close the pipe and call exit to terminate SwankWeb; the main Swank

process will recognize this condition and create fresh SwankWeb and ReadCameras processes. While

drastic, it is conceivable that a spurious Transcode/Detect process could actually rewrite part of its

marshaling code without failing, thus sending corrupt data through the pipe. Restarting SwankWeb

and ReadCameras is highly inefficient, but this case is expected to be so rare that a restart will almost

never be required.

If values in the message appear valid, wtp calls a public method pq.Add to add data to the

queue. Pq– implemented in an object-oriented programming language—achieves soft-modularity,

information hiding, and acceptable performance: the web server must read data from pq concurrently

if it is to serve thousands of spotters at once. Internally, pq contains a priority queue implemented as a

heap and a dynamically-resizable “operational array.” The “operational array” allows the web server to

send JPEGs to spotters concurrently: pq replaces anomalous data in the array from the top of the heap.

If the only “operational data” for the web server were at the top of the heap, the data would bottleneck

the whole process for at least ten seconds per image, the delay from sending out a JPEG to receiving a

spotter’s response.

For every request that SwankWeb receives, it creates a wt80 thread designed like a “single-

instance” MT in the Flash paper [6]. Wt80 writes the preliminary HTTP header and HTML start to

notify the client that is has started to service the request. Following this action, wt80 calls

 Sean Leonard TR11: DP1 3/17/2004

 Page 8 of 24

pq.Update to update metadata for anomalous images based on the request’s HTTP POST.

Finally, wt80 calls pq.Output to output a new image to the spotter, closes the stream, and

terminates.

ES.5. Performance
Under a few, well-justified assumptions, Swank spends an average of 0.31% of processor

resources on each request. For a 10-second stream of video, the system cannot spend over 10ms per

request. Swank spends 31µs, plus an estimated average of 6ms on transcode and

detect_anomaly. Section 4.4, “Performance for a data sequence,” in the main text provides

details on these assumptions.

NIC

fork()
0.4µs

pipe
10ns

cameras

Add

ReadCameras
30µs

Transcode/Detect
6ms + 12ns

wtp
94ns

wt80
.73µs

pq
spotters

Output/Update

Figure 4: A simplified processor-consumption diagram for each module and connection, including wasted processor time
due to memory accesses. For details, see Figure 12 on page 21.

Conclusion
Swank splits the design for a web-surveillance server into three multithreaded, fault-isolated

modules, with additional components monitoring and supporting the base design. These modules are

connected with several different mechanisms, including shared pipes and acquire/release semaphores.

Although the Swank design cannot eradicate long-term overload, it can handle sudden spikes by

eliminating data early in the data pipeline. Swank can also recover from broken connections using the

opencamera thread and the Swank guardian process. These features make Swank an ideal choice for a

web-surveillance system.

1. Introduction Sean Leonard TR11: DP1 3/17/2004

 Page 9 of 24

1. Introduction
Swank provides fault-tolerance, load-balancing, and excellent performance in its delivery of

camera data to spotters around the world. Swank accomplishes these objectives with a multithreading

kernel and a robust three-module design, breaking tasks up into camera-reading, signal processing,

and web-serving stages. Each module executes independently of the others, achieving fault isolation

through the hard-modularity that the kernel and hardware enforce. Within each module, software

contracts ensure soft-modularity and fault tolerance in spite of potential threading hazards and

corrupt data. Each module successively filters data to improve performance across the whole system. A

fourth module adds recoverability to Swank, periodically monitoring and restarting problematic

processes.

2. Design Overview

2.1. Modularity in Design
Swank distributes its workload among three different modules, each separated by hard-

modularity contracts established by the kernel and the network. Although Swank’s design depends

upon this three-module abstraction, Swank further specifies methods for interprocess communication,

a guardian process for error recovery, and a kernel for multithreading and memory-mapping. These

critical pieces grew naturally out of the three-module abstraction, and are described below.

2.2. Three Components
The three core functions of Swank are to read camera data, to transcode and analyze data, and

to serve data to and from spotters. These functions correspond to Swank’s three modules:

ReadCameras, Transcode/Detect, and SwankWeb, which are explored in this section. Swank’s three-

module abstraction appears in Figure 5 below, sorted in the order of camera dataflow.

2.3. Multiple Connections
Figure 5 illustrates the many interconnections between components in the Swank system: each

connection is tailored for fault-tolerance, performance, and interoperability as each module demands.

ReadCameras communicates to Transcode/Detect by forking new Transcode/Detect processes from

itself: by forking with the copy_on_write bit set, both processes isolate faults without incurring a

buffer-copy penalty. Transcode/Detect processes send marshaled data to SwankWeb via a shared

2. Design Overview Sean Leonard TR11: DP1 3/17/2004

 Page 10 of 24

pipe, which guarantees that properly-marshaled data will be written to the shared resource. The

HTTP connections follow semantics defined in the HTTP/1.0 standard [7], permitting seamless

communication with other network applications. Intra-module connections, such as those between

helper threads in ReadCameras, are explored in detail in section 3, “Design Description.”

Swank System

Intranet/Internet

Continuously reads camera data
into large buffers
Decides if system is overloaded
If not overloaded, creates
Transcode/Detect process with
camera data
If overloaded, discards some
data

ReadCameras

Transcodes data
Detects anomalies
sends data via pipe to SwankWeb

Transcode/Detect

Camera

Camera

Camera

Spotter

Spotter

Spotter

create processes
with pre-existing data

write to one shared pipe
with atomic writes
and multiplexing

spotter
HTTP connections

Accepts data from Transcode/Detect
If data is correctly formatted, adds to
priority queue

Accepts data from spotters
Accumulates spotter results; notifies
authorities if necessary
Sends anomalous images from
priority queue to spotters

SwankWeb

PQ
Priority queue and

operational array of
anomalous data
(shared object)

NIC

spotter
HTTP connections

camera
HTTP connections

camera
HTTP connections

Gigabit Ethernet

Figure 5: A complete Swank system diagram, with purposes of and connections between ReadCameras,
Transcode/Detect, SwankWeb, and the system hardware.

2.4. Monitor Above, Kernel Below
In addition to the three modules and multiple connections above, the Swank system contains

two additional, critical components: the monitor process Swank and the Swank kernel. Swank serves as

a “mother” and a “guardian angel.” The process contains all executable user-mode code for the Swank

system, but forks off child processes to run the code. After launching its child processes, Swank

perpetually monitors the health of ReadCameras and SwankWeb. If either process terminates, Swank

will restart them and will provide them with fresh, uncorrupted resources.

The Swank kernel holds the system together: all user processes rely on it to establish

interprocess and network communication, to report status of the system, to map, expand, and revoke

memory as needed, and to rapidly switch between threads of execution.

3. Design Description Sean Leonard TR11: DP1 3/17/2004

 Page 11 of 24

3. Design Description

3.1. Details of the Kernel and Protocol Stack
Swank implements the Unix-like kernel described in Design Project 1, with several

enhancements to support multithreading, process interrogation, and nonblocking streams.

The kernel supports pre-emptive and cooperative multithreading with kernel-threads and

locks, as outlined in the 6.033 notes [5]. The pre-emptive scheduler relies on the computer’s clock

chip, which sends a regular “heartbeat” of interrupts every 25ms. While Swank’s internal modules are

built to follow cooperative multitasking principles, transcode() and detect_anomaly()

may not return for long periods of time. Therefore, a single Transcode/Detect process cannot

consume the system for more than 25ms. The scheduler favors executing lower-order processes—that

is, parent processes of the interrupted process—when a 25ms interrupt occurs. Yield() is

supported: when a program calls yield(), the scheduler will transfer execution to another process

at random. If fork() or fork_thread() are called, the parent process or thread resumes

execution before the new process or thread. The Swank kernel also implements acquire(L) and

release(L) for thread-locking as outlined in [2]; the system’s bus includes an arbiter to support

these calls. Release(L) has no effect if the thread did not acquire the lock.

The protocol stack of the Swank kernel implements the same functionality described in

Chapter 4 of the 6.033 notes [8]. The TCP portion of the stack in the end-to-end layer has an

identical buffer size as the Gigabit NIC; both buffers are 8MB, a size large enough to hold 50ms

(twice the pre-emptive interrupt period) minimum of camera data with 1.75MB to spare.

To access the NIC and memory, the kernel implements nonblocking

read_stream(stream_id, buffer, size) and write_stream(stream_id,

buffer, size) calls. Read_stream() attempts to read size bytes from the stream into the

buffer provided; the function returns n, the number of bytes actually read into the buffer. If less than

size bytes are immediately available, n will be less than size. If read_stream() returns 0, the

stream is open and available, but no bytes are waiting in the stream. If the stream is not available or an

error occurs, read_stream() returns a negative value.

Write_stream() writes bytes to the specified stream, returning the number of bytes that

the underlying stream believes will be written successfully in finite time. If stream_id refers to a

TCP socket [9], write_stream() returns asynchronously with the TCP guarantee that n bytes

3. Design Description Sean Leonard TR11: DP1 3/17/2004

 Page 12 of 24

will eventually be sent to the sender in order. If stream_id refers to a kernel pipe created by

pipe(), write_stream() guarantees immediate writing to memory before returning n. As

with read_stream(), write_stream() failures return negative values. Pipes do not close

unless the process that created the pipe crashes. According to the POSIX standard [4],

write_stream() further guarantees that up to a certain _POSIX_PIPE_BUF of bytes will be

written atomically: if multiple processes each attempt to write qi bytes to the same stream, and if qi is

less than or equal to _POSIX_PIPE_BUF, then qi bytes will remain in order in the stream. If qi is

greater than _POSIX_PIPE_BUF, then each _POSIX_PIPE_BUF chunk of bytes are guaranteed

to be in order. Swank’s kernel specifies the _POSIX_PIPE_BUF) as 256KB, or 218 bytes: this value

corresponds to several standard deviations larger than the average JPEG output from

transcode(), plus the size of some metadata associated with the image.

The kernel implements two additional functions: howmanychildren ←

countpschildren() and memory ← howmuchmemoryfree().

Countpschildren() returns the number of running child processes created with fork() by

the current process. The function returns in constant time: the kernel keeps a total of running child

processes of every process. Howmuchmemoryfree() returns the number of free bytes of total

memory. Total memory includes addressable physical memory and memory swapped to disk: since the

Swank system has no disk, total memory is physical memory. ReadCameras will use these functions to

selectively discard camera data during periods of high stress.

3.2. Initial Process Evolution

3.2.1. Swank Initialization
The computer boots up and loads the kernel as outlined in the 6.033 notes [5]. The kernel

loads the Swank process as the first user program in memory. Swank creates three variables: a restart

counter for SwankWeb, a restart counter for ReadCameras, and a pipe. The pipe structure will

eventually be shared by the three modules in the swank system. Swank then acts a stub, starting up the

SwankWeb and ReadCameras processes using fork(). Swank enters an infinite loop, usually calling

yield() to yield control to other processes. Periodically, however, Swank checks the system to see

if processes have terminated abnormally, in which case Swank will spawn fresh shared pipes and

replacement processes as necessary.

3. Design Description Sean Leonard TR11: DP1 3/17/2004

 Page 13 of 24

3.2.2. SwankWeb Initialization
After Swank forks the SwankWeb process, the code branches off in its own function,

SwankWeb(), which takes the shared pipe and SwankWeb restart count as arguments. SwankWeb

creates the priority queue data structure illustrated in Figure 5 on page 10. SwankWeb calls

fork_thread(wtp, pipe_id) to create the workhorse thread for reading on the shared pipe

(wtp); the wtp thread takes the shared pipe as an initial argument in the same fashion as clone()

[10]. SwankWeb assumes the role of the external web server, waiting for requests to come in on port

80 after calling listen(80) and accept_stream(80). SwankWeb calls

fork_thread(wt80, http_stream_id) for every request received. Each wt80 processes

data in the MT-style described in the Flash paper [6], except that wt80 starts with an open stream,

and terminates after servicing its request.

3.2.3. ReadCameras Initialization
The ReadCameras process accepts the shared pipe and restart count as initial arguments.

ReadCameras creates 1,000 large buffers (camera_buffer[1000]), pointers to current buffer

“chunk” positions and current read positions (cb_chunk[1000] and cb_pos[1000]),

remaining size of the buffer (cb_rs[1000]), failure counters (camera_failures[1000]),

and stream_ids (camera_streams[1000]) corresponding to the 1,000 cameras from which

it reads. Each camera buffer is 1.5MB long (1.5GB for 1,000 cameras), corresponding to 12 to 240

seconds of raw camera data (at 1Mbps peak rate, or 50Kbps minimum rate). The process has camera

IP addresses in its initial boot image (camera_IPs[1000]), which are loaded into memory. As

ReadCameras receives camera data, it will continuously fork() new Transcode/Detect processes to

analyze the data.

3.3. Details of ReadCameras
After initialization by Swank, ReadCameras establishes connections to the cameras, retrieves

camera data, and decides whether or not to send camera data to Transcode/Detect (see Figure 6).

ReadCameras processes each camera in a round-robin fashion, essentially implementing a cooperative

user-level multithreader without context-switching overhead. If camera_streams[i] is 0,

ReadCameras creates a new thread opencamera to open an HTTP stream to the ith camera and sends

the request “GET /video HTTP/1.0,” then saves the stream_id to the ith position in the

camera_streams array (see Figure 7). Open_stream() may block if the camera takes a long

3. Design Description Sean Leonard TR11: DP1 3/17/2004

 Page 14 of 24

time to respond, necessitating a separate thread. No race condition can occur, since only opencamera

writes to camera_streams, and ReadCameras critically depends on camera_streams at only

one point per cycle. ReadCameras calls read_stream(), passing data from the protocol stack’s

small buffers to ReadCamera’s sizeable buffers well before the protocol stack’s buffers overflow.

If a camera does not respond, ReadCameras resets the buffer, increments the failure counter,

and attempts to reconnect to the camera. The failure counter is periodically decremented after

successful connections. If ReadCameras cannot connect to a camera after many repeated attempts, it

reports an error message directly to SwankWeb in the same format as the JPEG/metadata struct

vision_result. Problems with the shared pipe are more serious: as a precautionary measure,

such problems cause ReadCameras to terminate, which has the side-effect of closing all camera

streams.

After reading, ReadCameras calls countpschildren() and

howmuchmemoryfree() to determine how busy the server is. If countpschildren() is

greater than 10,000 (assuming the average latency of each Transcode/Detect process is about 10ms in

a multithreaded environment), or if howmuchmemoryfree() is less than 250MB, ReadCameras

// in initial boot image
const camera_IPs[1000]; const CAMERAS ← 1000;
// available to both functions in process
camera_streams[1000];

void ReadCameras(pipe_id, restart_count) {
 // initialize camera_buffer[1000], cb_chunk[1000],

// cb_pos[1000], camera_failures[1000], and
// cb_rs[1000] using resize_heap() as necessary
if (write_stream(pipe_id, 0, 0) < 0) exit(1);
for (int i; i < CAMERAS; i++) {
 // NOTE: at any point, if the return from a syscall
 // is negative, the failure count is incremented and
 // camera_streams[i] is set to 0; excessive problems
 // induce an error message to be written to the shared pipe
 // open stream: initialize camera connections
 if (camera_streams[i] <= 0) {

fork_thread(opencameras, i);
 } else {

// read stream
sizeread ← read_stream(camera_streams[i], cb_pos[i],

cb_rs[i]);
cb_rs[i] ← cb_rs[i] – sizeread;

// drop data, or fork Transcode/Detect process

 } } // end if camera_streams, end loop over all cameras
 yield();
}

Figure 6: General pseudocode for ReadCameras process. Note that italicized comments are placeholders for more
pseudocode.

3. Design Description Sean Leonard TR11: DP1 3/17/2004

 Page 15 of 24

will discard bytes from its camera stream after reading them, and will use inverse exponential backoff

to discard existing bytes in the camera’s buffer.

If ReadCameras determines that the data in a buffer is “ready” (400KB long for 3-30 seconds

of data, or the buffer has reached its 1.5MB limit), fork() is called with the copy_on_write bit

set [11], creating a new Transcode/Detect process to operate on the “chunk” of data and its

companion camera and time-completed information. By using copy_on_write, the massive

camera buffer available to the Transcode/Detect becomes available without the penalty of copying

that buffer. The kernel enforces memory isolation, preventing Transcode/Detect from modifying the

data associated with ReadCameras. ReadCameras increments the “chunk” after forking, so that the

remainder of the buffer can be used for the next bytes of the stream without forcing the kernel to copy

memory pages for Transcode/Detect. This drop/fork process is illustrated in Figure 8 below.

3.4. Details of Transcode/Detect
After forking from ReadCameras, each Transcode/Detect process begins with

TranscodeDetect(pipe_id, camera, time, bufferpointer, size), as

illustrated in Figure 9. Transcode/Detect calls transcode() and detect_anomaly(), gets

the result of those routines, and if successful, sends the result to SwankWeb via the shared pipe. The

Swank design places these two routines in their own module for fault isolation and efficient

void opencamera(camera_id) {
activestream ← open_stream(camera_IPs[camera_id], 80);
write_stream(camera_streams[camera_id], “GET /video HTTP/1.0\n”,

stringsize);
// read_stream() until the null line separating the entity body
// is encountered
// avoid race conditions assigning shared variable just-in-time
camera_streams[camera_id] ← activestream;

}

Figure 7: Pseudocode for opencamera thread, which “primes” the HTTP request/response chain for raw reading.

// drop data, or fork Transcode/Detect process
if (countpschildren()>10K || howmuchmemoryfree()<250MB) {
 // binary exponential backoff: go back on buffer
} else if (cb_pos[i] - cb_chunk[i] >= 400KB) {
 switch (fork()) {
 0: // Transcode/Detect

TranscodeDetect(pipe_id, camera_IPs[i], time(),
cb_chunk[i], cb_pos[i] – cb_chunk[i]);

 break;
 default: // still in ReadCameras

// reset or increment as necessary arrays[i]
 break;

 } } // end switch on new process, end if server busy

Figure 8: Drop/fork pseudocode. This code expands the pseudocode in ReadCameras.

3. Design Description Sean Leonard TR11: DP1 3/17/2004

 Page 16 of 24

multithreading. The routines are guaranteed to crash at some time. Placing them in separate address

spaces will allow a routine to fail independently of all other processes, at which point the kernel will

teardown the crashed process’s memory space. The kernel consumes a negligible amount of time to

setup and teardown a Transcode/Detect process relative to the lifetime of that process, so there is

virtually no performance hit associated with creating separate processes.

If values in vision_result are invalid (e.g., JPEG has no size, or threat_level is

outside [0.0, 1.0]), or if the pipe has been closed, Transcode/Detect terminates silently as if it had

failed to determine a result. Otherwise, Transcode/Detect marshals the vision_result data into

the format in Figure 9 when sending it through the pipe to wtp.

3.5. Details of SwankWeb
SwankWeb perpetually maintains one shared data structure, pq for priority queue, and two

threads of execution (see 3.1 above); this analysis considers the pipe-reading thread wtp first, since it

follows in the data path from Transcode/Detect. Discussions of pq and SwankWeb follow.

When Wtp initializes, it attempts to read one long value from the pipe, corresponding to the

length of the rest of the message. Wtp continually calls read_stream(pipe_id,

readbuffer, (remaining size)) and yield() until it reads an entire message. The

message is unmarshaled and its component values are examined; finally, wtp calls a public method

pq.Add(camera, time, threat, JPEG, size). Wtp repeats this process until no

// about 30KB/jpeg * 10 seconds * 5 jpegs/second
MAX_JPEGBUFFER_SIZE ← 1.5MB;
MAX_JPEG_SIZE = _POSIX_PIPE_BUF – sizeof(float) – sizeof(long)*4;

void TranscodeDetect(pipe_id, camera, time, bufferpointer, size) {

jpegbuffer ← new jpegbuffer(MAX_JPEGBUFFER_SIZE);
transcode(bufferpointer, size, jpegbuffer,

MAX_JPEGBUFFER_SIZE);
yield();
vision_result vr;

vr ← detect_anomaly(jpegbuffer, MAX_JPEGBUFFER_SIZE);
// see page 18 for definition of THREAT_MINIMUM
if (THREAT_MINIMUM <= vr.threat <= 1.0 && 0 < vr.frame_size <

MAX_JPEG_SIZE && vr.frame_pointer is valid) {
 sizeofeverything ← vr.frame_size + float and 4 longs
 streambuffer ← new streambuffer();

// put (size of everything), (camera), (time), (threat),
// (frame_size), and JPEG into streambuffer

 write_stream(pipe_id, streambuffer, sizeofeverything);
} exit(0);

}

Figure 9: Pseudocode for Transcode/Detect. Note the marshaled format of the data.

3. Design Description Sean Leonard TR11: DP1 3/17/2004

 Page 17 of 24

more data can be read, at which point it calls yield(). If any data in this sequence is invalid, e.g.,

the first long is longer than _POSIX_PIPE_BUF - 1, wtp will attempt to resynchronize with

the pipe’s data, although the specifics of resynchronization are beyond the scope of this document. For

now, wtp closes the shared pipe and forces SwankWeb to terminate with exit(1), signaling to

Swank that SwankWeb and ReadCameras need to be restarted.

For system stability and modularity, pq is implemented as an object in an object-oriented

programming language such as C++. This design choice lets pq hide its private data—a priority queue

implemented as a heap [12] and an “operational array” of initial length 6,000, much larger than

MAX_CAMERAS—and expose public methods to add, update, and output the data. The operational

array ensures that SwankWeb can serve many highly-suspicious images concurrently, rather than

blocking on the top of pq’s heap for the full latency between Swank and the distant spotter.

Swank’s design makes a tradeoff for the sake of performance: pq could be in a completely

separate process, thus achieving hard-modularity between the three SwankWeb components.

Specifying pq as an object enforces only soft-modularity through contracts. As a shared object,

however, pq can be read by multiple wt80 threads at once, rather than serially. With potentially

thousands of spotters accessing the server at once, optimizing parallel reads is much more important

than parallelizing writes, which is the province of the serialized wtp design. Figure 10 below illustrates

the complete class specification, with especial attention to locking of shared data.

3. Design Description Sean Leonard TR11: DP1 3/17/2004

 Page 18 of 24

Wtp calls pq.Add(), which adds data to the priority queue if it matches certain criteria.

One criterion is that the threat-level exceeds a certain minimum, which would be found by inspection

at each Surveillance@Home site. To eliminate data as early as possible in the pipeline, Swank tests

this criterion in Transcode/Detect (see Figure 9 on page 16), since the criterion is not dependent on

the state of user responses. Other criteria may be specified depending on per-camera or per-time data:

for example, if one camera has a scarecrow in front of it, and if spotters report that the data is clearly

not suspicious, other criteria can dynamically set a higher minimum threat-level for that camera for a

period of time.

In contrast, wt80 calls write_stream(http_stream_id, HTTP response &

HTML beginning, data size), then pq.Update() and pq.Output() as shown in

Figure 5 below. Before making these calls, wt80 unmarshals values found in the “POST url

HTTP/1.0” request from the client, if such a request exists. Wt80 will only call Update() if the

unmarshaled values are valid, and Update() will only update the item if the spotter is submitting

data for the identical item. If a spotter submits data after the item in the “operating server array” is

removed or replaced, the spotter’s data is discarded.

class PQ {
// in addition to Transcode/Detect data, stores net
// suspiciousness of image, and how many views image has had
struct {camera, time, threat, JPEG, size, suspiciousness,

views} pqseq;
 PQ() { // initialize heap and servarray }
 ~PQ() { // lock all heap, all servarray, delete all items }

 Add(camera, time, threat, JPEG, size) {

if (other criteria met) {
if (threat > heap[0].threat) acquire(toplock);
acquire(bottomlock);
// create new pqseq and add to heap in O(log n)
release(bottomlock);
release(toplock);

 } }

Update(sa_i, camera, time, threat, size, suspiciousness);
boolean Output(sa_i, stream_id);
Resize_Op_Array() { // dynamically resize high-priority array }
long SizeOfHeap() { // size of heap }
long SizeofOpArray() { // size of operational array }

private:
 pqseq** heap; // the internal heap
 pqseq** servarray; // high-priority array, currently serving
 otherdata cameradata[MAX_CAMERAS]; // data per camera
};

Figure 10: Priority Queue with information hiding and thread-safe methods.

4. Design Tradeoffs and Performance Sean Leonard TR11: DP1 3/17/2004

 Page 19 of 24

After Update(), sa_i is incremented modulo the size of the operational array. In the

absence of an HTTP POST, sa_i takes a random value in the interval [0, oparraysize).

Output((sa_i + 1) mod pq.SizeOfOpArray(), http_stream_id) sends the

next item’s identifying information along with the embedded JPEG image [13] and HTML end-text,

so that Update() can validate data received from “POST url HTTP/1.0” requests. When

output() terminates, wt80 may choose to dynamically resize the operational array to handle

greater or fewer concurrent requests. Wt80 finally calls close_stream(http_stream_id) to

complete the HTTP request/response chain.

4. Design Tradeoffs and Performance
Swank’s design includes certain tradeoffs. This section considers three alternatives that were

rejected because they did not meet performance criteria, or could have left the system unstable. The

last subsection illustrates expected performance of a single data sequence through Swank,

demonstrating that Swank exceeds performance criteria. In all cases, the Swank system is assumed to

const MAX_VIEWS_BEFORE_DECISION ← 5 // five witnesses is enough

PQ::Update(sa_i, camera, time, threat, size, suspiciousness) {

acquire(servarraylock(sa_i));
if (servarray[sa_i] = this data) {

servarray[sa_i].suspiciousness ←
servarray[sa_i].suspiciousness + suspiciousness;

servarray[sa_i].views ← servarray[sa_i].views + 1;
if (servarray[sa_i].views > MAX_VIEWS_BEFORE_DECISION) {
 // alert authorities if pqseq is extremely suspicious
 // store some per-camera data if desired

// delete pqseq from memory
servarray[sa_i] = NULL; // nullify pointer

} }
release(servarraylock(sa_i));

}

boolean PQ::Output(sa_i, stream_id) {
 acquire(servarraylock(sa_i));

// if OpArray item is null, repopulate with top of heap
if (servarray[sa_i] = NULL) {

acquire(toplock); acquire(bottomlock);
servarray[sa_i] = heap[0];
// remove top of heap, sort heap in O(log n)
release(bottomlock); release(toplock);

}
// if still no data, write_stream a “no data” JPEG
write_stream(stream_id, servarray[sa_i] & HTML end, size);
release(servarraylock(sa_i));
return (servarray[sa_i] != NULL);

}

Figure 11: Update and Output methods called by wt80: these public methods protect pq’s internal data from race
conditions and arbitrary manipulations.

4. Design Tradeoffs and Performance Sean Leonard TR11: DP1 3/17/2004

 Page 20 of 24

include a 2.4GHz Intel® Pentium® 4 processor with Hyper-Threading Technology [1], a 533MHz

front-side bus [14], and a bus-mastering 64-bit PCI bus: the NIC transfers data to and from main

memory with minimal CPU intervention.

4.1. ReadCameras round-robin scheduling and camera connections
An alternative to one ReadCameras process is 1,000 threads that read on all 1,000 cameras.

Running 1,000 threads requires 1,000 extra context switches, however, and there is no guarantee that

one thread will not switch to another expensive Transcode/Detect process. Furthermore, all 1,000

threads read from a shared resource, the NIC. In contrast, the single ReadCameras process requires

ten to five hundred instructions per camera per loop-cycle. Assuming the worst-case for the fork()

operation, each loop must execute a maximum of 500K instructions. At 2.4GHz, the loop latency is a

mere 400µs, or 26.4ms if a Transcode/Detect process stalls; both values are far below the 50ms it

would take for the NIC’s internal buffer to overflow.

ReadCameras also never drops camera connections, although it can recover from dropped

ones. This optimization prevents the overhead of renegotiation on every cycle.

4.2. Shared pipe reset
Although explicitly disallowed by Swank’s design, mysterious errors in Transcode/Detect—

for instance, overwriting of very specific executable code in memory—could cause corrupt data to be

sent through the shared pipe to SwankWeb. For this reason, Swank has a way to reset the shared pipe

by restarting both SwankWeb and ReadCameras, and by recreating the shared pipe. ReadCameras

will terminate when it realizes that its shared pipe is invalid. However, even if a concurrent

ReadCameras process continues to execute, the Transcode/Detect processes it forks will silently

terminate after attempting to write to the closed pipe. The reset method described is extremely

inefficient, but the circumstances for its execution are also extremely rare.

4.3. Priority queue, lock-blocking, and wt80
Although SwankWeb creates wt80 threads for every request, it seems that most wt80 threads

will eventually be serialized waiting for the toplock lock. While serialization is expected in most

circumstances, Swank must be engineered to continue accepting new web requests, even in periods of

high stress. In most cases, wt80 will complete before returning control to SwankWeb. However, in

cases where wt80 takes exceptionally long to complete, such as when it is waiting on many queued

4. Design Tradeoffs and Performance Sean Leonard TR11: DP1 3/17/2004

 Page 21 of 24

Add() operations from wtp, SwankWeb will still be able to handle additional requests. wt80’s first

write_stream() ensures that the client gets some static data, so it knows that the server has not

timed out.

4.4. Performance for a data sequence
Given a few well-justified assumptions, this subsection predicts the average time a piece of data

takes to travel through Swank, and determines that this time exceeds performance requirements. One

camera sends data at the rate of 50Kbps-1Mbps, which enters the NIC and is quickly copied into the

camera_buffer[i] of ReadCameras. At average data rates, 400KB (3.2Mb) of data from about

10 seconds is sent to Transcode/Detect, meaning each data sequence must consume a maximum of

10ms of processor time. ReadCameras consumes 30µs for this operation: 4ns for 10 instructions and

2ns for memory copy (over the 533MHz front-side bus) [15], executed 5,000 times over loops in

ReadCameras in the worst case, plus 1,000 instructions to fork a Transcode/Detect process.

Guidance from Design Project 1 suggests that an average (not peak) 10-second data stream would

take 2ms to transcode, and that the resulting JPEGs would take about 4ms to detect anomalies.

Writing to the shared pipe may also take some time, perhaps about 25 instructions or 10ns-worth

plus a memory write hit of 2ns.

Accumulate and
filter 30µs

ReadCameras

Transcode 2ms
Detect 4ms
Filter, Marshal 12ns

Transcode/Detect

Accumulate 14ns
Filter 10ns
Add to pq 70ns

wtp

Output (5x) .33µs
Update(5x) .33µs
->Delete (1x) 70ns

wt80

NIC

Ethernet/Internet

fork()
0.4µs

pipe
12ns

stream
(see accumulate)

pq

Add

Output/Update

spotter

Figure 12: The round-trip processor time for the Swank system. Without Transcode/Detect, the system consumes 0.31%
of processor resources.

Next, wtp unmarshals the data, adds it to the priority queue, outputs the data to spotters,

accumulates the results, and then deletes the data or notifies the authorities. Reading and

unmarshaling from the shared pipe takes 14ns of dedicated processor time in the worst case. Although

the data rate through the pipe is only 3MB/sec (30KB/10 seconds per camera × 1,000 cameras), the

5. Conclusion Sean Leonard TR11: DP1 3/17/2004

 Page 22 of 24

processor spends considerably less time waiting on the pipe once wtp calls yield(). Therefore, on

every pass wtp will unmarshal many messages. Add() spends only 70ns in the worst-case scenario. If

a full pq occupies 500MB of memory (4GB - 1.5GB - 1.5GB with 500MB slack), and if the average

JPEG occupies 30KB, then there may be as many as 16,667 entries in pq. Add() takes O(log n) time,

so log 16,667 = 4.22 × 25 instructions/operation = 50ns, plus 20ns for memory access. Output()

and Update() without run in finite time of about (100 instructions + 24ns memory reads) × 5

times = 0.33µs each; the recursive delete operation, like Add(), requires an additional 70ns.

Summing the loop, each 10-second camera “chunk” requires 6.031ms of dedicated processor

time, or 0.31% without transcode() and detect_anomaly(). The Transcode/Detect

process contributes the vast majority of this delay, suggesting that Swank is indeed a light, fast, and

efficient architecture.

5. Conclusion
Swank splits the design for a web-surveillance server into three multithreaded, fault-isolated

modules, with additional components monitoring and supporting the base design. The three core

modules execute in their own address spaces, preventing failures in one module from immediately

propagating to others. Swank components are connected with several different mechanisms, including

shared pipes for interprocess communication and acquire/release semaphores for single-process

multithreading. If these inter-thread or interprocess channels fail, Swank can also restore the system

through a variety of means. ReadCameras can spawn new opencamera threads to restore network

connections, while Swank can reinitialize all three core modules if the shared pipe fails.

Swank also addressed performance in its module-centric design. Although this design cannot

eradicate long-term overload, it manages to degrade gracefully under periods of high stress. Swank

further reports these chronic overloads to users. Armed with this knowledge, an informed operator

can expand the system’s resources as the system serves wider areas and processes more complicated

camera feeds.

6. References Sean Leonard TR11: DP1 3/17/2004

 Page 23 of 24

6. References

6.1. Acknowledgements
I discussed the general design with Michael Lin early in the development process. Jesse Smithnosky
suggested the use of a priority queue implemented as a heap. Prof. Michael Ernst provided assistance
with the specifics of the shared pipe, and motivated me to think about performance bottlenecks in the
design. Mary Caulfield assisted me several times with checking and revising the main text.

6.2. References
[1] Intel, “Intel® Pentium® 4 Processor Product Information,” [online document], 2004, [cited 2004

Mar 17], Available HTTP: http://www.intel.com/products/desktop/processors/pentium4/

[2] J. H. Saltzer, “Coordinating references to shared writable variables,” in Topics in the Engineering

of Computer Systems. MIT, Cambridge, MA, 2004, sec. 2-E.

[3] J. H. Saltzer, “Enforcing modularity with threads,” in Topics in the Engineering of Computer

Systems. MIT, Cambridge, MA, 2004, sec. 2-D.

[4] Linux Documentation Project, The, “6.2.4 Atomic Operations with Pipes,” [online document],

1996 Mar 29, [cited 2004 Mar 17], Available HTTP:

http://www.tldp.org/LDP/lpg/node13.html

[5] J. H. Saltzer, “Enforcing modularity with virtual memory,” in Topics in the Engineering of

Computer Systems. MIT, Cambridge, MA, 2004, sec. 2-C.

[6] V. S. Pai, P. Druschel, and W. Zwaenepoel, “Flash: an efficient and portable Web server,”

presented at Annual Usenix Technical Conference, Monterey, CA, 1999 Jun, [cited 2004 Mar 17],

Available HTTP: http://web.mit.edu/6.033/www/papers/pai99flash.pdf

[7] T. Berners-Lee, R. Fielding, and H. Frystyk, “RFC 1945: Hyptertext Transfer Protocol --

HTTP/1.0,” [online document], 1996 May, [cited 2004 Mar 17], Available HTTP:

http://www.freesoft.org/CIE/RFC/1945/

6. References Sean Leonard TR11: DP1 3/17/2004

 Page 24 of 24

[8] J. H. Saltzer, “The Network as a System and as a System Component,” in Topics in the

Engineering of Computer Systems. MIT, Cambridge, MA, 2004, sec. 2-E.

[9] J. Postel, “RFC 793 - Transmission Control Protocol,” [online document], 1981 Sep, [cited 2004

Mar 17], Available HTTP: http://www.faqs.org/rfcs/rfc793.html

[10] Linux Programmer’s Manual, “Unix man pages: clone (2),” [online document], 1998 Apr 25,

[cited 2004 Mar 17], Available HTTP: http://www.rt.com/man/clone.2.html

[11] Linux Programmer’s Manual, “Unix man pages: fork (2),” [online document], 1995 Jun 10, [cited

2004 Mar 17], Available HTTP: http://www.rt.com/man/fork.2.html

[12] J. Morris, “Data Structures and Algorithms: Heaps,” [online document], 1998, [cited 2004 Mar

17], Available HTTP: http://ciips.ee.uwa.edu.au/~morris/Year2/PLDS210/heaps.html

[13] R. E. Critchlow Jr, “Inline Images on Web Pages,” [online document], 2003 May 16, [cited 2004

Mar 17], Available HTTP: http://www.elf.org/essay/inline-image.html

[14] IBM, “IBM US IBM - ThinkCentre A - United States,” [online document], 2004, [cited 2004

Mar 17], Available HTTP: http://www-

132.ibm.com/webapp/wcs/stores/servlet/CategoryDisplay?catalogId=-

840&storeId=1&langId=-1&dualCurrId=73&categoryId=2580521

[15] M. Schulte, “Lecture 13: Main Memory,” [online document], [cited 2004 Mar 17], Available

HTTP: http://www.eecs.lehigh.edu/~mschulte/ece401-01/lect/my-lec13-p2.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

