M0126

A Hardware Architecture for Implementing Protection Rings

Michael D. Schroeder=*
and
Jerome H, Saltzer=*

August 2, 1971

ABSTRACT

Protection of computations and information is an important
aspect of a computer utility. In a system that uses segmentation
as a memory addressing scheme, protection can be achieved in part
by associating concentric rings of decreasing access capability
with a computation, This paper describes processor mechanisms
for implementing these rings of protection 1in hardware. The
mechanisms allow cross-ring calls and subsequent returns to occur
without "traps'". Automatic hardware validation of references
across ring boundaries Is also performed. Thus, a call by a user
procedure to a protected subsystem (including the supervisor) is
no more complex than a call to a companion user procedure. The
complexity of passing and referencing arguments Is the same in
both cases as well, '

PREPRINT
This paper will be presented at the
35rd ACM Symposium on Operating
Systems Principles, to be held in
Palo Alto, California, October
18-20, 1971.

* Massachusetts Institute of Technology, Department of Electrical
Engineering and Project MAC, Cambridge, Massachusetts. Work
reported herein was supported in part by Project MAC, an M.I.T.
research program sponsored by the Advanced Research Project
Agency, Department of Defense, under Office of Naval Research
Contract N00014-70-A-0362-0001.

M0126

Introduction

The topic of this paper is the control of access to stored
information in a computer utility. The paper describes a set of
processor access control mechanisms that were devised as part of
the second Iteration of the hardware base for the Multics system.
These mechanisms provide a hardware implementation of protection
"rings" which 1imit the access capability of an executing
program,

Multics 1is a general-purpose, multiple-user, interactive
computer system developed at Project MAC of M,I1.T. in a joint
effort with the Cambridge Information Systems Laboratory of
Honeywell Information Syétems Inc. and, untij. 1969;,'the Bell
Telephone Laboratories. It was bullt and Is being run as an
eXperimentlln,desIgﬁlng, implementing, operating, and évaldating
a prototype computer utility. (See the bibllography in [1] for a
complete 1ist of publications on Multlcs.) | I

Multics Is currently fmplemented on a Honeywell 645 computer
system, The 645 represents a first attempt to define a sultable
hardware base for a computer utility., While coﬁ@a}ning speclal
logic to support a segmented virtual memory;‘;he 645 processors
[2] provide only a 1imited set of access controi mechanisms,
forcing software intervention to implement protection rings. In
1967 Graham [3] proposed a way of supporting protection rings in
hardware that would have required less software intervention;
mechanisms similar to those he proposed appear in the Hitachi

5020 [4]. = In the course of Multics developmént a second

M0126

iteration of the design of the hardware base has been undertaken
and the resulting new hardware system is being built using the
technology of the Honeywell 6000 series computer systems. The
new processor includes an improved set of access control
mechanisms, described here, that implement rings almost
completely in hardware. These mechanisms developed from a scheme
described in [5]. Although specifically designed for Multics,
thé mechanisms are applicable to any computef systemkwhich uses
segmentation as a memory addressing scheme.

This paper begins- by establishing the general need to
control access to stored information in a computer Utiiity and by
presenting several criteria for comparing different sets of
access control mechanisms. Relevant aspects of the organization
of segmented memories are then sketched, and the ‘processor
mecﬁanisms for implementing protection rings are described. The
paper concludes by considering how rings can be used and
evaluating the Impact ;oF a hardware implementatiqn of rings on

software system design.

Access Control in a Computer Utility

Protection of computations and information is an ‘important
aspect of a computer utility which arises because a computer
utility serves multiple users with different goals and who are
responsible to different authorities. Such a diverse group will
use the same system only if it is possible for them to »achieve
independence from one another. On the other hand, a great

potential benefit of a computer utility is its ability to allow

M0126

users to easily communicate, cooperate, and build upon one
another's work. The role of protection in a computer utility is
to control user interaction -- guaranteeing total user separation
when desired, allowing unrestricted user cooperation When
desired, and providing as many intermediate degrees of control as
will be useful,

While there are many manifestations of protection in a
computer wutility, most may be related to controlling access to
stored information. Be;ause stored information represents both
data and executable procedure, control of éccess to stored
information serves to regulate information processing as well.

‘Four criteria can be applied to a set of access control
mechanisms to judge |its uéefulhess in a computer wutility:
functional capability, economy, simplicity, and programming
generality. The first means that a set of access control
mechanisms should have ”the} functional capability to meet an
interesting set of user protection needs In a natural way. The
ability to meet interesting protection needs must be’éAQUality:of
the basic mechanisms, while the ability to do so in a nathal way

is a quality of their user interface. An obvious goal n

designing new protection mechanisms is‘to maximize fuhctional
capaBility.

The second criterion, economy, means that the cost of
specifying and ehforcing a particular kind of access constraint
with a set‘of mechanisms should be so low that it is not an

important consideration in determining the type of access control

-~

M0126

to be used In a particular application. In addition, cost should
be proportional to the functional capability actually used. The
existence of access control mechanisms wi th sophisticated
capabilities should cost.no extra to those with unsophisticafed
needs. Cost includes the subsystem complexity and user
inconvenience that result from use of the access ‘control
mechanisms, as well as any associated extra storage 'space and
execution time.

Simplicity 1is the third criterion. While it is true that
simplicity often leads to economy, something more is at ‘stake
here. For a set of access control mechanisms to be accepted and
used there must be a high degree of confidence that there exists
no way to circumvent it. The best way to achieve cohffdence in
the protection is to keep the mechanisms simple so that they may
be completely’ understood. With respect to access control
mechanisms, lack of simplicity often impliés lack of security.

The fodrfh criterion, programming generality, 1Is often
negléctéd. It means that individual procedures may be easily
combined into larger wunits without understanding or altering
their internal organizations. Programming generality allows
sharing to be effective in encouraging users to build upon one
another's work. An implication of programming generality of
relevance to access control mechanisms is that it be possible to
change the protection environment of procedures and collections
of procedures without altering their Iinternal structure. THe

specific protection environment of a procedure should not be

M0126

reflected in its object code so that it may operate in different
protection environments without recompilation.

It clearly is difficult to design access control mechanisms
that satisfy all four of these criteria simultaneously.
Increases in functional <capability come at the expense of
economy, simplicity, and programming generality. The challenge
in designing a set of access control mechanisms is to maximize
functional capability within the constraints of the other three
criteria. In the following sections a set of hardware access
control mechanisms that‘was devised in the course of Multics
development 1is described. These mechanisms appear to provide a
significant improvement in the simultaneous satisfaction of the
four criteria as compared with the mechanisms in the initial

Multics implementation.

The Segmented Virtual Memory Environment o
The processor access control mechanisms described here
regulate the ability of an executing program to reference

information in a segmented virtual memory. As a basis for

understanding these access control mechanisms ‘this sethon
briefly review5 the structure of a segmented virtual mémory.
(See [6-8] for detailed descriptions of several segmented virtual
memories.) |

A machine language program for a segmented environment does
not reference memory by absolute address. _Rather, its memory
consists of independent segments idéntified by number. Each

segment 1Iis a variable length array of words. A two-part address

M0126

(s,w) identifies word w of the segment numbered s.

The collection of segments in the virtual memory is defined
by a descriptor segment. It contains an array of segment
descriptor words (SDW's), each of which can describe a single
segment in the virtual memory. The number of a segment is just
the index of the corresponding SDW in the descriptor segment.
Among other things, an SDW contains the absolute address of the
beginning of the corresponding segment in memory. The absolute
address of the beginning of the descriptor segment is contained
in the descriptor base ‘register (DBR) of a processor, Each
processor contains logic for automatically translating two=-part
addresses into the correspondfng absolute addresses. Address
translation, done with an indexed retrieval of the appropriate
SDW from the descriptor segment, occurs each time a’word in the
virtual memory is referenced, l.e. each time an instruction,
indirect word, or instruction operand reference 1is made by an
executing program. - -

Storage for segments 'is usually allocated with a paging
scheme in scattered fixed-length blocks. If used, paging is
taken into accdunt by the address translation lbgic as well as
segmentation, but is totally transparent to an executing machine
language program, Paging, if appropriately implemented, need not
affect access control; it will be ignored in the remainder of
this paper. |

Changing the absolute address in the DBR of a procéssor will

cause the address translation logic to interpret two=-part

M0126

addresses relative to a different descriptor segment. This
facility can be used to provide each user of the system with a
separate virtual memory. A single segment may be part of several
virtual memories at the same time, allowing straightforward
sharing of segments among users.

For <clarity, the following sections descrfbe control of
access in terms of the Multics implementation, although, ‘as
mentioned before, the techniques described are equally applicable

to any system using segmentation..

controlling Access in a Virtual Memory

A process with a new virtual memory is created‘for each user
when he 1logs in to Multics, and the name of the user is
associated with the process. The process is the active agent of
the - user, and is his only means of réferenclng and manipulating
informatidnkstOred on-line,

On-line storage in Multics is organized as a collection of
segments of information. A process can refereﬁcé é segment of

on=-1line stbrage only if the segment is first added'to the virtual

memory of the process. Addfng a segment to a virtual memory is
an operation performed by supervisor programs. This operation
provides the initial opportunity for controlling access to
information stored on-line. The name of the user associated with
a process must match some entry on the access control list of a
segment before the supervisor will add that segment to the
virtual memory of the process.

Once a segment is included in the virtual memory, however,

M0126

finer control on access is required. (If a process could, say,
write in any segment to which it had access, little sharing of
information among users would occur.) |If this finer control s
to be effective against arbitrary machine language programs
constructed by users, it must be implemented as hardware ‘access
validation on each reference. The structure of the virtual
mémory makes it natural to record these finer constraints in the
SDW associated with each segment. Since the processor must
retrieve the SDW for a segment each time that segment is
referenced by two-part address anyway, there is little time cost
added to validate the intended access against constraints
recorded there. With this structure it 1is also possible to
change the allowed access to a segment by changing the finer
constraints recorded in the SDW, and to expect the change to be
imme&iately effective.

"With the Honeywell 645, flags which enable a segment to be
read, written, and executed appear in each SDW. The value for
each flag comes from the éccess control list entry which matched
the name of the user associated with the process. An attempt by
a process to change the contents of a word of a segment, for
example, would be allowed by the processor only if the write flag
were on in the SDW for the segment. This mechanism provides
individual control on the ability of each user's process to read,
write, and execute the words in each segment stored on-line. It
also makes a segment the smallest unit of information that can be

separately protected.

M0126

With the access control mechanisms described so far, all
programs executed as .part of 'some process have the same
capability to access information. However, there seems to be an
intrinsic need in many computations for the access capability of
a process to vary as the execution point passes through the
various programs that direct the computation. The most obvious
examples of this need are explicit invocations of supervisor
programs during the course of a computation. The execution~pofnt
may pass from a user program to a supervisor program to initiate
an input/output operatfon or change the access control list of a
file, and then pass back to the user program, Presumably the
executing supervisor programHCan access information in some way
that the usef program cannot. In a system that allows ' and
encourages sharing -of informa;ion "among users, other examples
appear. For instance, user A may wish to allow user B to ‘access
a sensitive data segment, but only through a special program,
provided by A, that audits references to the segment. During the
course of ‘a computation in a process of user B, access to the
sensitive data segment should be allowed only when the execution
point is in the special program provided by A.

The word '"domain" |Is frequently associated with a set of
access capabilities. The examples above point to an intrinsic
need for multiple domains to be associated with a process and for
the domain in which the process Iis executing to occasionally
cﬁange as the execution point passes from one program to another.

A descriptor segment with read, write, and execute flags in the

10

M0126

SDW's defines a single domain. Additional mechanisms are
required to allow multiple domains to be associated with a single
Multics process. |

A very general set of access control mechanisms would place
no restriction on the number of domains which could be associated
wfth a process, and would force no restrictive relationships to
exist among the sets of access capabilities included in the
domains., Unfortunately, devising such a set of access control
mechanisms that also meet the criteria of economy, simplicity,
and programming generalfty is a difficult reséarch problem, (See
[9¥1h] for several approaches that have been explored.) In
Multics the strategy was adopted of 1limiting the number of
domains which may be associated with a process, and of forcing‘
certain relationships to exist among the set;' of access
capébilitieS‘included in the domains. The result is protection
rings. The extent to which this strategy results in a useful set
of access control mechanisms will be discussed later,

The characterization of rings as a restricted implementation
of domains is the result of hindsight. When developed, rings
were viewed as a natural generalization of the supervisor/user
modes that provided protection in many computers. This path of
dévelopment was chosen because it solved the most pressing
problems of access control involved in the prototype computer
utility and, because of the inherent simplfcity of the idea, it
was a bath that the Multics designers felt confident they could

successfully complete. Even today rings appear to provide an

11

M0126

effective trade-off among the criteria mentioned above.

Protection Rings

Associated with each Multics process are eight domains
called protection rings. The protection rings are named by the
integers 0 through 7. The access capabilities included in ring m
are constrained to be a subset of those in ring n whenever m > n.
Put another way, the sets of access capabilities represented by
the various rings of a process form a collection of nested
subsets, with ring 0 the largestAset and ring 7 the smallest set
in the coliection. Thus, a process has the greatest access
abili;y when executing in ring 0, and the leaét access ability
when executing in ring 7. The total ordering 'of the sets of
access capabilities defined by the consecutively numbered rings
of a process ‘is the property that allows a Straightfbrward
implementation of rings in hardware.

As described earlier, the permission flags of each segment
in the virtual memory of a process simply indjcate that the

segment can or can not be read, written, or executed by the

process. With the addition of rings, the flags must be extended
to indicate which rings include each access capability; Because
of the nested s&bset property of rings, the capabiIfty, say, to
write a parficular segment, if allowed at all, is included in all
fings numbéred less than or equal to some value w. The raﬁge of
rings over which this write‘ permission applies is called the
write bracket of the segment for the process. Read and execute

brackets for each segment can be established in the same way. A

12

M0126

process is permitted to read, write, or execute a segment in its
virtual memory only if the ring of execution of the précess is
within the proper bracket.

A partial hardware implementation of rings places numbers
indicating the top of each bracket of a segment in the SDW of the
segment, along with the read, write, and execute flags. If a
flag is on then the number specifies the extent of the
corresponding bracket, Turning a flag off indicates that the
corresponding access capability 1is not included in any ring of
the process. For exampie, a data segment might have its execute
" flag turned off or a procedure segment might have its write flag
turned off. A register is added to the processor to record the
current ring of execution of the process. The processor can then
validate each reference to a segment by making the obvious
compérisons when the SDW for the segment is retrieved for address
translation.)

Figure 1 illustrates the flags and brackets that might be
associated with a writeable data segment for some process. The
segment can be written into when the process is executing in ring
0, read from when the process is executing in any of rings 0
through 4, and cannot be executed from any ring.

The association of multiple domains of protection with a
process generates the need for a new kind of access capability =--
the capability to change the domain of execution of a process.
ance changing the domain of execution has the potential to make

additional access capabilities available to a process, it 1is an

13

M0126

0 1 2) 3 4 5 6 7 ring
ite brack
write bracket read flag on
~ ~ 4 write flag on
read bracket execute flag: off

Figure 1: EXampIe access indicators for a writable data segment
0 1 2 3 4 5 6 7 ring
k + + + $ +- + —~4
- o
N
read bracket

~ ~— -~ v g read flag :

execute bracket gate extension write flag

execute flag:

gate list

Figure 2: Example access indicators for a pure procedure segment

0 1 2 3 4 5 6 7 ring
~ 5 J
read bracket
E%ESE&E ex%gﬁgion
S ’ read flag :
________ o m e m——————
write bracket if write write fl;% :
flag on execute flag:
- gate list :
Figure 3: Example access indicators for a procedure segment showing

3|51
Hh

o

-

—

23
Hh

o
[

-

coincidence of bottom of execute bracket and top of potential

write bracket,
14

M0126

operation that must be carefully controlled. An understanding of
the sort of control required can be gained by reviewing the
purpose of domains (and rings in particular). A domain provides
the means to protect procgdure ~and data segments from other
procedures that are part of the‘same computation. Using domains
it should be possible to make certain access capabilities
available to a process iny when particular programs are being
executed. Restricting the start of execution in a particular
domain to certain program locations, called gates, provides this
ability, for it gives the program sections that begin at those
locations complete control over the use made of the access
capabi-lities included in the domain. Thus, changing the domain
of execution must be restricted to occur only as the result of
transfefing control to one of these gate . locations of another
dpmain. |

Withv a completely general implementation of domains, each
domain could provide protection against the procedures executing
in all other domains of a process. The corresponding property of
rings is that the protection provided by a given ring of a
process Vis effective against procedures executing 1in higher
numbered rings. Switching the ring of execution to a lower
number may make additional access capabilities available to a
process, while switching the ring to a higher number can only
reduce the available access capabilities. Thus, the downward
ring switching capability must be coupled to a transfer of

control to a gate into the lower numbered ring. Gates are

15

M0126

specified by associating a (possibly empty) 1list of gate
locations with each segment in the virtual memory‘of a process.
If the execution point of the process is transferred to a segment
while the ring of execution is above the top of the execute
bracket for the segment, then the transfer must be directed to
one of the gate locations in the segment. |f the transfer is to
a gate, then the ring of execution of the process will switch
down to the top of the execute bracket of the segment as the
transfer occurs, |If the transfer is not directed to one of the
gate locations, then thé transfer is not allowed.

To provide control of this downward ring switching
capability which is consistentIWIth the’subset propérty'of rings,
a gate extensfon to the execute bracket of a segment fs defined.
The gate extension specifies the consecutively numbefed rihgs
above the execute bracket of the segment that include the
"transfer to a gate and change ring'" capability fof thé segment.

The gate list and the gate extension to the execute bracket
can both be specified with additional fields in the SDW for éach
segment. Certain restrictions on the form'of the gate list} to
be described later, allow its specification in a fixed-léngth
field.

In contrast to downwérd ring changes, switching the ring of
execution to a higher numbered ring can only decrease the
available access capabilities of a process. Thus, an upward ring
switch s an unrestricted operation that can be performed by any

executing procedure. (Care must be taken, however, to insure

16

M0126

that the instruction to be executed immediately following an
upward ring switch will come from a segment that is executable in
the new, higher numbered ring.) For programming convenience the
upward ring switch may .be coupled to a special transfer
instruction,

A specific example will help <clarify the meaning of the
execute bracket, the gate extension, and the gate 1list of a
segment. Figure 2 illustrates the way the access capabilities to
a pure procedure segment (one which does not modify itself when
executed) might be dfstributed to the various rings of some
process. When the process is executing in any of rings 0 through
4, any words of this segment may be executed as machine
instructions. When the process is executing in rings 5 or 6,
only transfers of the execution point to words 0 or 1 of the
segﬁent will be allowed. These transfers will result in the ring
of execution switching down to 4. From ring 7 no attempt to
execute in the segment will be allowed. The segment may be read
from any ring_in which it will execute.

The abstract description of rings 1is now one step from
completion. The last step comes from the observation that for
each procedure segment in the virtual memory of each process
there is a lowest numbered ring in which that procedure |is
intended to execute. Further, that ring is not always zero. For
example, user procedures are not intended to execute in ring 0,

the ring of a process containing the most access capabilities.

Allowing a non-zero bottom on the execute bracket would provide

17

M0126

the means to prevent the accidental transfer to and execution of
a procedure in a ring numbered lower than Iintended. Violating
the nested subset property with respect to execute access
capability by allowing a non-zero bottom on the execute bracket
of a segment turns out to make rings no more difficult to
implement, and is thus desireable in view of the protection
against errors it provides.

The non-zero bottom on the execute bracket bf a segment éan
be provided without adding another field to the SDW. The method
is to use the field which specifies the top of the write bracket
to specify the bottom of the execute bracket as well., The double
use of this field does not appear to remove any interesting
functional capability from the access control mechanisms. In
fact, it eliminates an unwanted degree of freedom in access
spec}ficatjon, thereby removing fhe potential to make certain
types of errors. There are two cases to consider in support of
this contention. For a segment with a write bracket but no
execute bracket, or vice versa, nothing is lost by double use of
the field. For a segment with both a write bracket and an
execute bracket the double use of the SDW field constrains these
brackets to overlap by exactly one ring. Overlap by more than
one ring is not interesting because executing a procedure in a
ring lower than the highest ring from which it can be written
invalidates the protection provided by the 1lower ring. The

forced single ring overlap guarantees that writable procedures

will execute in only one rihg. Finally, there is no obvious

18

MO12¢6

application for segments with disjoint write and execute
brackets.

As redefined, then, the execute bracket of a segment for a
process can be any consecutively numbered group of rings, "and
need not begin with ring 0. |If the segment also has a write
bracket, then the bottom of the execute bracket must coincide
with the top of the write bracket. When the ring of execution is
below the execute bracket the process cannot execute words of the
segment as machine instructions, although the process can use
the unrestricted upward-ring switch capability to execute the
segment in a higher ring that is within the execute bracket. For
many procedure segments the execute bracket includes exactly one
ring -- the ring in which the procedure segment is intended to
execute. Procedure segments with wider execute’brackets usually
containv commonly wused library subroutines that are‘certified as
acceptable for execution in any of the rings from which they may
be called. |

Figure 3 illustrates the relationship of the execute bracket
and the potential write bracket for a typical pure procedure
segment in the virtual memory of some process. This segment is
executable in ring 4 and cbntains gates into ring 4 for rings 5
and 6. It may be read from rings 0 through 4, |If the procedure
were also writable then the write flag would be on, and execution
and modification could occur in ring 4.

The gate 1list and the numbers specifying the read, write,

and execute brackets, and gate extension for a segment all come

19

M0126

from the access control list entry which permitted the process to
include the segment in its virtual memory, as did the values for

the read, write, and execute flags.

Call and Return

In the case of general domains, a change in thevdomain of
execution of a process occurs when the executing procedure
transfers control to a gate of another domain. In the context of
most programming languages an interprocedure transfer repkesents
a subroutine call, a. return following a call, or a non-local
goto. Linguistically, all three operations produce a change in
the environment of the execution point; this chénge affects the
binding of variable names to yirtdal storage locations, The‘call
operation has the additional function of transmitting arguments
and recording a retdrn point. Producing the correct change in
the enQirOnment’(as well as transmitting argumehtgiéna recording
a return point in the case of a call) generally réﬁufrés. the
cooperation of both the procedure initiating the operation and
the procedure receiving control, |If a call, ‘rethrn, or goto
changes the domain of execution because it happens to be directed
to a gate location of another domain, tﬁen the situation becbmes
more complicated,.for nei ther procedure can depend upoh the other
to cooperate. An important simplification intfoduced by
festricting domains to a‘ring structure is that a prdcedure may
assume the cooperation of procedures in lower numbered Fings.'

When procedures are shared among different processes and

different domains, the addressing environment is usually defined

20

M0126

via a processor register, for it 1is not convenient to embed
addresses within the procedures themselves. |In Multics, pure
procedures are used with a per process call stack, and the stack
pointer register provides the required environment definition.
The call stack of a process is implemented with a separate
segment for each ring being used. The stack segment for
procedures executing in ring n has read and write brackets that
end at ring n. Thus, stack areas for these procedures are not
accessible to procedures executing in any ring m > n. Part of
the function of the -call, return, and goéo operations is to
properly update the stack pointer register.

The most common ways of changing the ring of execution of a
process are a call to a gate of a lower numbered ring and the
subsequent upward return. A downward call represents the
invoéatlon}of a user-provided prétected subsystem or a supervisor
procedure., Because the Honeywell 645 was designed around the
usual supervisor/user protection me thod, the Multics
implementation for this machine simulates rings by "trapping" to
special ring=changing software when downward calls and upward
returns are performed. The hardware mechanisms detailed 1in the
next section eliminate the need to "trap'" in these cases. Using
these improved hardware access control mechanisms, downward calls
and upward returns occur without the intervention of special
software and are performed by the same object code sequences that
perform calls and returns that do not change the ring of

execution,

21

M0126

It is the nested subset property of rings that makes a
straightforward hardware implementation of downward calls and
upward returns possible. Because of this property the called
procedure automatically has all access capabilities required to
reference any arguments that the calling procedure can
legitimately specify and to return to the calling procedure in
the ring from which it called. Furthermore, it is reasonable to
trust the called procedure to properly restore the stack pointer
on return since it has access capabilities which allow it to
cause the calling procedure to malfunction in many other ways
anyway. However, three problems remain. First, the called
procedure must be able to <calculate the correct new stack
pointer. Second, the <called procedure must have a way of
validating references to arguments so that it cannot be tricked
inté reading or writing an argument that the caller could not
aiso .read or write. Finally, the called procedure must have a
way of knowing for certain the ring in which the calling
procedure was executing so that the called procedure cannot be
tricked into returning control to a ring not as high as that of
the calling procedure.

The key to solving the first problem, creation of a new
stack pointer, is a rule relating the segment number of the stack
segment for a ring to the ring number. Using this rule, ;he
processor automatically calculates the segment number of the
proper stack segment for the called procedure's ring of

execution, By convention, word zero of each Multics stack

22

M0126

segment points to the beginning of the next available stack area.
Thus, the stack segment number alone provides the called
procedure with enough information from which to construct its own
stack pointer. Because the processor provides the stack segment
number, no procedure executing in a higher numbered ring, e.g.
the calling procedure, can affect the value of the stack pointer
for the called procedure.

The second problem, validation of argument references, is
solved by providing processor mechanisms which allow a procedure
to assume the more restricted access capabilities of any higher
numbered ring when convenient. Using these mechanisms the called
procedure can validate access when referencing arguments as
though execution were occurring in the (higher numbered) ring of
the calling procedure. Thus, the called procedure, even though
it fs executing in a ring with more access capabilities than the
ring of the calling procedure, can prevent itself from reading or
writing any argument that the calling procedure could not also
read or write.

The final problem, knowing the ring of the caller, is solved
by having the processor leave in a program accessible register
the number of the ring in which execution was occuring before the
downward call was made. The subsequent return is made to that
ring. Thus, the calling procedure has no opportunity to lower
the number of the ring to which the return is made.

The next two sections describe in more detail how downward

calls, argument referencing and validation, and upward returns

23

M0126

are implemented. Before proceeding to that description, however,
there 1is another possibility to consider: an upward call and the
subsequent downward return.

An upward call occurs when a procedure executing in ring n
calls an entry point in another procedure segment whose execute
bracket bottom is m > h. When the call occurs the ring of
execution will change to m. The subsequent return is downward,
resetting the ring of execution to n. This case exhibits two
unpleasant characteristics of .a general cross-domain call and
return that were not pfesent in the case of the downward call and

upward return.

*The first 1is that the calling procedure may specify

arguments that cannot be referenced from the ring of the called

procedure. (In the case of the downward call, the nested subset
proberty of rings guaranteed that this could not happen.) There
are at least three possible solutions to this problem. One is to
require that the calling procedure specify only arguments that
are accessible in the higher numbered ring of the called
procedure. This compromises programming generality by forcing
the <calling procedure to take special precautions in the case of
an upward call., Another possible solution is to dynamically
include in the ring of the called procedure the capabilities to
reference the arguments., Because a segment is the smallest wunit
of information for which access can be individually controlled,
this forces segments which contain arguments to contain no other

information that should be protected differently, again

24

X

M0126

compromising programming generality, unless segments are
inexpensive enough that, as a matter of course, every data item
is placed In its own segment. It may also be expensive to
dynamically include and remove the argument referencing
cépabilities from the called ring. The third possible solution
is copying arguments into segments that are accessible in the
called ring, and then copying them back to their original
locations on return., This solution restricts the possibility of
sharing arguments with parallel processes. None of the three
solutions 1lend themsefves well to a straightforward hardware
implementation.

The second unpleasant characteristic is that a gate must be
provided for the downward return. (In the'case of the upward
return the nested subset property of rings made a réturn gate
unnecessary;) The return gate must be created at the time of the
upward call and must be destroyed when the subsequent return
occurs. If recursive cails into a ring are allowed, theh this
gate must behave as though it were stored in a pushfdown stack,
so that only the gate at the top of the stack can be used. ’The
gates specified in SDW's seem poorly suited to this sort of
dynamic behavior, Proces;or mechanisms to provide dynamic,
stacked return gates are not obvious at this time.

Because of these two problems, the hardware implementation
of rings described in the next section does not automatically
perform upward calls and downward returné. When an attempt to

perform an upward call or downward return is detected by the

25

M0126

hardware it "traps" to a supervisor procedure that executes in
ring 0 and which performs the necessary addressing and protection

environment adjustments.

The Hardware Implementation of Rings

In this section the ideas presented in tﬁe previous sections
are gathered into a description of a design for processor
hardware to implement rings. The description only touches upon
those aspects‘of the processor organization that are relevant to
access control, The segmented 'addressing hardware described
earlier serves as the foundation of the ring implementation
mechanisms,

Figure 4 presents a schematic description of segment
descriptor wofds, instruction words, indirect words, and
proéessor registers that are relevant to the discussion which
follows. The descriptor base register (DBR) contains the
absolute address and length of the descriptor segment.

Segment descriptor words (SDW's) are the entries in the
descriptor segment. If the validity bit (SDW.V) is on then the
SDW contains the absolute address and length of some segment in
the viftual memory of the process. The access indicator portion
of an SDW specifies the brackets, flags, and gate locations for
the segment. The three 3-bit ring numbers (SDW,R1, SDW.R2, and
SDW.R3) delimit the read, write, and execute brackets and the
gate extension. The write bracket is rings 0 through SDW.R1; the
execute bracket SDW.R1 through SDW.R2p; and the gate extension

SDW.R2+1 through SDW.R3. Rather than providing a fourth number

26

Descriptor base register

DBR

ADDRESS

LENGTH

Segment descriptor word (stored in memory)

SDW

Instruction pointer register

IPR -

Instruction word
INST

MO126

Program accessible pointer registers

PRO
PR1
PR2
PR3
PR4
PR5
. PR6
PR7

Indirect
IND

(argument pointer)

(stack base pointer)

Temporary pointer register

TPR

ADDRESS LENGTH |R1 R3|R | W |E| GATE | V
. V4
"
access indicator
RING SEGNO WORDNO
(stored in memory)
PRNUM OFFSET OPCODE I
(stack pointer)
__ER,.__/\ ~— =
RING SEGNO WarDNO
word (stored in memory)
RING SEGNO WORDNO I
RING SEGNO WORDNO
Figure 4: Schematic description of segment descriptor

words, instruction words, indirect words, and
relevant processor registers

27

M0126

to specify the top of the read bracket, SDW.R2 is reused for this
purpose. Forcing the top of the read and execute brackets to
coincide in this manner does not seem to preclude any important
cases, and saves one ring number in the SDW. Supervisor code for
constructing SDW's guarantees that SDW.R1 < SDW.,R2 £ SDW.R3 is
true. The single-bit read, write, and execute flags (3DW.R,
SDW.W, and SDW.E) also appear. Finally, the 1list of gate
locations of a segment 1is compressed to a single fixed-length
field (SDW.GATE) by requiring all gate locations to be gathered
together beginning at location 0 of a segment. Thus, SDW,GATE
need only contain the number of gate locations present.

The instruction pointer register (IPR) specifies the current
ring of execution and the two=-part address of the next
instruction to be executed. The general format of an instruction
word in memory (INST) Is also shbwn for later reference.

There are eight program accessible pointer registers (PRO
through PR7). All can contain a two-part address and a ring
number. Because most procedure segments in Multics are pure and

segment numbers cannot be known at the time a procedure segment

is compiled, machine instructions specify two-part operand
addresses by giving an offset (in INST.OFFSET) relative to one of
the PR's (specified by INST.PRNUM) or IPR. The ring number in a
pointer register (PRn.RING) is used to specify a validation level
for the address, and is part of the mechanism that allows an
executing procedure to assume the access capabilities of a higher

numbered ring for referencing arguments. The processor is

28

M0126

designed so that it is never possible for any PRn.RING to contain
a number that 1is less that the ring of execution found in
IPR.RING.

Indirect addressing may be specified in an instruction by
setting the indirect flag (INST.1). IndireétkWOrds (IND) contain
the same information as PR's, and may also indicate' further
indirection with an indirect flag (IND.1).

The final item in Figure 4 is the temporary pointer register
(TPR). The TPR is an internal processor register that is not
program accessible, It is used to form the two-part address of
each virtual memory reference made. The ring number (TPR,RING)
provides the value with respect to which permission to reference
the virtual memory location is yalidated.

There are two éspects to the implementation of rings in
hardWare. The first 1is accesé checkfng logic, integrated with
the segmented addressing hardware, that validates each ‘virtual
memory reference. The second 1Is special instructions for
changing the rfng of execution. The best way to describe the
first aspect is to walk through the processor instruction cycle,
paying particular attention to the places where operations
related to access validation occur. The second aspect will be
discussed when the description of the instruction cycle reaches
the point where the instruction is actually performed. |

The first phase of the instruction cycle, retrieving the
next instruction to be executed, is described in Figure 5.

(Refer to Figure 4 for the abbreviations used in the flow charts

29

M0126

Begin

instruction
cycle

Fetch SDW for segment
containing next instruc-~
tion. (Segment number is

TPR.SEGNO)
* A Mi .
\ 1ssing Segn}eI:E- N
sV = on o ———>t35tEqare " IAtarveatIof
required T
yes

 Access violation ___
<:SDW.R1 < TPR.RING f SDW.R2 >>‘n0f"* not in execute

bracket
. , yes «
\ -
<: AN Access violation __ _
SIW.E =on / e execute flag not on
’ yes

A

Finish instruction fetch.
(Word number is TPR.WORDNO)

Y

to
Figure 6

Figure 5: Retrieval of next instruction to be executed

* This check forsegment presence must occur each time an SDW is retrieved.
To avoid cluttering the flow charts, it is left out of Figures 6-10.

30

M0126€

of Figures 5 through 10.) The two-part address of the next
instruction along with the ring of execution are loaded into TPR
from IPR, At the point during address translation that the SDV
becomes available, the ring of execution (now in TPR,RING) is
matched against the execufe bracket of the segment containing the
instruction and the execute flag is checked. If the segment may
be executed from the current ring of execution the instruction
fetch is completed. Otherwise, the access violation derails the
instruction cycle into the faqlt.mechanism of the processor. The
action of a fault is discussed later in this section.

The next phase of the instruction cycle, calculating the
effective address of the instruction's operand, is described in
Figure 6. This phase occurs only if the instruction has an
operand in memory. The effective address is the ffnal two-part
address of the operand (aftér all address modifications and
indirections have taken plaée) together with an effett(ve ring
number. The effective ring number is used to validate the actual
reference to the operand. The effective address is formed In TPR
which, as a result of the preceding instruction retrieval phase,
begins the effective address calculation containing the two-part
address of the instruction being executed and the current ring of
execution,

The formation of the segment number and word number portions
of the effective address in TPR.SEGNO and TPR.WORDNO is véry
straightforward and is described by Figure 6. The calculation of

the ring number portion of the effective address in TPR,RING and

31

M0126

from
Figure 5

A

(n = INST.PRNUM)

TPR.SEGNO <= PRn.SEGNO
TPR.WORDNO <= PRn,.WORDNO+INST.OFFSET
TPR.RING <= max(TPR.RING,PRn.RING)

specify operand address

¥
<i Does instruction
indirectly?

) —
/~

yes

~ Fetch SDW for segment
containing indirect
word. (Segment number
is TPR,SEGNOQ,)

Access violation

- . e . s e e

effective ring not
ithin read bracket of
segment containing in=-

direct word.

< 110 —<TPR.R1NG < SDW.RS>

L 4

ccess violation ,

ead flag off and in-
irect word not in samef¢no

" no

[4 SDW.R = on

-éfPR. SEGNO = IPR. SEGN(>

segment as instruction.

Figure 6:

yes —

yes

A

Finish indirect word fetch
(Word number is
TPR.WORDNO.)

[2

TPR.SEGNO <= IND.SEGNO
TPR.WORDNO <= IND.WORDNO

TPR,RING <= max(TPR.RING,SDW.R1, IND.RING)

-)

<?urther indirection{>>-—-——-——~yes-—

no |,

A

to
Figure 7

(TPR now contains effective
address of instruction
operand.)

Formation in TPR of effective address of instruction operand.

32

M0126

the access validation performed before retrieving indirect words,
also shown in Figure 6, need further comment.

The effective ring portion of the effective address provides
a procedure with the means of voluntarily assuming the access
capabilities of a‘higher numbered ring whenvmaklng an instruction
operand reference. The effective ring number also is wused to
record the highest numbered ring from which an executing
procedure possibly could have influenced the effective faddréss
calculation. One opportunity for the value of TPR,RING to change
during effective addresé‘calculation occurs if the Iinstruction
contains an address that is an offset relative to some PRn. In
this case TPR.,RING is updated With the larger of its current
value and the ring number in the specified pointer register
(PRn.RING). Thus, if PRn.RING contains a value that 1is greater
thaﬁ the current ring of exeéution, validation of the operand
reference will be as though execution were occuring 1in this
higher numbered ring.

The remaining opportunities to change the value of TPR,RING
occur in conjunction with the processing of Iindirect words
involved in the effective address calculation. Each time an
indirect word is retrieved TPR.RING is updated with the larger of
its current value, the ring number in the indirect word
(IND.RING), and the top of the write bracket for the segment
containing the indirect word (SDW.R1)., The ring number in tﬁe
indirect word has the same purpose as the ring number in a

pointer register =-- forcing validation of the operand reference

33

M0126

relative to some higher numbered ring; Including in the
calculation the top of the write bracket of the segment
containing the indirect word, however, has another purpose. The
top of the write bracket represents the highest numbered ring
from which an executing procedure could alter the contents of the
indirect word and thereby influence the result of the effective
address calculatiqn. Taking into account SDW.R1 when updating
TPR.RING guarantees that the operand reference will be validated
with respect to the highest numbered ring which could have
influenced the effective address.

The capablility to read an indirect word during effective
address formation must be validated before the indirect word s
retrieved, Validation 1is with respect to the value in TPR,RING
at the time the Indirect word is encountered.

" At the conclusion of the‘ effective address calculation
described 1In Figure 6, TPR contains the effective address of the
instruction operand, including the effective ring number with
respect to which the reference to the operand will be validated.
The next phase of the (instruction cycle is to perform the
instruction. For the purpose of access validation, the possible
instructions may be broken into three groups according to the
type of reference made to the operand. Figure 7 shows the access
validation for the straightforward cases of instructions which
read their operands and instructions which write their operands.
The third group, instructions which do not reference thelr

operands, 1is illustrated in Figure 8. One set in this group is

3y

From
Figure 6

reference to
ope rand

instruction
reads

referjence
operand

Fetch SDW for segment
containing operand
(Segment number in

TPR.SEGNO)

A
< TPR.RING <= SDW.R2>——no _l

yes | effective ring

not in read
bracket

y!s

A
< SDW.R =on . >'“°1

yes<TPR.SEGNO - IPR.SEGNG)
¥
no

| _Access _violation __
read flag not on
and operand not in
same segment as

instruction,

OK to

complete
instruction

Branch on type of

MO0126

instruction
writes
operand

Fetch SDW for segment
containing operand
(Segment number in

TPR.SEGNO)

y
<: TPR.RING = SDW‘RI:>—~11

i

yes

- LAcgess._violaticn
effective ring

not in write
bracket

< SDW.W =on >—no

yes

[_Access_violation___
write flag not on

OK to

complete
{nstruction

Figure 7: Access validation for instructions which
read or write their operands.

35

MO0126

From
Figure 7

Branch on
instruction

CALL instruction EAP-type instruction

RETURN other
instruction transfer
instruction

to Figure
9

to Figure
10

OK to
complete
instruction

Fetch SDW for seg-
ment containing oper-
and (Segment number
in TPR.SEGNO)

Access violation

effective ring motle |\ (spy.R1 < TPR.RING < SDW.R2 >
in execute
bracket yes

Access violation ' |
execute flag % no ——-———(iSDW.E = on :}
off

yes

Access violation Y

attempt to change & 10 ———-<TPR.R1NG = IPR.RING>
ring with transfer

- ’&%ﬁnlaﬁfj‘%‘% SEREE -

yes

OK to
complete
instruction

Figure 8: Access validation for instructions which do not
reference their operand

36

M0126

the "Effective Address to Pointer Register'-type (EAP-type)
instructions which load the RING, SEGNO, and WORDNO fields of PRn
with the corresponding fields of TPR. The operand is not
referenced so no access validation is required. Instructions of
this type are important for they are the only way to load PR's.
The remaining instructions illustrated in Figure 8 are
transfer instructions. To provide some protection against
changing the ring of execution by accident, all transfér
instructions except two, CALL and RETURN, are constrained from
doing so. Since a transfer instruction does not reference its
operand, but just loads the address of its operand into the
instruction counter, no access 'validatfon is really required,
However, an advance check on whether reloading IPR from TPR will
result in a fault on the next instruction cycle 1is very useful
from the standpoint of debugging, for it catches the access
violation while it is still possible to identify the instruction
which made the illegal trahsfer. Figure 8 describes the advance

check for transfer instructions other than CALL and RETURN,

The two instructions that remain to be considered are the
instructions which can change the ring of execution: CALL and
RETURN. They are intended to be used to implement the same-named
linguistic operations.* CALL will automatically switch the ring

of execution to a lower number and RETURN to a higher number if

the occasion requires it. When used to perform an upward call or

* RETURN.may also be used to implement the non-local goto
operation, :

37

M0126

a downward return the instructions cause faults which allow

software intervention to complete the operations.

Figure 9 describes the access validation and performance of
the CALL instruction. Several points require further
explanation. The first concerns gates. From Figure 9 it is
apparent that a CALL must be directed at a gate 1location even
when the called procedure will execute in the same ring as the
calling procedure. The rationale for this use of the gate list
of a segment is thatvit can provide protection against accidental
calls to locations thatiare not entry points, even when the «call
comes from within the same ring. Thus, SDW.GATE for a procedure
segment usually specifies the ﬁumber of externally defined entry
points in the procedure segment. These become gates for higher
numbered rings in the sensé described in the previous sections
only if the top of the'gate extension of the segment is abovevthe
top of the execute bracket, i.e. only if SDW.R3 > SDW.R2 for the
segment., The price paid fdr this error detection ability is that

if any externally defined entry point in a procedure segment is a

gate for a higher numbered ring, then all are. From within the
execute bracket of a procedure segment the gate restriction can
be by-passed by using a normal transfer instruction rather than a
CALL to pass control to the segment,

The only exception to having the CALL instruction respect
the gate list of the operand segment occurs if the operand is in
the same segment as the instruction., Allowing a CALL instruction

to ignore the gate list of the segment containing the instruction

38

from
Figure 8

Y

Fetch SDW for segment
containing operand.
(Segment number in

TPR.SEGNO)

Access violation

- - - m . E = -

\

.E = on :>

f<— no “~———-—-<?DW

execute flag off

1

yes

M0126

<TPR

.SEGNO = IPR.SEGNO

)

es

Access violation

attempt to call a
non-gate location

_4——-no--——————4<iPR

Yoo

.WORDNO < SDW.GATE

)

yes

Fault - software in-
tervention required

attempt to make an
upward call

Y

-

—e—-no-—————é——4<TPR

.RING > SDW.R1 >

Access violation

- - - - e - e e en e w -

effective ring above
gate extension

<— no ————— PR

yes

.RING =< SDW.R3

yes

)

Access violation

attempt to make an
upward call result-
ing from effective
ring being higher
than ring of
execution

A

tt— O’ -———-<TPR.RING < IPR.RING>

yes

9 .
TPR-RING<*ML£IB§.§MJ ™

(Calculate new ring
of execution)

PR7

Figure 9:

PR7
PR7

.SEGNO <= TPR.RING
.RING <= TPR.RING
.WORDNO <= 0

(create stack
base pointer)

|IPR

‘ B
<= TPR J

39

Access validation and performance of CALL instruction.

M0126

permits it to be used to implement calls to internal procedures.

The access validation for the CALL instruction is made
relative to the ring number computed aé part of the effective
address. Since, as a result of PR-relative addressing and
indirection, the effective ring value can be higher than the
current ring of execution (IPR,RING), what would appear-to be a
call within the same ring or to a lower ring with respect to
TPR.RING can in fact be an upward call with respect to |PR,RING,
Because in normal circumsfances this situation represents an
error, the decision is ﬁade to generate an access violation when
it occurs, even if the current ring of execution is within the
execute bracket of the called procedure segment.

The new ring of execution is calculated in TPR.RING.
Following this calculation, CALL gener%tes in PR7, a register
chosen by system convéntion, a pointer to word 0 of the étack
segment for the new ring of execution. The segment number of the
appropriateistack segment fs the new ring number.* In addition,

PR7.WORDNO is set to 0 and PR7.RING is set to the new ring of

* Two subtle features may be included at this point by changing
the way the new stack segment number is derived. |If the CALL
instruction does not change the ring of execution then the new
stack segment number is taken directly from the current stack
pointer register (PR6, by convention), allowing the use of
non-standard stack segments for procedures executing in the
same ring. |f the CALL instruction does change the ring of
execution then the new stack segment number is calculated by
adding the new ring number to an additional DBR field that
specifies the eight consecutively numbered segments that are
tﬁe standard stack segments of the process. The use of the
additional DBR field allows more flexibility in stack segment
assignment, facilitating the preservation of stack history
following an error and the implementation of forked stacks.

L0

10126

execution.

Finally, the transfer of control is achieved by reloading
IPR.RING, IPR.SEGNO, and IPR.WORDNO from tﬁe corresponding fields
of TPR.

The RETURN instruction 1is described by Figure 10. The
access validation is the same as for other transfer instructions.
The ring to which the return is made is specified by the
effective ring portion of the effective address generated by the
RETURN instruction. In the case that the return is upward, the
ring number fields in all pointer registers are replaced with the
larger of their current values‘and the new ring of execution.
This replacement, together wfth the fact that PR's can only be
loaded with EAP-type instructions, guarantees that PRn.RING can
never contaln a value that is less than IPR.RING, a fact which
proves very useful wheh passing arguments on a downward call and
which makes it easy to perform an upward return to the proper
ring. (See the next sectioﬁ for details.)

This almost completes the description of the processor

hardware for Implementing rings. One of the final items to
consider is the action of a fault or Iinterrupt. Access
violations generate faults, as do a variety of other conditions,
e.g. missing page, missing segment, or processor timer runout.
An interrupt 1is the recognition by the processor of an external
signal. A fault or interrupt causes an unconditional transfer of
control to a pre-specified location and the change of the number

of the ring of execution to zero. A special instruction allows

L1

M0126

from
Figure 8

Fetch SDW for segment
containing operand
(Segment number in

TPR,.SEGNO)
. _Access _violation_

' effective ring not
>—no->~ in execute bracket]

< SDW.R1 < TPR.RING < SDW.R2

yes

3
<SDW'E = on > RO~ execute flag bff

yes

1 Fault - software

=/] IN >._5___,. intervention re-
\, TPR.RING : ;IPI}_.R G | guired

PrlOperd retun) | accempt to i
PRn.RING <= downward RETURN

max (PRn.RING, TPR.RING) for
n = 0 1, (XX ,7

| IPR <= TPR

]
done
with RETU

Figure 10: Access validation and performance of RETURN instruction

42

M0126

the state of the processor at the time of the fault or interrupt
to be restored later if appropriate, continuing the faulted or
interrupted instruction. The program that executes in ring 0
which gains control in the event of a fault or interrupt is part
of the supervisor.

The final point concerns privileged instructions. Certain
instructions, if executable by all procedure segments, could
invalidate the protection provided by the ring mechanisms. Among
these are the instructions to load the DBR, 1/0 instructions, and
the instruction to restore the processor state after a fault or
interrupt. Any instruction designated as privileged will be
performed only if the proceSs' is executing in ring 0., This

convention restricts their use to supervisor procedures.

The intended use of the hardware mechanisms just des&ribed
is ‘illustrated by considering again two key aspects of the
linguistic meaning of the operations call and return.

The first aspect to be reconsidered is the way arguments are
passed and referenced. A procedure making a call constructs an
array of indirect words containing the addresses of the various
arguments to be passed with the call. Each indirect word is
generated by forming the address of the cqrresponding argument in
some pointer register using an EAP-type instruction and then
storing the contents of that pointer register as the (indirect
word. To inform the called prdcedure of the location of this

argument list, the calling procedure loads a specific pointer

L3

M0126

register, designated by software convention to be PR0O, with the
address of the beginning of the argument list. An instruction of
the called procedure cén reference the nth argument as its
operand by using an indirect address. The location of the
ihdirect word is specified in the instruction as PRO offset by n.
If this operand reference constitutes an wupward cross-ring
argument reference then the proper validation is automatic, for
PRO.RING, as set by the calling procedure, must contain a number
that is greater than or equal to the number of the ring in which
the calling procedure was executing when the call was made.
Thus, validation of all argument references by the <called
procedure will be with respect fo‘an effective ring that fs at
least as high as the ring of fhe caller. |

. The ring number in the .argument pointer register, then,
allows the called procedure to Vautomatica1ly assume the fewer
accéss capabilities of ;he calling procedure In the case of an
upward cross-ring argument reference via PRO and the argument
list. Not all argument references, however, will be via PRO and
the argument list. Forlexample, if an argument is an array, then
the corresponding argument 1list indirect word Qill address the
first element. The called procedure may find it convenient to
load, say, PR1 with the actual two-part address of the beginning
of thaﬁ,array argument so that array indexing can be more easily
accompiished. If PR1 1is 1loaded with an EAP-type instruction
whose operand address is};becified via PRO and the argument list,

then the proper effective ring number will automatically be put

Ly

M0126

in PR1,RING, and subsequent references to the argument via PR1
will also be validated with respect to an effective ring that is
at least as high as the ring of the caller. If PR1 is then
stored as an indirect word, this effective ring is put into the
R]NG field of the indirect word., In fact, as long as the called
procedure does not make an explicit effort to lower the effective
ring associated with an argument address, e.g. by zeroing the
RING field of an indirect word, then all manipulations of the
argument address are safe, and all argument references will be
validated with respect to an effective ring that is at least as
high as the ring of the caller.

One further comment needs fo’be made about argument passing
and referencing with respect-to downward calls., The scheme just
described naturally extends to a. sequence of downward cél]s., For
example, assume that procedure A executing in ring 4 calls
procedure B to execute in ring 1 which then calls procedure C to
execute in ring 0. Assume further that an argument passed from A
to B is passed on from B to C. When C references this argument,
the reference will automatically be validated with respect to
ring 4, not ring 1 as might be expected. The reason follows from
the way in which B constructs the argument list for C, Using the
normal pattern of forming an argument address in some PRn with an
EAP-type instruction and then storing that PR as an argument list
indirect word, an indirect word for an argument to C will have &
in its RING field if the corresponding argument happens to have

been originally provided by A. Thus, when CC references this

45

110126

argument, an effective ring number of 4 will be used to validate
the reference. B could force validation of references to this
argument by C to be relative to ring 1 simply by resetting the
ring field of the corresponding argument list indirect word to 1.

The second aspect to be reconsidered with respect to call
and return is the way that the stack pointer register (PRB) is
manipulated and the return address is recorded. Before a
procedure calls another, the return address 1is recorded as an
indirect word in a standard location of the stack area of the
calling procedure. When the call occurs, PR6 remains pointing to
the stack area of the calling procedure. Only after the called
procedure has located its new stack area (using the address 1in
PR7 provided by the CALL instruction) and the contents of PR6 are
saved in that new stack area, is PR6 reset to address the stack
area of the called'prbcedure. When it comes time to return, the
called procedure restores PR6 with the saved pointer value. PR6
is then used to address the indirect word containing the return
point that is the operand of the actual RETURN instruction.
Because PR6.RING as restored was initially set by the calling
procedure, it must contain the number of the ring in which the
calling procedure was executing (or some higher value). Thus,
the RETURN instruction is guaranteed to generate an effective
ring number no lower than the ring of the calling procedure, and
will return control to the ring of the <caller or some higher

numbered ring.

L6

M0126

Use of Rings

Some insight 1into the functional capabilities of rings can
be gained by considering briefly the way the basic mechanisms
described in the previous sections are used in Multics.

The ring protection scheme allows a layered supervisor to be
included in the virtual memory of each process. In Multics, the
lowest level supervisor procedures, such as those implementing
the primitive operations of access control, input/output, memory
multiplexing, and processor multiplexing, execute in ring 0. The
remaining supervisor procedures execute in ring 1. Examples of
ring 1 supervisor procedures are those performing accounting,
input/output stream management, and file system search direction.
(Deciding how many layers to use and which procedures should
execute in each layer 1Iis an interesting engineering design
problem.) . Supervisor.data segments have read and write brackets
that end at ring 0 or ring 1, depending on which 1layer of the
supervisor needs to access each.

Implicit invocation of certain ring 0 supervisor procedures

occurs as a result of a fault or an Iinterrupt. Explicit
invocation df selected ring 0 and ring 1 supervisor procedures by
procedures executing in rings 2 through 7 of a process 1is by
standard subroutine calls to gates. No other access to
supervisor segments by procedures executing 1Iin higher -numbered
rings is allowed.

Because separate access control lists for each segment and

separate descriptor segments for each process provide the means

L7

M0126

to control separately the use of each segment by each user's
process, not all gates into supervisor rings need be available to
the processes of all users and not all gates need have the same
gate extension associated with them. For example, some gates
into ring 0 are accessible to the processes of all users, but
only to procedures executing in ring 1. Such gates provide the
internal interfaces between the two layers of the supervisor.
Some gates into ring 1 are accessible to procedures executing in
rings 2 through 7 in the processes of selected users, but not
accessible at all from the processes of other users. An example
of the latter kind is a gate for registering new users that is
available only from the processes of system administrators.

As pointed out by. Dljksfra» [15], the layered supervisor
allowed by the ring protection scheme has several advantages.
Constructing the supérvisor in enforced layérs limits the
propagation of errors, thereby making the supervisor easier to
modify correctly and increasing the level of confidence that the
supervisor functions correctly. For example, changes can be made
in ring 1 without having to recertify the correct operation of
the procedures in ring 0.

By arranging for most user procedures to execute in ring &4,
rings 2 and 3 become available for the protection of subsystems
constructed by members of the user community. Subsystems
executing in rings 2 and 3 of a process can be protected from
procedures executing in ring 4 through 7 in the same way that the

supervisor is protected from procedures executing in rings 2

43

M0126

through 7. A1l comments made about a supervisor implemented in
rings 0 and 1 of each process apply to protected subsystems
implemented in rings 2 and 3. Different protected subsystems may
be operated simultaneously in rings 2 and 3 of different
brocesses and several processes may share the use of the same
protected subsystem simultaneously. The ring protection scheme
allows the operation of user-constructed protected subsystems
without auditing them for inclusion in the supervisor., Examples
of protected subsystems that might be provided by various users
are a personnel records subsystem, a proprietary compilef, or a
subsystem to play "moo" and safely record in a central data base
the result of every game of evefy player for later publication.
With most user procedures executing in ring 4, rings 5, 6,
and 7 are available for user self-protection. For example, a
user may debug a progfam by executing it in ring 5 where only
procedure and data segments intended to be accessed by the
program would be accessibfe. The ring protection mechanisms
would detect many of the possible addressing errors that could be
made by the program éndeould also prevent the untested program
from damaging other user segments accessible from ring 4, In the
same way ring 5 can be used for the execution of a program
borrowed from another user when the program is not trusted.
Supervisor gates are not accessible from rings 6 and 7 of
any process in Multics. Thus, procedures executed in these rings
have no explicit access to supervisor functions; they may,

however, call user-provided gates into rings 4 or 5. Ring 6 of a

L9

M0126

process might be used, for example, to provide a suitably
isolated environment for student programs being evaluated by a
grading program executing in ring 4.

The complete description of a software access control
facility based on rings that allows them to be used in the manner
just outlined would require another paper. Although a given ring
may simultaneously protect different subsystems in different
processes, each ring of each process can protect only one
subsystem at a time. A useable software access control facility
must constrain each usér's ability to dynamically set and modify
access control specifications so that this sole occupant property

can be verified and enforced when necessary.

Conclusions

" The hardware mechanisms derived and described in this paper
implement a methodical generalization of the traditional
supervisor/user protection scheme that 1is compatable with a
shared virtual memory based on segmentation. This generalization
solves ‘three significant kinds of problems of a general purpose
system to be used as a computer utility:

- users can create arbitrary, but protected, subsystems for
use by others,

- the supervisor can be implemented in 1layers which are
enforced,

- the user can protect himself while debugging his own (or
borrowed) programs.

The subset access property of rings of protection does not

provide for what may be called "mutually suspicious programs"

50

MC126

operating under the control of a single process, But on the
other hand, it is just that subset property which imposes an
organization which is easy to understand and thus allows a system
or subsystem designer to convince himself that his implementation
is complete. Also, it is just the subset property which is the
basis for a hardware implementation that is integrated with
segmentation mechanisms, requiring very small additional costs in
hardware logic and processor speed. |

The long-range éffect of hardware protection mechanisms
which permit calls to protected subsystems that are no more
complex than calls to other procedures is bound to be
significant. In the interface‘to the supervisor of most systems
there are many examples of faéilities whose-interface design s
biased by the assumption that a call to the supervisor is
relatively expensive; .the usual result is to place several
closely related functions together in the supervisor, even though
only one of the group realfy needs protection. For example, in
the Multics typewriter 1/0 package, only the functions of copying
data in and out of sharéd buffer areas and of executing the
privileged instruction to initiate 1/0 channel operations need to
be protected. But, since these two functions are deeply tangled
with typewriter operation strategy and code conversion, the
typewriter 1/0 control package is currently implemented as a set
of procedures all located 1in the lowest numbered ring of the
system, thus increasing the quantity of code which has maximum

privilege,

51

M0126

A similar example is found in many file system designs,
where complex file search operations are carried out entirely by
protected supervisor routines rather than by unprotected library
packages, primarily because a complex file search requires many
individual file access operations, each of which would require
transfer to a protected service routine, which transfer s
presumed costly.

The initial implementation of Multics was carried out using
software simulated rings of protection. The result was a very
conservative use of the rings of protection: originally just two
supervisor rings and one user ring were employed, and the two
supervisor rings were temporérily collapsed into one (thus
exploiting the programming generality objective referred to
before) while the ring crossing software mechanisms were tuned
up. Today, although there are many obvious applications waiﬁing,
multiple rings are just beginning to be exploited. The
availability with the néw Multics processors of hardware

implemented rings of protection which make downward calls and
upward returns no more tomplex than calls and returns in the same

ring should significantly increase such exploitation.

Backeround and Acknowledgzements

The concepts embodied in the mechanisms described here were
the result of seven years of maturing of ideas suggested by many
workers. The original idea of generalizing the supervisor/user
relationship to a multiple ring structure was suggested by R. M,

Graham, E. L. Glaser and F. J. Corbatd. An initial software

52

110126

simulation of rings using multiple descriptor segments [1] was
worked out by Graham and R. C. Daley, and implemented by members
of the Multics system programming' team. That implementation
makes wuse of hardware .access mode indicators stored in the
segment descriptor word of the Honeywell 645 computer. Graham
[3], in 1967, proposed a partial hardware implementation of rings
of protection which included three ring numbers embedded in
segment descriptor words, and a processor ring register, but
which still required software intervention on all ring crossings.
This hardware scheme, fhough a related scheme was implemented in
the HITAC 5020 time-sharing system [h], was never implemented in
Multics, which today (1971) still uses a version of the software
simulation. The complete automation of downward calls and upward
rétqrns was proposed in a thesis in 1969 [5]; the description in
this paper extends thét thesis slightly with the addition of
rings numbers to indirect words and the processor pointer
registers, as suggested by Daley. The CALL and RETURN
instructions proposed there have also been simplified.

The hardware implemented call and return, and automatically
managed stacks, were at least partly inspired by similar
mechanisms which have long been used on computer systems of the
Burroughs Corporation [16,17].

In addition to those named ‘above, D. D. Clark, C. T.
Clingen, R. J, Feiertag, J. M. Grochow, N, I. Morris, M. A,
Padlipsky, M. R. Thompson, V. L. Voydock, and V. A, Vyssotsky
contributed significant help in understanding and implementing
rings of protection.

53

M0126

References
[1] Multics Programmer's Manual, M.!.T, Project MAC, 1969.
[2] Model 645 Processor Reference Manual, Cambridge Information

Systems Laboratory, Honeywell Information Systems Inc., April,
1971.

[3] Graham, R. M., "Protection in an Information Processing

Utility", Communications of the ACM 11, 5 (May, 1968), pp.
365-369.

[4] Motobayashi, S., T. Masuda, and N. Takahashi, "The Hitac

5020 Time-Sharing System'", Proceedings ACM 24th National
conference (ACM Publication P-69), 1969, pp. 419-429,

[5] schroeder, M. D., "Classroom Model of an Information and
Computing Service", S.M. Thesis, M,I1.T., February, 1969, (An
expanded version of this thesis 1is available as Project MAC
Technical Report MAC-TR=-80.)

[6] Bensoussan, A., C. T. Clingen, and R. C. Daley, "The Multics

Virtual Memory", Second ACM Svmposium on Operating
Principles (October, 1969), Princeton University, pp. 30-42,

[7] Apfelbaum, H., and G. Oppenheimer, "Design of Virtual Memory
Systems", Elfth Annual IEEE Computer Society Conference, Boston,
September, 1971. :

[8] Arden, B. W., et al, "Program and Addressing Structure in a

Time-Sharing Environment", Journal of the ACM 13, 1 <(January,
1966)' PP. 1-16. -

[9] Lampson, B. W., "An Overview of the CAL Time-Sharing
System', Computation Center, University of California, Berkeley
(September 5, 1969).

[10] Lampson. B. W., "Dynamic Protection Structures", AF1PS
Conference Proceedings 35 (1969 FJCC), pp. 27-38.

[11] Evans, D. C., and J. Y. LeClerc, "Address Mapping and the
Control of Access in an Interactive Computer", AE!PS Conference
Proceedings 30 (1967 SJCC), pp. 23-30,.

[12] pennis, J. B., and E. C. VanHorn, "Programming Semantics for

Multiprogrammed Computations', Communications of the ACM 9, 3
(r‘darCh' 1966)1 PP. 1“3"1550

[13] Fabry, R. S., "Preliminary Description of a Supervisor for a

Computer Organized around Capabilities", Quarterlvy Progress
Report No. 18, Section 1-B, Institute of Computer Research,
University of Chicago, 1968, pp. 1-97.

54

M0126

[12] vanderbilt, D. H., "Controlled Information Sharing in a
Computer Utility", Project MAC Technical Report MAC-TR=-67,

M.1.T., 1969.

[15] Dijkstra, E. W., "The Structure of the THE Multiprogramming

System", Communications .gf the ACM 11, 5 (May, 1968), pp.
341-346,

[16] A Narrative Description of the Burroughs B5500 ,
Control Pr , Burroughs Corporation, Detroit, October, 1969.

[17] Hauck, E. A., and B. A. Dent, "Burroughs' B6500/B7500 Stack
Mechanisms', AFIPS Conference Proceedings 32 (1968 SJCC), pp.
245-251, «

55

