

This empty page was substihlted for a
blank page in the original document.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJ EeT 1'1AC

The Multiplexed Information and

Computing Service:

Programmers' Manual

PART

INTRODUCTION TO MULTICS

This research was supported by the Advanced Research
projects Agency of the Department of Defense under

ARPA Order Ko. 2095 which was m:mitored by ONR
Contract No. N00014-70-A-0362-0006

Rev is i on : 14

Date: 9/30/73

@Copyright 1973, f'.1assachusetts Institute of Technology
and Honeywell Information Systems Inc.

All ri ghts reserved

Page i i

PRE F ACE

The Multics project was begun in 1964 by the Computer
Systems Research group of M.I.T. Project MAC. The goal was
to create a prototype of a computer ut 111 ty. In 1965, the
project became a cooperative venture of M.t.T. Project MAC,
the General Electric Company Computer Department (now
Honeywell Information Systems Inc.) and the Bell Telephone
Laboratories. tn 1969, at the end of the research phase of
the project, Bell Telephone Labo~atorJes ended its active
involvement. Also In 1969, the M.LT. Information
Processing Center began to offer' Multics as a computing
service within the M.I.T. convnunity., In 1973, after
developing a new hardware base for Multtcs, Honeywell
announced that it would market Multics as a commerctal
product.

The Multics system owes its genesis to a small team of
computer scientists who had the vision to layout a plan
which for 1965 was startlingly ambitious. This team
consistedJof the authors of a set of landmark papers
published in the 1965 Fall Joint Computer Conference. Since
that time literally hundreds of individuals have contributed
to the Multics project, but no individual stands out so
clearly in contribution as does Professor Fernando J.
Corbato, who took responsibility for guiding the design and
implementation of Multics from its initial proposal through
to the time when Honeywell began to market the system.

The project would not have been possible without the
considerable commitments of resources and talent made by the
several organizations. These commitments were made on the
recommendations of Professor Robert M. Fano, then director
of Project MAC, Dr. John W. Weil, then of General Electric,
and Dr. Edward E. David, Jr., then of the Bell Telephone
Laboratories. The Information Processing Techniques office
of the Advanced Research Projects Agency provided the
primary financial support 'to Project MAC, and the Office of
Naval Research provided contract supervision.

This technical report is a snapshot of The Introduction
to the users' manual for the Multics system. It is being
published in this form as a convenient method of

iii

communication with researchers and students of computer
system des ign. The complete current users' manual is
available in three updateable volumes from the M.I.T.
Information Processing Center, or in a five-volume package
from Honeywell. The present report represents Volume I of
the three-volume version. The construct~on of the users'
manual was also a team effort, with dozens of contributors.
This manual has had the good fortune to have been maintained
by a succession of three excellent editors, Michael A.
Padlipsky, Laurie J. Haron, and Karolyn J. Martin, each of
whom put in endless hours developing a general consistency
of style, format, and presentation, so as to make the
usefulness of the manual evenly predictable.

This preface can acknowledge only a few particular
contributions. More detailed acknowledgements for specific
contributions will be found among the 29 technical papers
that have been published about Multics, some of which' are
reproduced in chapter two of this report. Unfortunately, in
a team effort, complete and accurate acknowledgement is
impossible, except by thanking all the members of the team
for their intense devotion to the business of getting
Multics designed and implemented.

Jerome H. Saltzer, Head
Computer Systems Research Division

M.I.T. Project MAC
September 21, 1973

iv

FOR E W 0 R 0

PLAN OF THE MULTICS PROGRAMMERS' MANUAL

September 30, 1973

The Multics Programmers' Manual (MPM) Is the primary
reference manual for user and subsystem programming on the
t1ultlcs system. It is divided Into three major parts:

Part I: Introduction to Multlcs

Part II: Reference Guide to Multics

Part III: Subsystem Writers' Guide to Multics

Part I is an introduction to the properties, concepts, and
.,usage of the Multics system. Its four chapters are designed for
reading continuity rather than for reference or completeness.
Chapter 1 provides a broad overview. Chapter 2 goes Into the
concepts underlying Multics. Chapter 3 Is a tutorial guide to
the mechanics of using the system, with Illustrative examples of
terminal sessions. Chapter 4 provides a series of examples of
programming in the Multlcs environment.

Part I I is a self-contained comprehensive reference guide to
the use of the Multics system for most users. In contrast to
Part I, the Reference Guide Is intended to document every detail
and to permit rapid location of desired Information, rather than
to facilitate cover-to-cover reading.

Part II is organized into ten sections, of which the first
eight systematically document the overall mechanics, conventions,
and usage of the system. The last two sections of the Reference
Guide are alphabetically organized lists of standard Multics
commands and subroutines, respectively, giving details of the
calling sequence and the usage of each.

Page v

Page vi

Several cross-reference facilities help locate information
in the Reference Guide:

• The table of contents, at the front of the manual,
provides the name of each section and subsection and an
alphabetically ordered list of command and subroutine
names.

• A comprehensive index (of Part II only) lists items by
subject.

• Reference Guide sections 1.1
commands and subroutines,
category.

and 2.1 provide
respectively, by

lists of
functional

Part III Is a reference guide for subsystem writers. It Is
of interest to compiler writers and writers of sophisticated
subsystems. It documents user-accessible modules which allow a
user to bypass standard Multlcs facilities. The Interfaces thus
documented are a level deeper Into the System than those required
by the casual user.

Examples of specialized subsystems for which construction
would require reference to Part III are:

1) a subsystem which precisely Imitates the command environment
of some system other than Multics (e.g., an imitation of the
Dartmouth Time-Sharing System);

2) a subsystem which is intended to enforce restrictions on the
services available to a set of users (e.g., an APL-only
subsystem for use in an academic class);

3) a subsystem which Is protecting some kind of information in
a way not easily expressible with ordJnary access control
lists (e.g., a proprietary linear prQgr.mmfng system, or an
administrative data base Systelll wb.ic:hpermits access only to
program-defined aggregated Information such as averages and
correl at Ions).

Each of the three parts of the MPM has Its own table of contents
and is updated separately, by adding and replacing Individual
sections. Each section is separately dated, both on the section
itself, and in the appropriate table of contents. The title page
and table of contents are replaced as part of each update, so one
can quickly determine if his manual Is properly up-to-date. The
t1ultics on-line "message of the day" or local Installation
bulletins should provide notice of availability of new updates.
In addition, the Multics command "help mpm" provides on-line
information about known errors and the latest MPM update level.

In addition to this manual, users who will write programs
for Hultics will need a manual giving specific details of the

Page vii

language they will use; such manuals are currently available for
PL/I, FORTRAN, and BASIC. A separate, specialized supplement to
the MPM is also provided for users of graphic dIsplays. The
bibliography at the end of Part I, Chapter 1, describes these and
other references In more detail.

Multlcs provides the ability for a local Installation to
develop an Installation-maintained or author-maintained library
of commands and subroutines which are tailored to local needs.
The Installation may also document these facilities in the same
format as used In the MPM; the user can then interflle these
locally provided write-ups In the command and subroutine sections
of his MPM.

Finally, access to Multics requires authorization. The
prospective user must negotiate wIth the administration of his
local installation for permission to use the system. The
Installation may find it useful to provide the new user with a
documentation kit describing available documents, telephone
numbers, operational schedules, consulting services, and other
local conventions.

This empty page was substihlted for a
blank page in the original document.

CON TEN T S

September 30, 1973

PREFACE iii

FOREWORD: Plan of the Multics Programmers' Manual v

PART I: INTRODUCTION TO MULTlCS

Chapter! Highlights of the Multics System

Introduction
The Goals
System Requirements
The Multics System
Overview of Multlcs Capabilities
Languages
A Multics Bibliography

Chapter 2 Introduction to the Concepts of Multics

1- 1
1- 1
1- 4
1- 6
1- 6
1- 9
1-11

Multics -- The First Seven Years 2- 2
The Multics Virtual Memory: Concepts and

Design 2-17
Virtual Memory, Processes, and Sharing in

Multlcs 2-31
Protection and Control of Information Sharing

In Multics 2-39
A Hardware Architecture for Implementing

Protection Rings 2-56
The Multics PL/I Compiler 2-71
Remote Terminal Character Stream Processing

In Multics 2-86
The Multics Input/Output System 2-94

Page ix

MUlTICS PROGRAMMERS' MANUAL

Page x

Chapter 3 Beginner's Guide to the Use of Multics

The Mechanics of Terminal Usage
A Multics Terminal Session
Typing and Editing Information
Using the Multics Storage System
Access Control in Multics .
Where to Go from Here

Chapter 4 Programming in The Multics Environment

Basic Addressing Techniques
A Program Which Tests for Prime Numbers
Checking on The Performance of a Prog~am
Debugging Programs on Multics
Absentee Use of Multics
Dynamic linking and Binding
A Simple Text EdItor
Handling large Files on Multics

3- 1
3- 5
3-11
3-19
3-29
3"'32

4- 2
4- 7
4- 9
4-11
4-19
4-21
4-24
4-55

C HAP T E R 1

HIGHLIGHTS OF THE MULTtCS SYSTEM

September 20, 1973

introduct ion

Mul tics (from ~iplexed information and ,&,omput-tng .service)
is the name of a new, general-purpose computer system developed
by the Computer Systems Research Otvlsionof M.I.T. Project MAC,
in cooperation wIth Honeywell Information Systems (formerly the
General Electric Company computer department) and the Bell
Telephone Laboratories. This system is designed to be a
"computer utility", extending the bastc concepts and philosophy
of earlier time-sharing systems in many directIons. Multics was
imp 1 emented in it i a 11 y on· the Hooeywe 11 645 computer sYS tern, an
enhanced relative of the Honeywell 635 computer. It currently
uses a Honeywell 6180 computer system.

lli. Goals

The goals
paper by Corbat6
only partially
been realized.

of the Multics system were set out In 1965 fn a
and Vyssotsky. Whlle those goals have been met
io some cases, most of the original plans have

The 1965 paper described those goals as follows:*

"One of the overall design goals of Multics is to create a
computing system which is capable of meeting almost all of the
present and near future requirements of a large computer utility.
Such systems must run continuously and reliably 7 days a week, 24
hours a day, in a way similar to telephone or power systems, and
must be capable of meeting wide servtce demands: from multiple
man-machine Interaction to the sequential processing of absentee
user jobs; from the use of the system with dedicated languages
and subsystems to the programming of the system itself; and from

* From a modified version of: Corbatd, F.J., and Vyssotsky,
V.A., "Introduction and Overview of the Multics System", AFIPS
~. EL2k. 1I (1965 FJCC), Spartan Books, Washington, D.C.,
1965, pp. 185-196. Copyright 1965 by AFIPS Press, reprinted by
permission.

1-2 HIGHLIGHTS OF THE MULTICS SYSTEM

centralized bulk card, tape, and printer facilities to remotely
located terminals. Such information processing and communication
systems are believed to be essential for the future growth of
computer use in business, In industry, in government and In
scientific laboratories, as well· as stimulating applications
which would otherwise be untried.

"Because the system must ultimately be comprehensive and
able to adapt to unknown future requirements, lts framework must
be general, and capable of evolving with time. As brought out in
the sequel, this need for an evolutionary framework influences
and contributes to much of the system design and is a major
reason why most of the programming of the system has been done in
a subset of the PL/I 1 anguage. Because the Pl/l 1 anguage is
largely machine-independent (e.g., data descriptions refer to
logical items, not physical words), the system should also be.
Specfftcally,it is hoped that future hardware Improvements will
not make system and user programs obsolete and· that
implementation of the entIre system on other suitable computers
will require only a moderate' amount of additional programming ••••

liAs computers have matured during the last two decades from
curiosities to calculating machines to information processors,
access to them by users has not improved, and, in the case of
most large machines, has retrogressed. Prineipallyfor economic
reasons, batch processing of computer jobs has been 4eveloped and
is currently practiced by most large computer instalfations, and
the concomitant isolation of the user from elementary
cause-and-effect relationships has been either reluctantly
endured or rationalized. For several years a solution has been
proposed to the access problem. This solution, usually called
time-sharing, Is basically the rapid time-division multiplexing
of a central processor unit among the jobs of several users, each
on-line at a typewriter-like terminal. The rapid switching of
the processor unit among user programs is, of course, nothing but
a particular form of nwl t iprograRlning ••••

"The impetus for time-sharing first arose from professional
programmers because of thetr constant frustration in debugging
programs at batch processing installations. Thus, the orrginal
goal was to time-share computers to allow stmultaneous access by
several persons while giving to each of them th~ illusion of
having. the whole machine at his disposal. This goal led to the
development of the Compatible Time-Sharing System (CTSS) at
M.I.T. Project MAC. However, at Project ~AC it has turned out
that simultaneous access to the machine, white obviously
necessary to the objective, has not been the major ensuIng
benefi t. Rather, it is the avai labi 1 Ity at one's fIngertips of
facilities for editing, compiling, debuggIng, and running
programs In one continuous InteractIve sessIon that has had the
greatest effect on programming. Professional programmers are
encouraged to be more imaginative in their work and to
investigate new programming techniques and new problem approaches

HIGHLIGHTS OF THE f-1UlTICS SYSTEM 1-3

because of the much smaller penalty for failure. But, the most
significant effect that CTSS has had on the M.I.T. community is
seen in the achievements of persons for whom computers are tools
for other objectives. The availability of CTSS not only has
changed the way problems are attacked, but has caused Important
research to be undertaken that otherwise would not have been
done. As a consequence, the objective of the current and future
development of time-sharing extends beYQnd the improvement of
computational facilities with respect to 'tradItional computer
appl ications. Rather, it is the on-line use of computers for new
purposes and in new fields whiCh provides the challenge and the
motivation to the system designer. In other words, the major
goal is to provide suitable tools for' what is currently being
called machine-aided cognition.

I1More specifically, the importance of a multiple-access
system operated as a computer utl1ity Is that it allOWS! 8 vast
enlargement of the scope of computer-based activitles, which can,
in turn, stimulate a corresponding enrichment of many areaS of
our society. OVer ten years of experience Indicates that
continuous operation in a utility-like manner, with flexible
remote access, encourages users to view the system as a thinking
tool in their daily intellectual work. Mechanistically, the
qual itative change from the past results from the drastic
improvement in access time and convenience. Objectively, the
change lies in the userts ability to control and affect
InteractivelY the course of a proCess whether it involves
numerical computation or manipulatlon of symbols. Thus,
parameter studies are more intelligently guided; new
problem-oriented languages and subsystems are developed to
exploit the interactive capabil ity; many complex analytical
problems, as in magnetohydrodynamics, which have been too
cumbersome to be tackled in the past, are now being successfully
pursued; even more, new, imaginative approaches to basic research
have been developed as in the decoding of protein structures.
These are examples taken from an academic environment; the
effect of multiple-access systems on business and industrial
organizations can be equally dramatic. It is with such new
applications in mind that the M~ltics system has been developed.
Not that the traditional uses of computers are being disregarded':
rather, these traditional needs are viewed as a subset of the
broader, more demanding, new requirements.

"To meet the above objectives, issues such as response time,
convenience of manipulating data and programs, ease of
controlling processes during execution, and, above all,
protection of private information and isol~tion of independent
processes, become of c r it i cal importance . The.se issues demand
departures from traditional computer systems. \vhile these
departures are deemed to be desirable with re~pect to traditional
computer appl ications, they are essential for' rapid man-machine
interaction.

)

1-4 III GHLI GHTS OF THE MULT I CS SYSTEM

System Requirements

flln the early days of computer design, there was the concept
of a single program on which a single processor computed for long
periods of time with almost no Interaction with the outside
world. Today such a view is considered incomplete. The effective
boundaries of an information processing system extend beyond the
processor, beyond the card reader and printer, and even beyond
the typing of input and the prInting of output. In fact, they
encompass the goals of many people. To" better understand the
effect of this broadened design sco~e, It is h~lpful to examine
several phenomena characteristic of large, servlce"'orlented
computer installations.

"First, there are incentives for ~ny organization to have
the bil&est possible computer system that It can afford. It is
usually only on the biggest computers that there are elaborate
programming systems, compilers, and featvres which make a
computer "powerful". This results partly because it is more
difficult to prepare system programs for sm~ner computers when
limited by speed or memory size, and partly because large systems
involve more persons and, hence, permit more attention to be
given to system programs. Moreover, by combining resources in a
single computer system rather than In several, bulk ecOnomIes and
therefore lower computing costs can be achieved. Finally, as a
practical matter, considerations of floor space, management
efficiency, and operating personnel provide a strong incentive
for centralizing computer facilities In a single large
installation.

"Second, the capacity of a contemporary computer
installation, regardless of the sector of appl ieat ions it serves,
must be capable of growing to meet continuously increasing
demand. A doubl ing of demand every two years is not uncommon.
Nultiple-access computers promise to accelerate this growth
further since they allow a man-machine interaction rate which is
faster by at least two orders of magnitude than other types of
computing systems. Present indications are that multiple-access
systems for only a few hundred users can generate a demand for
computation exceeding the capacity of the fastest existing single
processor system. Since the speed of light, the physIcal sIzes
of computer components, and the speeds of memories are intrinsic
1 imitations on the speed of any single processor, it is clear
that systems with multiple processors and multiple memory units
are needed to provide greater capacity. This is not to say that
fast processor units are undesirable, but that extreme system
complexity to enhance this single parameter among many appears
neither wise nor economic.

"Third, computers are no longer a luxury used when and if
available, but are primary working tools in business, government,
and research laboratories. The more reliable computers become,
the more their availability is depended upon. A system structure

SYSTEM REQUIREMENTS 1-5

including pools of functionally identical units (processors,
memory modules, input/output controllers, etc.) can provide
continuous service without significant inte·rruption for equipment
maintenance, as well as provide growth capability through the
addition of appropriate units.

"Fourth, user programs, especially in a time-sharing system,
interact frequently with secondary storage devices and terminals.
This communication traffic produces a need for multiprogramming
to avoid wasting main processor time while an input/output
request is being completed. It is important to note that an
individual user is ordinarily not in a position to do an adequate
job of multiprogramming since his program lacks proper balance,
and he probably lacks the necessary dynamic information,
ingenuity, or patience.

"Finally, as noted earlier, the value of a time-sharing
system I ies not only in providing, in effect, a private computer
to a number of people simultaneously, but, above all, in the
services that the system places at the fingertips of the users.
Moreover, the effectiveness of a system increases as
user-developed facilities are shared by other users. This
increased effectiveness because of sharing Is due not only to the
reduced demands for core and secondary memory, but also to the
cross-fertilization of user ideas. Thus, a major goal of the
present effort is to provide multiple access to a growing and
potentially vast structure of shared data and shared program
procedures. In fact, the achievement of multiple access to the
computer processors shOUld be viewed as but 'a necessary subgoal
of this broader objective. Thus, the primary and secondary
memories where programs reside play a central role in the
hardware organization, and the presence of' independent
communication paths between memories, processors, and terminals
Is of critical importance.

"From the above it can be seen that the system requirements
of a computer installation are not for a single program on a
single computer, but, rather, for a large system of many
components serving a community of users. Moreover, each user of
the system asynchronously initiates jobs of arbitrary and
indeterminate duration which subdivide into sequences of
processor and input/output tasks. It is out of this seemingly
chaotic, random environment that one arrives at a uti lity-l ike
view of a computing system. For instead of chaos, one can
average over the different user requests to achieve high
utilization of all resources. The task of multiprogramming
required to do this need only be organized once in a central
supervisor program. Each user thus enjoys the benefit of
efficiency without having to average the demands of his own
particular program.

"With the above view of computer use, where tasks start and
stop every few milliseconds, and where the memory requirements of
tasks grow and shrink, it is apparent that one of the major jobs

1-6 HIGHLIGHTS OF THE MULTICS SYSTEM

of the supervisor program (i.e., monitor, executive, etc.) is the
allocation and scheduling of computer resources. The general
strategy is clear. Each user's job is subdivided into tasks,
usually as the job proceeds, each of which is placed in an
appropriate queue (i .e., for a processor or an input/output
controller). Processors. or input/output controllers are, in
turn, assigned new tasks as they either complete or are removed
from old tasks. All processors are treated equivalently in an
anonymous pool and are ass i gned to ta.sks as needed. In
particular, the supervisor does not have a special processor.
Further, processors can be added or deleted without significant
change in either the user or system. programs. Similarly,
input/output controllers are directed from queues independently
of any particular processor. Again, as with the processors, one
can add or delete input/output capacity according to system load
without significant reprogramming required.

~ Multics SYstem

"The overall design goal of the Multics system Is to create
a computing system which is capable of comprehensiVely meeting
almost all of the pres.ent and near future requirements of a large
computer service installation. It is not expected that the
initial system, although useful, will reach the objective;
rather, the system will evolve with time in a general framework
which permits continual growth to meet· unknown future
requirements. The use of the PL/llanguag.e will allow major
system software changes to be develoPed on a schedule separate
from that of hardware changes. Since most organizations can no
longer afford to overlap old and new equipment durrng changes,
and since software development is at best dififlc.ult to schedule,
this relative machine-Independence should be a major asset."

Overview of Multics Capabilities

An ability to share data contained within the framework of a
general purpose time-sharing system Is a unique feature of
Multics, and is directly applicable to administrative problems,
research requiring a multi-user accessible database, and general
application of the computer to very camplreated research
problems. The attention paid to mechanisms to provide and
control pr ivacy I s of di rect interest for sev.er"al of the same
applications as well as, for example, medical data. Multics can
thus be a valuable tool which provides op'portunities for
important new research In these areas.

Multics offers a number of additional capabll ities which go
well beyond those provided by many other systems. Those which
are most significant from the user's point of view are described
here. Perhaps the most interesting aspect of all is that a
single system encompasses all of these capabilities
simultaneously.

SYSTEM REQUIREMENTS 1-7

1. The ability to be a small user of Multics.

An underlying consideration throughout the Multics design
has been that the simple user should not pay a noticeable
extra price for a system which also accomodates the
sophisticated user. For example, a student can be handed a
I imited set of tools, can do limited work (perhaps debugging
and running small BASIC programs), and expect to receive a
bill for resource usage which is proportional to the limited
work done. If all users are small, of eourse, the number of
users can be increased in proportion to their smallness. As
an administrative aid, facll ities are provided so that 'one
can restrict any particular user to ~ .pecific set of tools
and thereby limit his ability to use up resources.

2. The ability to control sharing of information.

There are a variety of applications for a computer system
which Involve building up a base of information which Is to
be shared among several individuals. Multics provides
facilities in two directions.

Sharing:

Control:

Links to other users' programs and data.

Ability to move one 1 s base of operation Into another
user's directory <with his permission).

Direct access with uniform conventions to any
information stored in the system.

Ab i1 i ty for two or more users to share a s i ngl e copy
of a program or data in core memory.

Ability to specify precisely to whom, and with what
access mode (e.g., read, write, and execute
permissions are separate and per-user) a piece of
data or the entire contents of a subdirectory are
avai lable.

Ability to revoke access at any time.

Ability, using the Muttics protection ring
structure, to force access to a data base to be only
via a program supplied by the data base owner. This
facility may be used to allow access to aggregate
information, such as averages or counts, or
specified data entries, without simultaneously
giving access to the entire file of raw data, which
may be confidential. There are a large number of

1-8 HIGHLIGHTS OF THE HULTICS SYSTEM

potential administrative appl ications of this
feature, and as far as is known, t'iultics is the only
general-purpose system which provides it.

3. The virtual memory approach.

In the opposite direction of the little user Is the person
with a difficult research problem requiring a very large
addressable memory. The Multlcs storage system, with the
aid of a high-performance paging system, provides this
facility in what is often called a virtual memory of an
extent limited only by the total of secondary storage
devices (drums, disks, etc.) attached to the system. An
interesting property of the Multlcs implementation is that a
procedure may be written to operate in a very large virtual
memory, but primary memory resources are used only for those
parts of the virtual memory actually touched by the program
on that execution, and disk and drum resources are used only
for those parts of the memory which actually contain data.
Another very useful property from a programmer's point of
view is that information stored in the storage system is
directly accessible to his program by a virtual memory
address. This property el iminates the need for explicitly
programmed overlays, chain links, or memory loads, and also
reduces the number of explicitly programmed input and output
operations. The Multics storage system takes on the
responsibility for safekeeping of all information placed
there by the user. It therefore automatically maintains
tape copies of all Information which has -remained in the
system for more than an hour. These ta~es can be used to
reload any user Information lost or damaged as a result of
hardware or software failures, and may also be used to
retrieve individual items damaged by a user's own blunder.

Each user has an administratively set quota of space which
limits the amount of storage he can use, although he may
purchase as large an amount of space as he would like.
Additional disk storage can be added to the system in large
quantities if necessary.

4. The OPtion of dynamic linking.

In constructing a program or system of programs, it Is
frequently convenient to begin testing certa1n features of
one program before having written another program which is
needed for some cases. Dynamic linking allows the execution
of the first program to begin, and a search for the second
program is undertaken only if and when it is actually
called by the first one. This feature also allows a user to
freely include in his program a conditional callout to a
large and sophisticated error diagnostic program, secure in
the knowledge that in all those executions of his program
which do not encounter the error, he will not pay the cost

OVERVIEW OF MULTICS CAPABILITIES 1-9

of locating, linking, and mapping into his virtual memory
the error diagnosis package. It also allows a user
borrowing a program to provide a substitute for any
subroutine called by that program when he uses it, since he
has control over where the system looks to find missing
subroutines. In those cases where subroutine A calls
subroutine B every time, there is, of course, no need to use
dynamic linking (and the implied library search), so
facilities are provided to bind A and B together prior to
execut ion.

5. Configuration flexibil ity.

An important aspect of the Multics design is that it is
actually difficult for a user to write a program which will
stop working correctly if the hardware configuration is
changed. In response to changing system-wide needs, the
amount of primary memory, the number of central processors,
the amount and nature of secondary storage (disks, drums,
etc.), and the type of Interactive typewriter terminals may
change with time over a range of 2 or 3 to 1, but users do
not normally need to change their programs to keep up with
the hardware. The system itself adapts to changes in the
number of processor or memory boxes dynamically, that is,
while users are logged in. t>1ost other configuration changes
(e.g., the addition of disk storage units) require that the
system be relnitial ized, an operation which takes a few
minutes.

6. The human interface.

Experience has proven that ease of use of a time-sharing
system is considerably more sensitive to human engineering
than is a batch processing system. The Multics comnand
language has been designed wJth this in mind. Features such
as universal use of a character set with both upper and
lower case letters in it, and allowing names of objects to
be 32 characters long, are examples of the little things
which allow the nonspeci~list to feel that he does not have
to discover a secret code in order to be an effective user
of the system. In a similar vein, a hierarchial storage
system provides a very useful organization and bookkeeping
aid, so that a user need keep immediately at hand only those
things he is working with at the moment. Such a facility is
of great assistance when attacking complicated or
intricately structured problems.

Langyages

l"iu 1 tics
FORTRAN IV.
supported by
input/output

provides two primary user languages: PL/I and
The FORT RA Nco mp i 1 e r i s fa i r 1 y s tan dar d . I tis

the usual library of math routines and formatted
facilities. Its primary use is for translation of

1-10 HIGHLIGHTS OF THE MULTICS SYSTEM

already written programs which have been imported from other
computer systems.

The Mul tics PL/I comprl e r I s qui te I nteras tt ng beca'use it
offers a very full selection of lart&uac~ 'ae:ll fties, over 300
helpful error diagnostics, and the abl'llt;y to let a"t e-he advanced
features of tltUl ties, all a,t rHsonab·le eost. FO'rthese reasons,
as well as the. a.vailabilftyof Pl/I' Oft' ot.her computer systems, It
f s the recomnended 1 anau_.e for s.ubsystem hnp-t-.menters and
general research users neeellna an •• Ilresstve l.anaua... If Is
wort.h notlna that the system itself Is wrlttenmostly fn the PL/I
lanlua,e.

Other 1 an~a-&es available on lriul ties are:

BASIC - A transla.tor and editor s.uhsystem for the BASIC
languace, developed at Oartmouth Co.lle.e. A
1 i mL ted: Mu 1 t I. ca· 5e:rY tee, is .. vaJ 1 abJ e wh I c h
re:stricts- tt. u.ser to. .has.t this. subsystem, If
destred. The BASt C. subsys.tem is also ava f'Tab1 e to
r."ular Mul tics users.

- A 11
has been
editing
ed i tors,

APl - A powerfu.l and popular interpretive 1anluage
develoPed by Kenne-ttl I.v.rson. The Mul tics
imp 1 emen-tatlon¥ery ;c·J ose ly hartate.a rve rson t s,
with the exception that an. effectively unlimited
workspace size is avai lable.

LISP - Both an interpreter and a campi,}er are available
for this list processing ranau •• e often used In
art if i ci al i,ntell ieane:. a,pp,ll4:iltl.OI'$- The Mul tics
implamen.tation of the l4ACL~SPdlalect of LISP
contains useful and' soPfifstttated fe-atur'es not
available in most othar d:t.l~t$ of LI SP. Amona
these are debuaa.tn& tools and the ability to
modi fv or proaraatt parts. of tne interpreter. The
I a tter makes rt an eas.t ty eX, tens tble lan&uage.
Another Interest tn, feature 0' the Multics
implementation Is the very tarse structure space
provided by the ylrtual memory.

ALM - A machine lan&Ua&e assembler for the Honeywell
6180 computer. (It is not .te<:ommet'lded for ,eneral
use; it is slow and the machine lan&uaae Is very
difficult.)

QEDX - A prolrammable editor which Qualifies as a minor
Interpretive language.

of the above languages translate a source program which
previously placed in the storage system. Input and
of source text is done with one of the available text
edm or qedx. Although interactive, lfne"'by-llne syntax

A MULTICS BIBLIOGRAPHY 1-11

checking languages are easily implemented in the Multics
environment, none are currently available.

A source language debugging system, named debug, provides
the ability to inspect variables and set break points In terms of
the PL/I or FORTRAN program being debugged. It also has a
variety of features to allow inspection of all aspects of the
t4ultics execution environment.

A Multics Bibliography

A. t·ianuals which are available through Honeywell.

1. Multics programmers' Manyal (Order Numbers AG90, AG91,
AG92, AG93 and AK92). An updateatile reference manual In
five volumes. Volume I Is an i'ntroducflon to the
Multics programming environment and includes sample
terminal sessions and annotated Multics programs.
Volume II cont.ains reference materIal on the overall
mechanics, conventions and usage of the system.
Volumes III and IV are alphabetically organized lists
of standard Multlcs comnands and subroutines,
respectively, giving details of the calling sequence
and usage of each. Volume V provides reference
material and descriptions of comnands and subroutines
which are of interest primarily to compiler writers and
subsystem writers.

2. ~ t,lultics ~ Language (Order Number AG94). A
reference manual which specIfies precisely the PL/I
language used on Multics.

3. ~ 14ultics Virtyal Memory (Order Number AG9S). A
collection of three technical papers on the hard\'Jare
and software used to implement the virtual memory and
program protection features of Multics.

4. Multics Proiect Administrators' ManuaJ, preliminary
edition (Order Number AK511. A reference manual for
project administators describing cOrTlTlands and
subroutines which may be used to specify certain
features of Multics to the members of a project.

5. Multics System AdministrQtors' Manual (Order Number
AK50). A reference manual for system administrators of
a Mul tics installation describing commands and
subroutines ~hich may be used to control various system
pa rameters.

6. ~ AfL User's Guide (Order Number AK9S). A manual for
beginning and advanced APL users describing the use of
Multics APL.

1-12 H J GHLI GHTS OF THE HUL T J CS SYSTEM

B. tvianuals which may be examined in the t1.I.T. Project t-1AC or
Information Processing Center Document Rooms. These manuals
are DQ1 otherwise available.

1.

2.

3.

4.

5.

6.

t-1ul t Ihs :iystew PrograUJDers I ~anyal. In pr Inc Iple, a
complete reference manual descrfbin& how the system
works inside. In fact, this document contains many
sections which are inconsIstent, Inaceurate, or
obsolete; it is In need of much upgrading. However,
its overview sections are generally accurate and
valuable if insight Into the internal organIzation is
desired.

$ystem Fr:QICIDJJllri' SIJQQ)CIDIDt J'.2 ..tlut Multlcs
prO&CIWWC(S' HiOYI). ThIs ... "dateable re'erenee manual,
in the same format as the Multics Pro&ranmers' Manual,
provides call In, sequences of every system module.

Graphi~ Uilri' ~IJQQlIWlQt ~ lh& Myltl'i Programmers'
MIOlJa 1. I n the same formet 85 the MuT tics Prog ranmers '
Manual, this supple~nt gathers In one place
descriptions of the Multlcs GraphIcs System, and the
commands and subroutines needed to use It.

A USer'i Glallde 1Q Myltici fQftlttf. A document which
provides the prospectiveu~cs FORTRAN user with
sufficient information to enable him to create and
execute FORTRAN programs on Multlcs. It contains a
complete definition of the Multics FORTRAN language as
well as a description of the FORTRAN COl'l1ll1and and error
messages. It also describes how to communicate with
non-FORTRAN programs, and discusses some of the
fundamental characteristics of Multlcs which affect the
FORTRAN use r.

EPLBSA Progcammer'i Befer,n" HlndbQok, by
D. J. Riesenberg. A manual describing the assembly
(machine> language for the Honeywell 645 computer. The
language has been renamed AlM since the publIcation of
this manual. (Needed only by programmers with some
special reason to use 645 machine language.)

HQneywel1 ~ prQ,essor ~mnY,l. A hardware description
including opcodes, address ng modifiers, etc. Of
interest only to dedicated machine language
programmers.

c. B?oks about Multics.

1. Ih.c. t4ul tics System: An ExamiPlt iQD 2i. .i..U. Structure, by
E. I. Organick. A hard cover book descrIbing in some
detail how f·iultics works. The description Is from the
point of view of a programmer developing a large

A MULTICS BIBLIOGRAPHY 1-13

program or subsystem, who wishes to gain the extra
insight to help him intell igently choose among
available alternatives of his implementation. M.!.T.
Press, Cambridge, Mass., 1972. 392 pages.

2. ~-Sharing System Con.egts, by R. Watson. A book
comparing many aspects of the planned implementation of
Multics (as originally described in the Multics System
Programmers' Manual) with the SOS-940 time-sharing
system developed at the University of California at
Berkeley. Although the actually Implemented Multics
differs grea t 1 y f rom the one descr I bed in th is book,
much can be learned from it about the problems of
large-scale system organization. McGraw Hill, New
York, 1970. 270 pages.

D. Technical Papers About Multics.

1. Corbat6, F. J., and Vyssotsky, V. A., "Introduction and
Overview of the t>-iultics System", AFIPS .k2n£ • .fL.2k. 1.1..
(1985 FJCC), pp. 185-196.

2. Glaser, E. L., et al., "System Design of a Computer for
Time-Sharing Application", AFIPS.c.smf..~. II (1965
FJCC), pp. 197-202.

3. Vyssotsky, V. A., et al.,
Supervisor", AFIPS .kQnf..
203-212.

lIStructure
~. 1.1..

of the "'1ul tics
0965 FJCC), pp.

4. Daley, R. C., and Neumann, P. G., "A General-Purpose
File System for Secondary Storage", AFIPS ,C,Qn£. ~.
lL (1965 FJCC), pp. 213-229.

5. Ossanna, J. F., et a1., I1Communication and Input/Output
Switching in a Multiplex Computing System", AFIPS ~.
~. 1.1.. (1965 FJCC), pp. 231-241.

6. David, E. E., Jr., and Fano, R. M., "Some Thoughts
About the Social Impl ications of Accessible Computing",
AFIPS ~.~. 1I (1965 FJCC), Pp. 243-247.

7. Glaser, E.L., "A Brief Description of the Privacy
'·;easures in the fvlultics Operating System", AFIPS Conf.
~. 11 (1967 FJCC), pp. 303-304.

8. Bensoussan, A., Clingen, C.T., and Daley, R.C., "The
r'·1ultlcs Virtual Memory: Concepts and Design", Comm.
~ il, 5 (May, 1972), pp. 308-318.

9. Cl ingen, C. T., "Program Naming Problems in a Shared
Tree-Structured i-lierarchy", .!:!AIQ Science Committee
Conference Qfi Techniques l.o. Soft\'Iare Engineering, 1
(October 27-31, 1969), Rome, Italy.

1-14

10.

11.

12.

13.

14.

15.

16.

HIGHLIGHTS OF THE MULTICS SYSTEM

Graham, R.h., "Protection in an Information Processing
Util ity", ~. AkI:i ll, 5 (May, 1968), pp. 365-369.

Daley, R. L., and Dennis, J. B., "Virtual t-1emory,
Processes, and Sharing fn t'lultics",~. AkM li, 5
(May, 1968), pp. 3Q6-312.

Corbat6, F. J., and Saltzer, J. H., "Some
Considerations of Supervisor Program Design for
t·'iultiplexed Computer Systems",~. l..E.1.e .k.Q.o.f.. llll
lovjtcd Papcts, PP. 66-72.

Corbat6, F. J., "Pl/t as a Tool for System
Programming", D§tamatloD U, 6 (May, 1969), pp. 68-76.

Corbat6, F. J., itA Pag in4 Expe rlment with the Mul tics
System", lJl HODor 2.t L 1!... Mo[se, M. I • T. Press,
Cambridge, r,lassachusetts, 1969, Pp. 217-228.

Saltzer, J.rl., and Gintell, J.W., "The Instrl,Jmentation
of '.Jultics", .kQmm. Ak.M il, 8 (August, 1970), pp.
495-600.

Spier, M. J.,
Inter-Process
Symposium g,n
20-22, 1969),

and Organ t ck, E. I., liThe t-;ul tics
COl11l1unlcatlon Facility", ~ Second

Qp,ratlng SYitem Principle$ (October
Princeton University, pp. 83~91.

17. Fretburghouse, R. A., "The Multics Pl/l Compiler",
AFIPS ~. ~. 11 (1969), AFIPS ~ress, 1969, pp.
187-199.

18. Grochow, J. M., "Real-Time GraphIc Display of
Time-Sharing System Operating Characteristics", AFIPS
~. ~. li (1969 FJCC), AFIPS Press, 1969, pp.
379-385.

19. Saltzer, J. h., and Ossanna J. F., "Remote Terminal
Character Stream Processing in tvlultlcs", AfIPS.t.2oi.
~. 11 (1970 SJCC), AF'PS Press, 1970, pp. 621-627.

20. Ossanna, J. F., and Saltzer, J. H., ·~echnlcal and
Human Engineering Problems In Connecting Terminals to a
T ime-Shar i ng Sys tern", AFJ PS ksult.. ~. 11 (1970 FJCC),
AFIPS Press, 1970, pp. 355-362.

21. Clark, D. D., Graham, R. t>i., Saltzer, J. H., and
Schroeder, ',I. 0., "Classroom Information and Computing
Service", M.I.T. Project t·1AC Technical Report TR-SO,
(January 11, 1971).

E.

22.

23.

24.

25.

26.

27.

A t"UL TICS B I BL I OGRAPHY

Schroeder, toil. D., "Performance
Assoc i at i ve ~1emory \'Jh i Ie t-'ul tics
~Jorkshop QJ1 System performance
1971), pp. 227-245.

1-15

of the GE-645
is in Operation", AC~1
Evaluation (April,

Schroeder, N.D., and Saltzer, J.H., "A .Hardware
Architecture for Implementing Protection Rings", Comma
A&M 12, 3 (March, 1972), pp. 157-170.

Feiertag, R. J., and Organick, E. I., '~he Multics
Input/Output System", A&.M Tb;i rd SYJDPgsiwn QJl Operating
SYstems principles (October 18-20, 1971), Palo Alto,
California.

Sekino, A., "Response Time Distribution of
t/iu1 tiprogrammed Time-Shared Computer Systems", Sixth
Annual Princeton Conference on Information Sciences and
Systems, March 23-24, 1972, Princeton, N.J.

~ Corbato, F. J., Saltzer, J. H., and Cllngen, C. T.,
"Multics--The First Seven Years", AEIPS .k2nf.. Proc • .!lQ.
(1972 SJCC) AFIPS Press, 1972. pp. S71-5~3.

Wolman, B.L., "Debugging Pl/' Programs in the
Env i rooment," AF I PS .tJ;mf. ~. il, .fAr.t.
FJCC), AFIPS Press, 1972, PP. 507-514.

Multics
1., (1972

28. Saltzer, J.H., "Protection and Control of Information
Sharing in t.lultics", .AktL Foyrth Symposium 2!l. Operating
System PrjncipJej (October, 197JJ, Yorktown Heights,
New York.

29. Scheffler, l., "Optimal Folding of a Paging Drum in a
Three-l evel t4emory", . AkM foyrth Sxmpos iym .QD. Ope rat i ng
System principles (October, 1973), Yorktown Heights,
New York.

M.I. T. Theses Re1ated to I<ul tics. Those followed
numbers are also printed as "hl.T. Project tv'tAC
reports, and are available from the National
Information Service in Springfield, Virginia.

by MAC-TR
technical
Technical

1.

2.

Saltzer, J. Ii., "Traffic Control in a Multiplexed
Computer System", Sc.D., 1966. (MAC-TR-30)

Rappaport, R., "Implementing fvlulti-Process Primitives
in a f'ilultiplexed Computer System", S.M., 1968.
(MAC-TR-55)

3. De i te 1, H., "Absentee Computat ions ina Nul tip 1 e-Access
Computer System", S.t·'!., 1968. o.1AC-TR-52)

1-16 HIGHLIGHTS OF THE.MULTICS SYSTEM

4. Greenbaum, J., "A Simulator of Multiple Interactive
Users to Drive a Time-Shared Computer Systemlf

, S.M.,
1968. (MAC-TR-S8)

5. Grochow, J. Ivi., nThe Graphic Display as an Aid in ttl-e
J'ionitorina of a Time--Shared Computer Systemtl

, S.M.,
1968. (MAC-TR-5')

(}. Schroeder, '.1. D., "Classroom Model of an Information
and Computina Service", 5.t-1., IYI.

7. Frankston, R., ttA limited Service System on Multtcs",
S.8., June, 1910.

8. Schell, R. R., nOv-osmic Reconf •• uratlon in a Modular
Computer System", Ph. 0., June, 1971. (MAC-TR-'6)

9. Sekino, A., "Performance Evaluation of Multfprograrmted
Time-Shared Computer Systems", Ph.D.,. Au.ust, 1972.
(MAC-lR-IQ3)

10. Schroeder, f;i. D., "Cooperat i on of Mutua 11 y Susp i c lous
Subsystems in a Computer Utility", Ph.D., SePtember,
1972. (MAC-TR-10_>

11. Reed, C., "Estimation of Primary Memory Requirements of
. Processes on Multrcs", 5.8., June, 1973.

12. Stern, J., ltAutomatic: File Backup In a Computer
Util ltyn, S.M., September, 1973. (MAC-lR-1IS)

13. Rotenber., L., "Making Computers Keep Secrets lt
, PH.D.,

September, 1973. (MAC-1R-llS)

14. Clark, D., "Input/Output in a Virtual t-1emory Computer
System", Ph.D., September, 1973. (MAC"'TR-117)

15. Gumpertz, R., "The Design and Fabrtcation of an ARPA
Network .nterfaceu , S.B., September, 1973.

C HAP T E R 2

INTRODUCTION TO THE CONCEPTS OF MUlTICS

September 20, 1973

The following pages contain reprints of eight technical
papers about Multfcs. Although these papers were written
IndIviduallY for conferences and technical journals, as a group
they provide an in-depth Introductlon to ,'most of the major
concepts of the Multics system. The reader should be warned that
the earliest of these papers was written six years before the
latest. As a result, he will notice minor differences in
terminology and emphasis, reflecting the gradually increasing
experience both In using and explaining Ideas which were fl"rst
introduced by Multics. In addition, these papers should be taken
as background explanations of why Multics Is destgned the way it
is, rather than as a reference to the way I~ currently works.
Some ideas suggested In these papers have not yet been
Implemented in the actual system, or having been implemented and
found wanting, have been discarded. Parts II and III of' the
Multics Programmers' Manual provide current descriptions of the
user interfaces which are actually Implemented in Multlcs, and
should be used as reference for all programming. On the other
hand, much of that reference guide merely tells how, without
explaining why, which is the purpose of this chapter.

The reader who is interested in a greater depth of detail
about Multics may wish to consult the book ~ Myltjcs System:
An Examination gf ~ Stryctyre, by Elliott I. Organlck (MIT
Press, 1972). That book provides a deep and authoritative look
at the implementation of many of the parts of the Multlcs system.
In addition, the bibliography at the end of MPM Introduction
Chapter One provides a list of other specialized technical papers
and academic theses related to Multics.

Finally, the reader who wishes only to use the Multics
system will probably want to only skim this chapter to see what
kinds of ideas are discussed here. It is ~ necessary to
comprehend Chapter Two in order to begin using Multics. The
concepts provided here are background in nature, and are probably
most useful to a reader contemplating an unusual application of
the system. For an introduction on how to use and program for
Multics, one should move on to Chapters Three and Four of the
manua 1 •

'. ~

- ::;:~. '-

~-­',r- ..

." .,f. '.1 ~1 E,?'"! :~,,': t~ ;&{j{;. ~ q

-,: -.f~)

~2u~eib 91& ~S~~·
R QWT ",q6~J

\ 1>"'

INTRODUCTION TO THE CONCEPTS OF MULTICS

~ Multics Virtual Memory: Concepts AnQ Design

by A. Bensoussan, C.T. Cllngen, and R.C. Daley.
Reprinted from Communications At ~ AkM 12, 5,
May, 1972, pp. 308-318, with permi$sion. Copyright
1972 by the Association for Computi'ng Machinery.

2-17

After four sections of relatively elementary Introduction,
this paper delves deeply into the mechanisms required to support
a virtual memory system in which all on-line storage is addressed
directly by the processor. This virtual memory system is
probably the most important conceptual departure Introduced by
Multics. It is of special Interest to .wrtters of complex
application subsystems which manipulate d~ta bases shared by
several users. The power of the Multics vi,rtual memory as a tool
to reduce programming effort is Illustrated 'in MPM Introduction
Chapter Four.

Since this paper is a recent one, the terminology is quite
up-to-date, although the description ,Iven here is abstracted
somewhat from the actual implementation to avoid cluttering
details. Large copies of figures four and five, which did not
repr.odu.ce well in the original publication, wf1 I be found after
the las~ page of the paper.

-----1-

INTRODUCTION TO THE CONCEPTS OF MULTICS

Virtual MemorY, Processes, ~ Sharing In Multics

by R.C. Daley and J.B. Dennts. Reprinted from
Communications 2f ~ AkH ~ 5, May, 1968, pp.
306-312, with permission. Copyright 1968 by the
Association for Computing Machinery.

2-31

This early paper Introduced the concept of a virtual memory
which contains all on-line storage, and explains the hardware
addressing structure which Is used to support it. The remainder
of the paper then explores the properties and mechanisms
necessary to permit dynamic linking of procedures and data. The
paper does not emphasize the value to the user of this feature.
Briefly, dynamic linking eliminates the need to collect together
all the parts of a program before execution; it is especIally
helpful during debugging of a new program. A more extensive
dl scuss I on of the usefu 1 ness of ·th is feature I s found In MPM
Introduction Chapter Four.

It may help, when reading the discussion of dynamic;, linking,
to realize that stored as part of every pure procedure is a
prototype linkage section for that procedure. When the procedure
Is first 1ln""ed to, the dYnamf-c;.ftnker c:;ep'l.esthfs ptGtotvpe
linkage section into the linkage area for the ~roces~, and this
copy Is the linkage section ref.rred to In the paper. Note that
the word 111 inking" Is a local piece at.,. ;'ar~, which has a
meaning approximately the same as "binding' In most recent
literature on languages and linguistics.

The call-save-return mechanism described in the paper was
the first one used In Multics, andi$ qulte different from the
one implemented with special h~rdware"iR; the current Honeywell
6180 system. However, the mectwmism des.c:rJ,Md. is functionallY
equivalent to the current one, and it. J,$- q.uJte .instructive to
compare the description here with tha.t provl4ed In the Subsystem
Writers' Guide, to gain Ins'ght into the Intrlnsic operations
befng performed. Probably the most important difference between
the two mechanisms is that the old~r one desertbt!d in this paper
required that the linkage section con;a'" Instructions ~o.be
executed as part of the subroutine entry sequence. In the· hewer
technique the linkage section conta' s only indirect addresses.
As a result, the segment contaTning the ltnkage section no longer
requires "execute" permission, and wild transfers to that segment
are thus trapped Immediately as errors •

. ----,----------- ---------------------~--------------

Protection ~ ~ Control Qf InformatIon Sharing In Multics

by J.H. Saltzer. Reprinted from ~ Fourth
Symposiym ~ Operating System Principles, Yorktown
HeIghts, New York, October, 1973, wIth permissIon.

2-39

ThIs paper provides a survey of all the different
techniques, mechanisms, and design principles that underlie the
control of access to information in Multics. Since it describes
an area that is a subject of continuing research at M.I.T., its
details (especially Its list of weaknesses) ara going out of date
quite rapidly. Nevertheless, the general concern of the Multics
design that It support the need for prIvacy of IndIvIduals and
organIzations is best exhibited by a comprehensive snapshot of
the mechanIsms used.

2-56 INTRODUCTION TO THE CONCEPTS OF MULTICS

A Hardware Architecture for Implementing Protection Rings

by M.D. Schroeder and J.H. Saltzer. Reprinted from
Cogpunlcatlons gf .tbA AkH., .u., 3, March, 1972, pP.
151-170, with permission. Copyright 1972 by the
Association for Computing Machinery.

The casual reader may wish to explore only the first half
dozen pages ofth I s paper, which descr 'bes in full deta it the
rather unusual hardware protection mechanism In use in the
current Multlcs system. As far as Is known, MuJtlcs and the CAL
operating system (developed at the Untyer~tty of California at
(Jerkeley) are the only two systems thus. far developed which
permit construction of general, user-constructed, protected
subsystems. This paper describes the mechanisms which make this
feature posslble In Multlcs. Since the paper Is recent, the
term' no logy and desert pt Ion a re genera 11 y up-to-date. The
mechanisms described here are exactly the ones Implemented on the
Honeywell 6180 computer system.

INTRODUCTION TO THE CONCEPTS OF MULTICS 2-71

lli. Mu) tics .eJ.L1. Como i I er

by R.A. Freiburghouse. Reprinted from AFIPS Conference
proceedings li, AFIPS Press, 1969, pp. 187-199, with
permission. Copyright 1969 by AFIPS Pr~ss.

This paper describes the second Pl/I compiler successfully
constructed for Multics, and used for the compilation of the
operating system itself. Although today a third and better Pl/I
compiler is now in use, the basic organization of the second
compiler was preserved. Probably the most significant
observation about these two compilers is that even though they
implement the full· language, they generate object code of high
enough quality (often better than an average machine language
programmer) to be used in the operating system itself. Since the
concept of writing the system in Pl/I, to make its description
smaller, more maintainable, and easier to learn, was considered
pivotal in the goals of Multics, this paper is especially
significant.

2-86 INTRODUCTION TO THE CONCEPTS OF MULTICS

Remote Terminal Character Stream Processing in Multlcs

by J.H. Saltzer and J.F. Ossanna. Reprinted from
AFIPS coofareo'! pro,@edings ii, AFIPS Press,
1970, pp. 621-6 7, with permission. Copyright 1970
by AFIPS Press.

This paper describes one of the numerous areas of an
operating system which must be carefully thought out to provide a
uniform, well-enalneered human interface. The topic Is the
processing of terminal Input and output so that programs see a

. standard ImplementatIon-Independent termfnal, whIle typists see a
simple, easy-to-learn method of communicating with the system, no
matter which terminal device they happen to be faced with. Since
the system has been used with perhaps 25 different kinds of
terminal equipment the considerations described here cannot be
Ignored. (Note, however, that we are here dealing with a set of
concepts which are a notch below the Importance of, say, the
Multlcs virtual memory strategy.), The paper Is generally
up-to-date in termlnoloay, but for exact details of the typlna
conventions one should refer to section 1 of the Reference Guide.

2-94 INTRODUCTION TO THE CONCEPTS OF MULTICS

~ Multics Input/OutPut System

by R.J. Feiertag and E.I. Organick. Reprinted from
AkM Third Symposiym gn Operating $ystem principles,
Palo Alto, California, October, 1971, pp. 35-41,

. with permission.

This generally up-to-date paper describes the
device-independent I/O interface of the Multics system. Its
significance lies mainly In the wide range of problems which can
be easily solved using a simple elegantly designed mechanism.

By reading between the lines, one may also deduce that in
Multics, the function of the I/O system is drastically different
from that in most operating systems. Interrupt handltng,
scheduling, and file formatting do not appear bere, since they
are considered to be general responsibilities require4 apart from
I/O operations. The I/O system is thus left with only the
problem of buffer management and device strategy, In a general
framework which encourages device independence.

As an example of the flexibility of the Multlcs I/O system,
since this paper was written the M.I.T. Multlcs site has been
attached to the ARPA cOIQPuternetwork,wlth the relatIvely minor
addition of a special network demultiplexln, module at the base
of the I/O sys tem. .

•

C HAP T E R 3

BEGINNER'S GUIDE TO THE USE OF MULTICS

September 20, 1973

There are a large number of ways to use M~ltlcs. You may,
at different times, fInd that you are usln& a program preparation
facll I ty, or a program debugllng'acfl tty, Dr a MmoTandum typing
facility, or a management Information facl'llty.' One of the
Interest'lng properties of Multlc$ • Is the' ablTlty for a
knowledgeable programmer to construct a slnlle program whlch
makes use of several of these facilities at Once. For the
bea1nner, however, the problem Is slmptyto 'fl,ure. o,ut which one
of several ways of doing somethlna Is, a'pp'roprlate for hIs
project. In this chapter wll1 be found a &ulde to typical ways
of using Multlcs and Its most cOl1lROnly used facl1ttles, and a
number of examples of sessions at the terminal, to give a feel
for the way one fits things together to ach1eve useful results.
We must begin by explortn, a number of Issut!s having to do with
the simple mechanics of using the system.

Ih& Mechanics gf Terminal Usage

Al'though there are several different varieties of typewriter
or graphIc termlna1s which can be used with Murtlcs, they all are
used In similar ways; the way 1n which "ultlcs "norma11y expects
these terminals to be used Is our subject here. Note that
Mult I cs perml ts a subsystem des laner flexlbllJ ty to change
conventions whIch are not exac:~ly, sult.~ to .hls needs.
Therefore, we will describe here the standard ~onventtons which
apply to ordinary use of Multics, and which are .1so used by most
programs. Indeed, an important property of MtJtfles Is the extent
to which the mechanics described here atettnr~rsalry used by so
many different parts of the system.

Most computer terminals are designed with flexibility to
allow use with different kinds of systems. This flexibIlity Is
expressed In the form of switches whose setting mU$t be correct
if proper operation Is expected. For examp1e, the IBM model 2741
terminal may have one or two switch, •• on the left side, one
labeled "com-leI" (which must be set to "*), and the. other
labeled "Inhibit auto-eot" (which, If there, should be set to
.QIl). For switch settings on other t.-rmJnal tYP.es, see the MPM
Reference GuIde section, Protocol for Lo.gln&1n.

.- -, --------

3-2 BEGINNER'S GUIDE TO THE USE OF MUlTICS

The connection of the terminal to the computer is
accomplished by ordinary telephone lines, and by dialing the
telephone number of the computer. This number is usually
equipped to automatically connect you to the first free line into
the computer system. Multics Is designed to inform potential
users that it is fully loaded by printlng a message on the
terminal rather than by refusing to answer the telephone or
returning a telephone busy signal. Either of these latter two
responses to dialing Multlcs is a symptom of trouble and should
be reported.

Communication of keyboard characters with the computer is
accomplished by conversion of these char~cters Into sequences of

. tones which can be sent over the telephone line. The piece of
hardware which does this conversion is ca.lled a datuet or QlI¥iem
(for mdulator-skuaodulator); there mu.s.t.be: one ' .. modem at the
terminal and ano.ther at the computer. Two types of mo.dems are
f requant 1 y found assoc.1 a ted w J tb computer terml na Is: those
d I rec t 1 y attached to the telephone 1 ine, and those wh J ch are,
acousticallY coup.led by inserting the telephone h~set(
phys I ca 11 y I nto the mo4em. The dl rect ly a,ttacbed dev I cas
normal1 y come wi th a specJa 1 telephone set wh I ch has a row of .
buttons; one of thasa buttons must b.e.depres..sed in order to get a
dla.) tone to start the call. In c.ontrast, the acoustic coupler
is designed to work wIth any ordinary telephone anywhere. .

After dialing the Multics telephone number, you should hear
one or two rlnp, and then the compu.ter wll J answer. The nut
step is to complete an electronic handshake seq.uence, first
between your modem and the one at the computer, and then between
your computer terminal and the Nul tics term1nal ctmtroller. The
computer starts the sequence Immediately after It answers by
placing a tone which you can hear o.n the teJephoae lln.e. You
should then p.ress the .d&.t& button on the medem, If the modem is
di reetly attached, or--eTSe fns.ert the t_l'-008. ~a.nds.et into the
acoustic coupler. The h,andshake sequence s~ld then proceed to
completion all by itself, with a charac.terlstlc pattern of cl leks
and gurgles that you will soon learn to recOgnize as nor'ma·l
operation, ending with a printed messa .. from the computer.

There are several possible ways In which the handshake
sequence rna.y fa 11 • Before g I v In& up, che(:k th.e follow t ng 11 st of
possibilities:

1. Are you sure the computer answered and provided the Initial
tone? If not, check to see If Multics Is in operation.

2. Is the terminal pluued In and Is Its power switch gn?

3. Is the cable connecting the terminal to the modem properly
in place?

4. Is the modem plugged In? (If It Is an acoustic coupler, It
may have to be turned gn also.)

THE MECHANICS OF TERMINAL USAGE 3-3

5. Are all the switches on the terminal and modem In correct
position?

6. Did you dial. the correct telephone number? Generally there
are different numbers for different terminal types and
speeds. Check your telephone number list.

7. Has the terminal in question ever
before? If not, possibly it
required for use with Multics.

been used
Is missing

wi th
some

Multics
feature

8. Has this telephone line ever been used with this acoustic
coupler before? Possibly the line is too noisy or weak for
the brand of coupler used, or maybe there is too much
amplification in the telephone line and one of the modems is
being overloaded.

9. Try hanging up and dialing again once or twice. With the
array of equipment between you and the computer, flukes are
common.

If all of these checks fail to turn up anything, it is time to
turn to expert help.

Assuming that the handshake was successful, it was completed
with the printing of some message from the computer, e.g.,
nMultics version 15.11". You are now in communication with the
computer, and anything you type on the keyboard will be both
printed and heard by the computer. Whenever Multics or any
program prints anything to you, the keyboard will be temporarily
locked, thus preventing you from typing anything. At all other
times, the keyboard Is unlocked, and you are free to type.

Generally, you will type messages with the intent that they
be read and understood by some program; you should always keep in
mind just exactly which program will be interpreting each message
you type.* To start with, the system has arranged that your
input lines will be directed to a login program which will insist
that you type information properly identifying yourself. The
login program will, at one point, exercise a special feature of
your terminal by disconnecting your keyboard from your printer,
so that you may type a password without producing a printed copy.
Clf your terminal doesn't have this feature, the login program

* It is important to realize that you are allowed to type even
If some previously initiated operation has not finished yet and
technically the system or subsystem is not ready for another
typed line from you. If you can anticipate your next input
lines, you may type them at any time; they will be stacked up
and used, in order, to satisfy future requests for input from
you. This feature permits you to work ahead of the computer, and
overlap your thinking and typing with waits for response from It.

-------~---- --~-

3-4 BEGINNER'S GUIDE TO THE USE OF MULTICS

will Instead print some random letters on the paper in the place
you are to type your password.) When the login program fs
satisfied that it knows your Identity, It will start a program
known as the llstlnlr which Is usually used to supervise your
entire tennlnal session. The listener Interprets lines that you
type as names of programs yOu wish to run. Whenever the listener
Is listening for Input, the terminal Is said to be at command
leye]. The programs which you ask the listener to call are known
as commands. Command level Is an Important reference point, and
we will use this tenn frequently. Several of these Ideas may
come into better focus In the example terminal sessions which
appear later fn this chapter.

It Is common, as well as human, to make typing mistakes, so
two correction conventions are nonmally In operation at all
times. One of th~ allows you to erase, so to speak, and then
retype small typlnl mistakes, and the other allows you to simply
discard more extensive typlnl disasters. The erase convention
uses the number sign CI) character. Whenever yOu realize that
you have typed a character In error, type as the next character
after It the number sign. When the line Is read, it will be
scanned for number slans; If one Is found, it, and the character
before It will be discarded; the resulting line Is then assumed
to be the line you Intended to type. Two consecutive number
signs will erase the two Immediately preceding characters, and so
on. Note that you do not correct errors by backIng up and
overtyplng, as In some systems. If you do backspace and
overtype, the system wIll presume that you want that particular
combination of overstruck characters to be In your Input line.
In this connection, note that the system Is more concerned with
the appearance of the final printed lIne on your terminal than It
Is with the order you typed thin,s In. Thus, 'for example, the
order In which you produce overstruck characters Is unimportant,
and extra up and down case shifts are Ignored.

If you notice a serious error farther back In the line you
are typing, you could correct It by typing enough number signs to
erase everythlna back to and Including the error, and then
retyping every thine that was erased, this time correctly.
However, It may be simpler to just type. a JU.ll character (the
commercial at slln, @). When this character Is encountered In an
Input line, It, and all of the lfne to the left of It are
discarded. The corrected line Is then retyped directly to the
right of the kill character. Several examples of the use of
erase and kill characters appear In the annotated terminal
scripts later In this chapter.

Unless one Is using a special program which has arranged
things differently, the unit of communication with the computer
for the typist Is the completed Jlne, ending with the function
key which returns the carriage to a new line. Thus, typing "new
line" Is the signal that the typist Is satisfied with the line as
It stands; the line Is scanned for erase and kill characters,
and then passed along to satisfy the next request for Input.

A MUlTICS TERMINAL SESSION 3-5

Some terminals do not have all of the 96 different
characters which can be typed in to Multics programs. For
example, the IBM 2741 terminal does not have square brackets.
There is a set of conventions which allows one to type something
else which means the same thing. All of these conventions use
one special character as an escape character to indicate that the
next character is to be interpreted differently than usual. On
a 2741, the escape character is the cent sign (¢). If one types
a cent sign followed by a "less than" sign, these two characters
together will be taken to mean a left square bracket. A complete
set of escape conventions which apply to your terminal may be
found in the MPM Reference Guide section, Typing Conventions.

Finally, two emergency measures should be mentioned. Every
terminal has somewhere on it a special button which is always
pressable, even if something is being printed and the rest of
the keyboard is locked. This button is called the ~ button,
and, when pressed, will cause the system to stop whatever program
was running and return to command level. In this way, even if
you have started a runaway or incorrect program, you may always
keep positive control of the situation. Note that when the quit
button is used, the work in progress, while halted, will not
necessarily be saved if you begin doing something else.
Generally, unless you take special measures, you will find that
pressing the quit button discards all work which was done since
the previous time you were at command level.

The second emergency measure is the terminal disconnect. If
you should happen to turn off the terminal power, or hang up the
telephone while logged in, the system will first perform the
equivalent of a quit, then it will automatically perform a logout
command. Of course, it can not print the usual logout message on
your disconnected terminal. In general, you need not worry about
disrupting the system by such an abrupt disconnection, but your
own work may be lost back to the last time you were at command
1 eve 1.

A Multlcs Terminal Session

Having accumulated some familiarity with the basic mechanics
of using Multics, the easiest way to proceed to familiarity with
the system itself is to look over the shoulder of an experienced
but cooperative user, and pester him with questions about what
seems to be happening. The closest alternative we can achieve
here is to walk through some sample terminal sessions, explaining
in some detail the various pieces of an emerging picture. To
start with, we will consider one of the simplest possible
sessions, in which a user logs in to the system, checks on the
latest news and notices, uses the system as a desk calculator to
balance his checkbook, and then logs out. Later examples will
illustrate typing and editing information and use of the Multics
storage system. To begin with, however, the simple terminal
session illustrated in Figure 3-1 will allow us to decouple from
those considerations the purely mechanical issues underlying all

----- - ---------

3-6

1
2
3
4
5*
6
7*
8
9
10
11
12
13*
14
15
16
17
18
19
20
21
22
23
24
25
26(*)
27
28
29
30
31
32
33
34*
35
36*
37*
38*
39*
40*
41*
42*
43

'" 45·
46
47
48*
49
50
51
52
53
54

BEGINNER'S GUIDE TO THE USE OF MUlTICS

,
Multlcs 15.8; MIT, Cambridge Mass.
load - 55.0 out of 60.0 units; Users - 58
login Williams
Password:

Williams Apollo logged In: 09/29/10 2139.4 edt Tue
last 101ln 9/28/70 1633."2 edt from terminal "209"
New or updated help segments: pI/I_status, tty_bug, news
r 2139 3.914 12.070 231

help nes'ws
(10 lines follow)
09/29/70
The following changes were made in the on-ltne system today:
1) The editor command, edm, was replaced with a new version

which eliminates a bug encountered when Input lines
overflow Its Input buffer.

2) A new command named ehanae_default_wdlr (abbreviated cdwd)
was Installed. This command changes the user's default
working directory for the duration of the current
process or until the command Is Issued again.

(end)

more help? yes
(68 lines follow)
Following Is a summary of all system changes made gil to 9/28:
9/28 Replaced Pl/l compiler, remoyfnl varying string bug.
9/26 Added 12 million words of disk stora
QUIT
r 2142 1.667 4.160 110

decam
Go
-0
+14791
+38525
-2741
-3482
-49168
p
-2675

q
r 2148 .515 4.040 135

logout

Williams Apollo logged out 9/29/70 2149.1 edt Tue
CPU usage 5 sec
han,up

Figure 3-1: A Sample Terminal Session.

A MULTICS TERMINAL SESSION 3-7

use of the system. In each of our examples, we will take
replicas of actual terminal sessions, and add line numbers down
the left side so that we may refer to them. We have placed an
asterisk (*) beside those lines typed by the user; the remaining
11 nes are those pr i nted by whatever program he Is COrmlun I cat i ng
with. The session start.s at an IBH 2741 s:erminal, inmediately
following the dial ing of the Mt.Iltics telephone number.

The login sequence, all by itself, rals.es a fairly large
collection of issues. Let us examine this scriPt, line by 1 ine.
lfne 1 was printed as a consequ~nce of the electronic handshake
sequence between the typewriter controlpro&f'am and the 27lf1. In
order to establish what kind of terminal ~as, called, the control
program tries several experlment$~,. atteni'tJng to el icit a
response from the terml na I. One ()f the 'eX:p.er Iments caused the
terminal to print a number sign. That experiment being
successful, the terminal type ~s Jdentlfted, and the system
printed a greeting message on llnes'/3 arid 4~ . after putting In a
blank line (line 2) to Insure that the carriage is at the left
edge and that anyth Ing accldental-Jv prlnt-.d by the experiment Is
separated from the message. Hote th.t • line from the computer
usually ends wi th a "new line", so that the ,,,,ext, message, whether
typed by the user or the computer, starts at the left edge of a
new line. The second I ine of the.gree.t,Jng ~sage (1 ine If) tells
the number of users currently Jogged in, and the load they are
placing on the system. The average 'user pJa{:es .a load of 1.0
load units on the system, and In this. example the hardware
configuration in use will support 6Q ",nits, or 60 average users.
Some users with restricted convnand repertoires may be rated at
less than 1.0 load units; others may be rated higher. Since the
load, 55.0, is well below the limi t, 60.0, we will have no
trouble logging in. If the load were equal to the limit, we
might still attempt to log in; it may be that some part of the
load can be deferred or some low priority user could be asked to
stop working. After printing Une If, the system unlocked the
typewriter keyboard, and the user had two minutes In which to log
In to the system. Thus" on line 5h. typ,eQ _ login line, giving
the personal name by which he Is Iden.tifled throughout jthe
system. Note that the distin.ctian bet-weeR upper and lower .case
letters is significant In Multics Input and output. If he had
typed his name without the initiateapita1 letter, it would not
have been recognized.

Some users may type other things after their name. Such
extra input items are necessary only if the user works on more
than one project or charges his usa.,e to more than one account,
and then only if he does not want to,Uc$e hl"s standard bi 11 jng or
project identification for this terminal session.

On line 6, the login program responded by requesting the
private password which is associated wi.th the user's name. At
this point, the program turned t'he t.ermlnal,prJnting mechanism
off and altbough our typist typed. in his,ipassword on line 7,
there is no printed record of it. ' Note that, as usual, he

3-8 BEGINNER'S GUIDE TO THE USE OF MUlTles

signaled that he had completed typing by typing a "new line", so
the next message from the computer was printed on line 8.

lines 8 through 12 are the response of the login program to
the successful Identification of the user. Line 8 records the
date, time, name, and project affiliation of the user. The
project affl I latlon refers to a grouplna of user"S-wtto are working
together on a single project and therefore require frequent
access to each other's (nfonnatlon. As we mall see in the
example terml na1 sesslon exhIbit fng storap sys-tem usap, since
the privacy sys-tem- recognizes' the "'~nc. of such groups, one
can grant access to all members of a group by stating just the
project name of the group. line 9' t1tflsttJe user of the
eond I t Ions of his previous te1"mfnal ses-s Ion, 50 thcJt he may
discover I f someone else I s us I na h t s password.

LI ne 10 I s call ed the DWS'ilge gf, .tbsl.sl&lL. Th I s message Is
updated frequently to reflect any tMponerrt news fOf" users.
Rather than prfntlna the detalls of the news here, though, the
message usually refers the usef' tolnfof"!lR&flon '-ll .. wh.feh may be
printed with the help cor.and. we will ex"l.s of how to
use this very handy facIlity In a moment.

Lines 11 and 12-, the last lInes printed as a result of
logging In, are known as a rlady message, since- Its appearance
Indicates that the termInal Is now at cOIIIIIand level, and thirt the
conmand laneu .. e interpreter Is reedy to s'tartlnte-rpret Ina
cQlllllilnds. The four nURlbers pr Inte-d- I nthe r .. etyme.saae have the
following _8nln&s:

2139 Time of day, In 2" hour form, to the nearest minute
(e.g., 9:39 p.m.).

3.914 Number of seconds of central processor time used sInce
the last visit to COIIIMnd level.

12.070 A' measure of the memory used since the last v 15 I t to
cOii_ncf Jevel. It Is InteMI ... , to measure ftHIIIIDry usase
f n 8 manner thai: Is l-n.pe ". of ~._ load.

231 Number of pases
brou&ht in to
cOlllD8nd 1 eve 1 •

(102" word b'locks-) of Informat ion
primary memory since the last visit to

A blank line, In this case on lfne 12, Is prJnt-ed as part of
the ready messa.e, to provide separatlcm betwe_ successively
typed connand's. As we' slta 11 s .. , areacty .-ssaae rs pr'lnted
every time that the terminal returns to eoiIIIiaftd level. The
InformatIon printed in the ready messaae, In addition to
providfnc an occaslone} time stlllRP on o_~s tennlnal output, Is
frequently handy In est I_tina the rw'a<t'lve - eost of a
just-completed operation, or In cC)lllP8'l"'fnatt.eeost' with another
way of doln. the same thin.. (Note: fer the Wtfnt.rested, there
Is a special feature which can be used to suptJres'S the ready

A MULTICS TERMINAL SESSION 3-9

message. For details, see the write-up of the ready_off command
in the MPM Reference Guide Command section.)

At this point, the system has now created a process for the
user. A process may be thought of as a private computer, working
in I ts own memory, or add:ress sP'$iC, ,..nder c(),nfrol of the user at
his terminal. The process· ha$ be.,,1n rl.lnntng Tn the listener
program, so any 11 ne typed by the' usef wI I L be " nterpreted as a
cOQJJland, that Is, an Instruct19nr to,.c~l1 some program either
belonging to the user or else in the "",ltlcs llbr'ary.· Our sample
sessIon continues as the user types htsfirst contnand line.

The command line typed on line 13 Il1u$:trates three things:
invoking a library program by. n..,ne, pa$,ing that program an
argume.nt, and correction of a typfn. error.·'the user' chose to
fo 11 ow up the sugges tl on ,I ven by the ,,,..s, .. ~ of' the. day back on
line 10, so he trped the.name of the fl,1p ~~Jld. That. command
Is capable of givlns help on a vartety·~of tOR1C:$; one seJects the
topic by glvins the help comman4a".'"J\~' !#hlch names the
desired topic.* The help cQll1lnand takes'tba, . argument as the name
of a file of Information which it then ", .. "as a source of text.
Intbis case~ our user wantedtQ see,th~ ~.~est system news, so
he tried to type the argument IInews" folJow)nJ the command name
"help". Unfortunately, he slipped up, and typed "nes". He then
noticed his error, and typed the erase ch.r~u:ter(1)fo 1 lowed by
the correct letters. Thus the ltne,actual'y Interpreted by the
listener reads IIhelp news ll

• .

The help command then replied by printing, on line 14, a
not I ce of how much outPUt was com) ng, and. du~n on 11 nes 15-24 the
latest message from the on-line news file. Afte'r compli!ttng that
message, It Inserted a blank line (lIl')e. 25) to Improve
readability; and then asked the user If he wished to see more.
This question, on Une 26, Illustrates that $omeltnes printed by
the computer ne.ed not end wi til a "new 1 tne". Afte·r printing the
question mark, the program printed ~1tfO.,pac;:~~, then stopped to
await the reply of the tvp 1st. Thf! p'areo thj',tJ Ca las ter 1 s k to the
left of line 26 Is Intended to cal]attentJon to the fact that
the typist only typed the last part of tiTs line, namely the
letters "yes", and the "new line".

Then, on line 27, the help program again printed a notice of
how much output was coming, and proc:e.,ded with the next older set
of news. Our user, not wishing to wa1t while 68 lines of
information were printed, allowed the printing to proceed only
unti 1 he saw news he had seen before, on lin", 30. In the middle
of that line he pressed the qui t b.wtton. The system responded
imnedlately bv printing a "new line11

, the word QUIT on line 31,

* I f one does not even know enough to n'arne a topl c on wh I ch he
needs help, typing "help" with no arguments will provide a
tutorial on the on-line information currently available.

3-10 BEGINNER'S GUIDE TO THE USE OF MUlTICS

and a standard ready message on lines 32 and 33. The terminal
was thus forcibly returned to command level, the help command
having been suspended In mid-operation. The user was then ready
to type his next command, on line 34.

There our user typed in the name of a desk calculator
command program found In the Multics library. This command turns
his terminal typewriter Into a kind of simple adding machine, so
that he can balance hl~ checkbook. The desk calculator
acknowledges that It Is llstentng for Input by printing the word
ttGo" on line 35. Our user,' being experienced In the use of the
calculator, proceeded to type tn a whole serle's of requests to It
on lines 36-41, first to clear its memory, then to add and
subtract several numbers found in his checkbook. Note that he
dJd not wait for a response to one request before typIng the next
one; he knew that the calculator does not repfy to requests for
memory clearIng, addition, and subtraction. In fact, It is
likely that he typed at least some of his Input lines before the
calculator was ready for them; he and the desk calculator were
making effective use of the Multlcs type"'ahead ability mentioned
before. Finally, on 1 Ine 42, he typed a request to print the
result of all that addltlon and subtraction. This tIme, he
waited for the response, which the desk calculator printed on
1 tne 43, followed by a blank line for readabll f ty on line 44. J

Our user was then finished with the desk calculator, and
wanted to type more commands; In order to return to command
level, he typed the request q (short for "I quit") to the desk
calculator on line 45. The calculator program responded by
retur'ning to its caller, and the terminal was returned to command
level as the ready message on lines 46 and 47 attests.

Our user, having solved his Inmedlate problem (there seems
to be little Multics can do about the negative balance in his
checkbook), then typed the logout command on line 48. The logout
comund, In addition to printing the messages on lines 49-53,
took care of varIous housekeepIng chores, such as updatIng
accoun t i ng records and remov J ng the u,se r' s na.e f rom the 1 1st of
those currently logged In. It aJso trtgpreda telephone line
dIsconnect sequence, whIch caused the minus Sl&n to print on line
54. Note that although our user was logged tn 'for almost ten
minutes, he used only five seconds of the central processor's
time. Such ratios a're the basis for developing a time-sharing
system which Is to be used by a large number of people
simultaneously.

With this example, we have now walked through an entire
terminal session. If you wish, you mIght want to try to Imitate
this session the first time you log In, substituting your own
name for that of our sample user. One thing that you would
surely notice If you tried that experiment is that the ready
messages would not be exactly the same as In our sample scriPt.
I tis norma 1 to observe a vari at Ion In the amount of processor
time or number of page movements requIred to accomplish the same

TYPING AND EDITING INFORMATION 3-11

job several t,imes. The variation arises because the system
attempts, as often, as it possibly can, to run your program on the
coattails of--ot".r users, utilizing pages.lnFOmmon. To the
extent that such sharing is successful, the'cha.r,eJ:to ,,"Idlvldual
users may be reduced, but the 5 i ze of this effict']w1) 1 v~ry ',wi th
c i r cums tances • A 1 so, When, the SIS tem, ' Is. he,BV", ,I y;" o~d,d" i tis
harder to locate the resources requ r.<I to rJltl', ,~. 'pro,tam; the
extra effort required shows up as;aefrarge to t"euset~.hoa$ked
for them.

In addition to the commands Illustrated here, you might try
typing the help cOlm1and with no ar,uments, and you might also try
the who command. The Reference Gutdegtves complete Information
on many options and variations on these as well as on the
commands illustrated In our sample scripts.

Typing An4 Edlt'n« Information

Probably the single most common actIvity of a user of a
time-sharing system is typing In and edt tine Information, wi ttl
the intent that the Information be stored for later use. One
important property of a sys,tent whIch Is normally appro'ached by
means of a remote terminal must be that It c,n sto~;"_,}nfOrmatlon
from one usage session to the next. If thIs Ar0M;rty, were
lacking, It would be unreasonable to use It~Q-tackle any
information processing job which could not be comRJ.fled in a
single sIttIng. Since that kind of restrlctfOiljaunwanted,
Mult1cs provides an extensive system for storing and organizing
Information, the Multlcs storage system.

The unit of Information which is stored, named, protected,
and shared In the MultIcs storage system Is known technically as
a segment. One or more segments containing related information
is usually called a,WJt. TypIcally, a segment mIght contain a
complete program written in the Pl/l language, or a memorandum,
or a collection of closely related data. We will return later to
a variety of examples of how segments are named, protected,
classified, and shared; for the moment we are merely Interested
In the mechanism by whIch one creates a brand new se.ment or
modifies the contents of an o.1d one. This mechanism Is 'iMPortant
because most subsystems which require sUbstantial quantities of
Input expect to find their input in segments. For example, one
uses the Multlcs PL/I compiler by, first constructing a segment
which contains the desired Pl/t sou,rce program. Then he
instructs the compiler to translate the source program found In
that st!'gment.

Segments which contain only strings of characters, and thus
can be printed by a standard printing procedure without decoding
their format, are known as printAble sesments; a Pl/l source
program Is an example of a print,able sepnent. All other segments
may be categor I zed as b I nary ,seg .. nts,~,:~ljh t $ just a way of
saying that they consist of a C()H;',~,tion "o';~"'~'t:~ ~htch somehow
represent informa.tion in a way, ,>diff;.r.~ 'frqm the standard

3-12 BEGINNER'S GUIDE TO THE USE OF MUlTICS

printable form. Usually, binary segments are created and read
only by programs. Because they can be easily printed, printable
segments are creatable, modifiable, and readable by human beings
as well as by programs.

For the purposes of creating and editing printable segments,
several general-purpose editor commands are available. The two
standard edItors are named edm and qedx. The first, edm, is easy
to learn and use, but limited in its repertoire of facilities
w.hen complex but methodical changes to a segment are needed. The
second, qedx, Is more powerful and is con"trotled by a concise
Input language, but is somewhat more diffIcult to master at
first. Some subsystems (for example, BASIC and 'APl) provide
their own built-tn editor program In order to minimize the
distinction between program creation and executIon. We will here
concentrate on the simpler of the two general-purpose editors.

As before, It Is easiest to explain the operation of an
editor by looking at a sample termrnal ses510n. In the example
in Figure 3-2, edm is used to type in a new segment containing a
short poem. We begin our reference 1 ine numbers from 1,
realizing, of course, that the user who typed In this segment
must havefl rst logled In as In our' 'earl fer example. As before,
we have marked with an asterisk lines typed by the u$er.

On line l,our user typed the command to Invoke the editor.
Since the editor Is willing to edit any text segment in the
system, it Is necessary to Indicate which segment is to be
edited. This Indication is made by typing the name of the
segment as an argument following the name of the editor corrmand
I tse 1 f. In th t s case l ' our user has chosen' 'the name, poem, as the
name he would 1 ike to use for the segment he is about to create.
On 1 i ne 2 the edl tor rep 1 t es wi th the obseryat Ion that It d I dnot
find a segment named poem already tn existence, so it assumed
that it was supposed to create a new segment with that name.

To understand the message printed by the editor on line 3,
we must, realize that this editor operates In one of two modes:
input mode~ and edit mode. In the Input mode, . 'everything typed
by the typist Is presumed to be information to bestor'ed In the
segment. In edit mode, ,the typlst"slf'ne.sareTristead taken to
be requests to make chan&es to the:' already s'tore:d .segment. Since
the segment had not yet be.en typed I n', the edl tor assumed we
should start In Input mode, which' It sigrflf:fed by printing
"Input." on line 3. As we shall see, when the editor detects
that the typist is working on an old segment, it start's him off
In edit mode Instead.

lines 4-8, then, are the Intended Information content of the
seg~nt, supplied by the typl5t. NO~e the use of an erase
character near the beginning of Hne 5, to change the i to an 0,
and the kill character used on 1I·ne 7 after not Ie tng a blunder
earl ier in the ll"e. , Even though only one chaf':acter was in error
(the r should have been an e), It was necessary to type the

1*
2
3
4*
5*
6*
7*
8*
9*
10
11*
12*
13
14*
15
16*
17*
18
19
20
21
22
23
24
25*
26*
·27
28
29*
30
31*
32
33*
34
35*
36*
37*
38
39*
40*
41*
42
43*
44*
45
46
47
48
49
50

TYPING AND EDITING INFORMATION

edm poem
Segment not found.
Input.
There was a young lady from Niger
Who rllode with a smile of a tiger.
They returned from the ride
With thr lady@With the Jady Inside
And the smile on the face of the tiger.

· Edit.
t
I smi Ie
Who rode with a smile of a tiger.
c loflonl
Who rode with a smile on a tiger.
t
p 1000
No line.
There was a young lady from Niger
Who rode with a smile on a tiger.
They returned from the ride
With the lady Inside
And the smile on the face of the tiger.
EOF
w
q
r 2024 1.280

edm poem
Edit.
1 tiger

5.284 225

Who rode with a smile on a tiger.
1
And the smile on the face of the tiger.
i -- anonymous
t

· lnput.
A poem:

•
Edit.
t
P 1000
No 1 tne.
A poem:

There was a young lady from Niger
Who rode with a smile on a tiger.
They returned from the ride

Figure 3-2: An Example of Typing and Editing Information.

3-13

--- - ----~

51
52
53
5'
55-
56.
57
sa 5.
'I­Gl-
ti2
IS-.,,-
65-
II
5' 6.­
I.
n
71
72
7]

7' 75
71
77
7.
19 •• 11
12
13

Wlth the lady lns'de
And the .. lie Oft tM face of the t 'Ul>- .- .. ___ .'<~.;.,::-:l;},: ~~'.,;.'

d
w
q
r lt26 .175

print

-- ----
2.132

TYPING AND EDITING INFORMATION 3-15

entire line over again because, you may recall, the kill
character deletes everything to its left on the same line~

Having completed the initial typing of the poem, our typist
now wished to switch to edit mode. Now he was up against a
slight problem: everything he typed was supposed to be stored in
the segment. How was he to communicate to the editor program his
intent to stop using the input mode? As we might expect, a trick
is used. The editor checks each line typed in input mode. When
It sees a line containing nothing but a period, it takes that
line to mean that the mode should be changed, and It does not
store that line in the segment being created. (Note that this
means that one cannot store a line containing only a period
while in the input mode. However, one can create such a line in
edi t mode.)

Thus, on line 9, we see only a typed period, and on line 10
we see the response of the editor, saying that "Edit." mode is
now in operation. At this point, our typist, having looked over
the printed copy of his input, noticed that he made an error on
line 5--the word "of" should have been typed as "on". To make
such changes easy to manage, the editor maintains a pointer,
which is always pointing to some place in the stored segment.
The typist may move this pointer from line to line, by issuing
various requests. Thus, when our typist issued the request to
switch to edit mode, the pointer was pointing to the last line he
had typed. The t (for top--most edm requests are one letter
mnemonics) request on line 11 moved the pointer to the top of the
segment, ahead of the first line. The 1 (for locate) request, on
line 12, started a search for the next line containing the string
of letters "smile". When it found such a line, the editor
printed It on line 13, and left the pointer pointing to that
line. This operation of moving the pointer by searching for a
string of letters is known as editing by context.

Having got the pointer set to the line which contained the
error, our typist then issued a c (for change) request on line
14. The change request is designed to avoid the need for typing
the whole line over, by mentioning first a string of characters
which appears in the line, and then giving another string which
is to replace the first one. What the typist wanted to express
is the notion "change the string of letters 'of' to the string
'on'''. Since, in general, one or both of the strings may contain
blank spaces, we must invent some convention for communicating to
the change request exactly what string is to be used for
matching, and what string is to be used in the first string's
place. The convention used is for the typist to choose any
character he wishes that is not in either string -- his choice is
called the delimiter character. (The slash mark is often used
since it is convenient to type.) Then he types that character
three times, with the two strings in between. Thus, the
substitution was expressed to edm by typing the request name c,
followed by a space, then the first delimiter (I), the string of
characters to be matched (of), then a second delimiter, then the

3-16 BEGINNER'S GUIDE TO THE USE OF MUlTles

new string to be substituted In place of the matching string
(on), and finally a third delimiting character. In return for
this input sequence, the editor performed the requested
substitution, then printed the changed line to verify that the
correct change occurred.

(Note that while editing by context is very convenient,
context Is often ambl&uous, and one must constantly check to
Insure that the correct context was used. Thus, the word "of"
might have appeared twice in the Ilnei In that case, the change
request would have chanced both occurrences. If one wanted only
the second occurrenGe chanced, he would have to type a larger
identification strine, one which uniquely matched the single
usage of "of" that was to be chaneed.)

Next, to verify th.at the whole segment Is correct, our
typist moved the pointer back to above the top of the segment
with the t request on line 16, and then he asked the editor to
print <with the p request) the next 1000 Hnes of his segment.
Althouah he knew that his segment did not contain 1000 lines, he
did not want to count them; when the user asks for a larger
number than necessary, the editor merely prints to the end of the
s.,ment, then stops. Thus, we" hay.e the flnal se&ment contents
printed on lines 19-23. The comment "Nol tne. II on line 18 Is
Inserted whenever the pointer Is not palntlne at a line; for
example, when It Is polntlnl to the top of the seament •
Similarly, the cOAlnent EOF on line 24 Is printed whenever any
request causes the pointer to run past the end of the segment.
Our tltp,lst then typed the request w (wrlte)Qn line 25, which
means "put the s nt away tn the storage system". Betng
finished wIth the editor he then typed q, for ctUlt. The editor
responded by returnlngtocawnand level, as shown by the ready
message on line 27.

To illustrate the ability of the editor to modify
lines 29 through 83 are a typical edltln, session.
session, the typist made some chanaes to the segment
the poem that had been typed In before.

a segment,
In this

containing

The typIst started from command level, just as before,
typln& the name of the editor and the name of the selment to be
edited. This time, since the '.smant already existed, the editor
belan In edIt mode rather than Input mode. "The typist wanted to
add a line followlnl the last line, so he had to move the pointer
to the last line. Noticing that the l.st lfnecontafned the word
"tiger", on lIne 31 he typed a request.to locate that strIng of
characters. Now It becomes apparent why the edItor always prInts
the line It has moved the painter ~o, as on lIne 32 -- there were
two lines contalnlnl the word "tlger", and the editor had located
the first one. The typist should have used the request:

1 the tiler

TYPING AND EDITING INFORMATION 3-17

on llne 31, since only the last line contains the string of
characters "the tiger". Seeing his mls,take,the typist took
advantage of a special convention: If he types a locate request
with no character string, the previous locate request will be
repeated, with the effect in this case that the next instance of
the string "tiger" will be located. This he did on line 33, and
the editor responded on line 34 with the last line of the
segment. Then, using the '(Insert) request, which inserts a
line after the pOinter, our typist on line 35 added a single line
to the end of the segment.

Next, he decided that his poem needed a heading, so he moved
the pointer back to the top of the segment with the t (top)
request on line 36. Since the heading Is to be more than one
line, he decided to switch temporarIly to Input mode by typing
the mode-switch character, a line containing only a single
period, on line 37. He followed this with two lines to be stored
in the segment following the current pointer position (which in
this case was at the top of the segment). Note that line 40 is
completely blank--presumably the typist wanted a blank line in
his segment at that point. Having now finished typing the new
material, the typist switched back to editing mode, went back to
the top of the segment, and on line 44 requested that It be
printed. As we see on lines 45-54, the segment appeared as
before, except for the three added lines, two at the start and
one at the end. -

Next, our typist exhibited one of the most powerful features
of this editor, its multiline change request. On line 56, he
requested that the string "tigerfl be replaced by the string
"giraffe" everywhere It appeared on the next 1000 lines following
the pointer. Thus, every occurrence of "tiger" in the entire
segment was sought out and changed by the editor. For
verification, the editor printed each changed line (lines 57 and
58), and then reported that it encountered the end of the segment
(line 59). Finally, the typist decided that the line saying
"anonymous" was superfluous, so he first moved the pointer to it
(lines 60 and 61), and then deleted It (line 63). Finally, he
wrote out the resulting edited segment, and then asked the editor
to return to command level.

As an independent check on the contents of the resulting
edited segment, he then typed the print command, as shown on line
68. This library program will print any text segment; first it
prints a header giving the segment's name and the date and time
(line 70), then It prints the contents of the segment.

WI th
wi th the
Reference
your own.

this brief introduction, the next steps to familiarity
editor are to read the edm command write-up in the

Guide, and then to type In and edit a small segment of

Some pointers:

3-18 BEGINNER'S GUIDE TO THE USE OF MUlTICS

1. It Is useful to remember that the editor makes all changes
on a ~ of the segmen t~ not on the or I g Ina,l • On 1 y when
you issue a w {write) request does the editor overwrite your
original seg.rnent with the edited version. If the user types
q (quit) without a preceding w (write), the editor warns him
that edl ting will be lost and the original segment wi 11 be
unchanged, and gives him the option of aborting the request.

2. Don't ever press the quit button while In the editor, unless
you are prepared to lose all of the work you have done since
the last w (write) request. If you press quit while a w
request Is In progress, you may even damaae the original
version of the segment.

'30 If one has a lot of typing or editing to do, It is wisest to
occasionally (say every 10-15 minutes) Issue a w request, to
insure that all the work up to that time Is permanently
recorded. Then, If some accident should occur (e.g., a
system failure, or the telephone line diSCOnnects), you will
lose work only back to the last w request.

4. Some requests are more expensive' in computer resources than
others. In particular, frequent movement of the pointer
back to the top of the segment should be avoided. If
possible, It is best to plan ahead, and try to do as much
editing as possible with a sln&le pass of the pointer
through the segment. The 1 arger the ·segment, the more
important this consideration becomes.

5. The request to move the pointer backward, while very handy,
Is very expensive to use, since the editor actually has to
move the pointer to the bottom~ then back to the top,' then
to the correct location.

6. Be sure that YOU have switched from input -mode to edit mode
before typing edltlns requests, Including the requests to
write and quit. If you forg~tl the editing requests will
be stor-ed In your seament, instead.<of beelng acted upon. You
will then have to locate and de tete them.

7. The only frequently-used requests which have not been
illustrated are the next (n) and backup·(-) requests. The
remaining requests are less Important and you can safely
ignore them to start wi the

8. As one becomes more and more familiar with the use of edm,
he may conclude that It provides verification responses more
often than necessary, tln"s slowing him dawn. The requests v
and k are used te control tbeAdltoi's verbosity. At about
the point where one feelS conffdent enou&h to use these two
requests constructively, it is probably time to begin
studying the more sophisticated editor, qedx. The qedx
editor provides the user with a repertOire of more concise
and powerful requests, which permit more rapid work.

USING THE MUlTICS STORAGE SYSTEM 3-19

Using ~ Multjcs Storage System

In the previous section we saw how a text segment may be
created and edited. In this section, we will explore some of the
features of the system which allow such segments to be organized
and stored for later use.

The user in our last example chose the name poem for his
segment. Multics tries to allow the user as much flexibility as
possible in choosing names for segments. Since the system has
many users, who may be strangers to one another, this need for
flexibility suggests that the segments belonging to anyone user
be grouped in such a way that he can choose names without worry
that some other user has already used that name. This grouping
is accomplished by an entity known as a directory. A directory
may be conveniently thought of as a segment containing a list of
names of other segments.*

Typically, each user has a directory for his own segments.
Within a single directory, each segment must have a different
name, but two different directories may contain segments with the
same name. By a simple extension of this convention, directories
are also given names, so a user's directory may contain the names
not only of his segments, but also of additional directories he
has created. These additional directories may contain the names
of more segments. When a directory name is found in a directory,
it is said to be an inferior directory; the naming directory is
said to be superior to it. A user's motives for p~tting some of
his segments in inferior directories may be several:

•

He may have two segments to which he wants to give the
same name; they must not be in the same directory.

He may have many segments, and would like to keep them
grouped by category. As we shall see, he can ask for a
list of all the names in anyone directory, and thus in
one of his categories.

He may wish to protect a certain group of segments all in
the same way; when he creates a new such segment, he can
protect it the same way as the others by putting it in
the appropriate directory; he need not think through the
protection specification again.

* Although a segment is technically only named by a directory,
it is common terminology to refer to a segment as being stored in
a directory. Of course, the segment is actually stored on some
disk or drum storage device; only its location on that devtce is
stored in the directory. This distinction is important In the
case of links, which name segments stored in other directories,
rather than providing for their storage directlyo

3-20

•

BEGINNER'S GUIDE TO THE USE OF MULTICS

Whenever a program asks for a segment by name, a search
is undertaken for the segment. ThIs search Is controlled
by specifying a list of directory names. Thus, he may
create several directories In order to arrange that the
search proceed In a fashion he prefers.

It should be clear, then, that the concept of a directory Is
a key to several different features of the Multlcs storage
system. The Idea of superior and inferior directories is
extended by the requirement that all the directories In the
system together form a hierarchy, or~. The'dlrectoryat the
base of the tree, which Is superior to every directory of the
system, Is called the LQQ1 directory.

Figure 3-3 is a typical directory arrangement. The root
directory In that example contains two entries, both of which are
names of othe~ directories. One of these two directories
contains the library of system programs, while the other, named
udd (for user_dlrectory_dlrectory) contains one entry for every
user of the system, namely Smith and Jones. These two users each
have a directory with their names on It, and In addition, Smith
has chosen to add another directory Inferior to his own, named
old_dir; he has placed three segments named x, y, and z In
old_dlr.

Whenever a Multics program wishes to read or change the
contents of a segment, It Is required to specIfy the name of the
segment It wants. Every segment has a ~ ~ which Is formed
as follows: trace the directory structure down from the root to
the desired segment, writing In order the name of every directory
on the path, and finally the name of the segment Itself. Now,
concatenate all these names Into a single long name, placing the
"greater than" character between the Individual names. Thus, the
path name of the edm command, found in the library, would be

root>llbrary>edm

By convention, since every path name would begin with the letters
II roo til, these letters are left off, so one would use the path
name

>llbrary>edm

to refer to the edm command.
lp.p11 has the path name

>udd)Jones>lp.pl1
,

Similarly, Jones' segment named

and Smith's segment named x has the path name

>udd>Smlth>old_dlr>x

library:

USING THE MUlTles STORAGE SYSTEM

root: udd

library

udd:
Jones

edm
Smith

who

print

dec am Jones:
lp.pll

x

Smith: poem.

a.pll

old dir

x

y

z

Figure 3-3: Typical Multics Directory Hierarchy.
Directories are rectangles;
segments are circles.

3-21

3-22 BEGINNER'S GUIDE TO THE USE OF MUlTles

which Is clearly distinct from Jones' segment x, which has the
path name

)udd>Jones)x

To avoid the need for typing full path names, which may not
be easily remembered (or even known, In some cases), the system
remembers for each logged In user the path name of one directory
In which his activity Is centered: his working directorY. All
names which do not begin with a Usreater than" sIgn are
considered to be relative to his workt"1 directory. Thus, for
example, Smith might choose as his workln. directory the path
name

>udd>Smlth

In which case when he uses the name

poem

he will be referring to the seament with path name

>udd>Smlth>poem

and when he uses the name

he is referring to the segment with path name

>udd>Smlth>old_dir>x

The system automatically . chooses an initial working
directory for a user when he logs In, but he Is free to change
the path name of his working directory to any other directory In
the system. He makes this change by invoking one of several
commands used for interaction wIth the storage system. As
before, it is easiest to understand these commands by following a
series of sample scripts, which are based on the directory
organization Illustrated In Figure 3-3. Suppose that Jones has
logged In, and the system has assigned him the directory

>udd>Jones

as his working directory to start with. (The script may be found
In Figure 3-4.)

On line 1, he typed the command prlnt_wdlr, which merely
prints the path name of his current working directory on line 2.
(This command Is quite handy if one forgets where he is, or needs
confirmation that he typed his last command to change directories
correctly.) Next, on line 5, he typed tbe list command, which
prints the contents of the working directory. On line 7 the list
command printed a summary of the directory contents. Jones'

1*
Z
3

• 5*
6
1
I
9
10
11
12
13
11l*
15
16
17*
18
19
20
21
22
23
24
25
26
27*
28
29
30*
31
32
33*
34
35
36
37*
38
39
40
41*
42
43
44*
45
46
47
48
49
50
51*
52
53

USING ~MUlTICS STORAGE

prlnt_w41 r
)udd)~es

r 121' .. 131 .812 27

list

Seaments • 2~ Records . \.
r w 1 lp.pl1
re 3 x

r 1212 .216 1.762 33

create foo
r 1213 .320 3.728 77

list

Segments • 3, Records • 4.

r w 0 foo
r w 1 1p.p11
re 3 x

r 1215 .202 1.856 49

createdir my poems
r 1216 .151 1.482 0

change_wdir mypoems
r 1218 .089 .306 17

prlnt_wdtr
)udd)Jones)mypoems
r 1219 .119 .056 14

list
directory empty
r 1219 .147 1.406 42

copy)udd)Smith)poern limerick
r 1220 .311 1.732 53

11 st
Segments • 1, Records = 1.

r w 1 limerick

r 1220 .219 2.162 41

change_wdir)udd
r 1221 .067 .646 30

SYSTEM

Figure 3-4: Example of Use of the Multtcs Storage System.

3--23

~

~~-,..- --;~-!.~ ---''''c..-= :..-~ • -~-~-~ •• _--c:-l<~ .", -:;'':..,~;'''''-:'-4---''''_- --,,-__ -"'" • - -~.-... ." ,~_", -"~_ '"'''':_~~ __ ;;. ~_~:""Jr- ~""-'~J!:::- -"".-_~",:;,~,,,-- --'._-;;'"

list -a

lfak.· •

• 1 __ •
_ 1 I ••••

r laD .tfI .* ..
... <.-
.,.. """
stahaa

•

r
.111

1 i hw J iii i -, q
~~n-o~<b <

IIf,l"Qi I
It ~

- iJ ~i-;

1 "ihi""'{

(~-~

.;ef:-mi:,}~l·{t'l ., f i ,,' :1 s .
- G S·SJ!~. r' 1~'1,~ ~~,~ ~:i

rtt~ •••• "1~.~''''~ '!H~\¥~~}q"",~~
- -, .'. ~ -:-.. -:. -::~'- ,.,-~ ... ~u:!!c>:~Yl1t(:::~~<n;:.;-t/~-?Jl;~~<

ll..,

...
.1 aia. erl. BI~i ~

1- e t f
\! , Q.tfH;) ~ '1 0 ::;'~ "f ; ;)

S~ aD'.! tjl. eltl

' 11
•

;;) r 'l'!)i;,f f filmxi'(iiJ ir,1Z<bbu' ,L
[~ - S: ~ \ ~ J: -I! ~ ~ {t£ ~ r '1

IUr..-Iu It 1 -1
Links • 1.

SID'th.

r 1221 .611- I.IS. "

~J ;-'~ ~~b:'1.G;t.s~ -·~~r ~ ~1(1~t~1;~·::~?

t~bu< ~ibw_~g.ri~~,-~·;
n{ s~a. tao. IS.$: i 'r

USING THE MULTICS STORAGE SYSTEM 3-25

directory (refer to Figure 3-3) contained only two entries, and
these segments occupied a total of four records, the unit of
storage space. One record has room for up to 4096 printed
characters, or 1024 computer words.

Starting on line 9 is the three-column list of names of
segments in this directory. Working back from the right, the
th I rd co 1 umn I s the segment name .(32 characters or fewer in
length), the second column is the number of storage records
occupied by this segment, and the first column tells the mode of
access this user is permitted to this segment. Up to three
letters may appear in this column, each Jetter Indicating an
additional pr1vilege:

r (Lead) The user may read the contents of th is
segment.

e (,axecute) The user may run this segment as a program.

w (ltctte) The user may rewrl te the contents of the
segment.

We will return later to the subject of setting these access mode
Indicators. For the moment, we will merely observe that they
exist, that different users may have different access mOde
Indicators for the same segment, and that the system enforces the

" access mode restrictIons. ,

On line 9 is listed a segment which has a "period" as part
of Its name. In general, the storage system Is happy to allow
any character except the "greater than" sign tn a segment name.
The user of the storage system may wish to attach some special
meaning to some character, and one such system-wide convention is
Illustrated on line 9: a segment n~emay consist of ,ornRQnents,
separated by periods. As far as the storage system is concerned,
the name is one long string of letters with Interspersed periods;
the user by convention attaches meaning to the components. It is
customary, for example, for source language programs to be given
a two-component name. The first component is chosen by the user,
and the second component Is the name of the source language.
Thus, the name 1p.pll is evidently attached to a program written
In the Pl/l language.

On line 14, the user typed a command which creates a new
segment, and upon reissuing the list command on line 17, we see
the newly created segment included In the listing. Note that the
create command attached an access mode indicator of "r w". Note
also that since no Information has been written in the segment
yet, its space occupied is O.

On line 27, the user created
own, named mypoems, and on line 30 he
changes his working directory to the
a check, on line 33 he asked to print

a directory inferior to his
typed the command which

new Inferior directory. As
the name of his working

-
3-26 BEGINNER'S GUIDE TO THE USE OF MUlTICS

directory, which is now

)udd)Jones)mypoems

When he tried to list the contents of his new directory, on line
37, he received an appropriate error comment.

To Illustrate a typical use of segment names, on line 41 he
typed a copy command. The copy command works as follows:

copy a b

• The segment named a Is located fn the hierarchy.

• A segment named b Is created.

• The contents of a are copied into b.

Both the names a and b are subjected to the conventions about
working directories. Thus, on line 41, the name a is

)udd)Smlth)poem

which, since It begins with the "greater than" character, Is
taken to be a full path name and requIres no Interpretation. The
name b f 5

limerick

which, not starting with the "greater thari-n character, must be
Interpreted relative to the current workIng directory. Thus,
name b for this case Is taken to be

)udd)Jones)mypoems)llmerlck

A segment of that path name was thus created, and the contents of
Smith's poem were copied Into ft. To prove this, the user next
typed "llst", and found one segment, named lImerick, In his new
directory. Its sl~e was nonzero, so someth'"g must have been
wrltten Into It by the copy command.

We should pause at this moment to observe that copying of
segments is the exception, rather than the rule, In Multlcs.
tlorma 11 y severa 1 d f fferent users wIll share the same copy of a
segment, either by givIng the full path name when they wish to
access it, or by placing In their working dlr.etory a link to the
segment. Copying Is performed only If one wishes to make a
modification to a segment, but keep the original version also.

Continuing our example, on line 51, the user began exploring
the rest of the directory structure by typing commands to change
his working directory to one higher fn the directory; hIerarchy.
He then on line 54 listed the contents of thl~ dIrectory.

The list command presumes that most often one wants only a
list of segments, not of inferior directories, so It normally

USING THE MULTICS STORAGE SYSTEM 3-27

does not print directory names. If the argument -a (for all) is
given to the list command, it will list everything in the
directory, not just segments. Thus, on lines 56-63, we see the
summary of contents, and the names of the two directories
Inferior to udd. Note that Jones has more access to his own
directory than he does to Smi th' s. I f Smith were to try th is
same experiment, he would probably find tHat he has more access
to his own directory than he has to Jones'. Access modes for
directories are described below un~er a"Cls CQntroJ In Myltics.

Next, on line 67, Jones switched his workIng directory into
Smith's own inferior directory, and used the status command to
find out all he could about segment x.

Finally, he returned his working directory to the place
where he started, by typ.ing the COllll'Rand change~di r with no
arguments. The change_wdir command has tu¢ked away the name of
his original working directory to allow such a move to be
specified easily, since it is very common.

.. Next, the user placed in his directory a link to Smith's
~gment x, as referred to above. Note that one can make a link
to another directory, if desired, also. This feature allows one
to talk about any entry in that directory with a name briefer
than the path name from the root.

Finally, he listed just the nameS of everything in his
directory. Figure 3-5 illustrates ·the modified directory
structure.

While the sample scripts described here are useful for
getting a flavor of how the system is typically used, much
additional insight can be gained by experimenting with the system
itself. For example, the following series of experiments is
suggested: ..
1. Log in

2. Print the name of your working directory with the print_wdir
command.

3. List the contents of your working directory with the command
"list -a".

4. Switch to the directory immediately superior to yours with
the change_wdir command. Give as the name of the directory
to switch to, the name printed In step 2, with the last
component stripped off.

5. Repeat steps 2-4 until you have reached the root directory.
(To enter the root directory, U$e a "greater than" sign for
its name.)

6. Explore downward from the root to see how far you can go
into other parts of the directory hierarchy.

----~.-~--

3-28 BEGINNER'S GUIDE TO THE USE OF MUlTICS

root:

library

udd~
Jones

library: edJa
SIIlith

print

decam
Jones: Ip.pll

x

poem Smith:
foo

a.pll
SJaithx

old dir

mypoems:

old_dir:
_~ ... x

y

z

Figure 3-5: Directory Hierarchy of Figure 3-3 (After Manipulation
by Example Script). Directories are rectangles;
segments are circles.

USING THE MUlTICS STORAGE SYSTEM 3-29

Finally, we have not yet mentioned three commonly used
convenience features of the Multics storage system:

1. Any time a segment name must be typed, one may specify
either the path name from the root, or a relative path name
starting from the current working directory. We have
already seen two examples of this feature above, in typing
names of segments located below the working directory. One
can also give relative path names for segments not below the
working directory by typing an Initial "tess than" sign for
each level up in the hierarchy needed to get to the segment
in question. Thus, If the workIng directory is

>udd>Smith

Then the relative path name

<Jones>tp.pll

is taken to mean

>udd>Jones>lp.pll

2. Any segment, link, or directory may have several names, if
desired. The addname command is used in this connection.

-Multiple names are handy in cases where a new name is
wanted, but some programs (or users) still use the old one.
Also, a segment with a long name may be given a second,
shorter name for typing convenience.

3. There are conventions for talking about groups of segments
with similar names, using an asterisk to specify the parts
of the name that vary within the group. Thus, the command

list *.pll

would list all segments in the current working directory
which have two-component names ending with .pll.

More details on these three features, as well as many other
storage system features and options which are less commonly.
exercised, may be found in the MPM Reference Guide sections on
Using the Multics Storage System, and the MPM Reference Guide
section, Constructing and Interpreting Names.

Access Control in t4ultjcs

In the examples given above, each segment had an access mode
which indicated the user's ability to read or write in a given
segment. The access modes are not universal; Multics permits
different users to have different access modes for the same
segment. Further, careful control is maintained over who may set
or change the access mode of a segment. These facilities permit
control of privacy of information In a large variety of ways.
Mul tics contains some very powerful .,features for controll ing
access which allow construction of restricted access

_ •.• _ _ .,""_.-__ " " ..,~;:;,,~o __ ~."""' .. _ .• - •• '.

3-30 BEGINNER'S GUIDE TO THE USE OF MULTICS

general-purpose subsystems by users
Though he may not immediately
sophisticated mechanism, the casual
some of the more routine aspects of

with no special privileges.
see a use for the fully

user should be familiar with
access control.

The most important piece of the access control mechanism is
the access control 11$t, abbreviated ACL. Every segment has Its
own ACL. An ACL consists of a lIst of names of users who are
permitted to use a segment, along with the modes <read, execute,
or write> which they may use. To make AC1.smeanlngful, every
user of Multics Is re&lstered, which means a standard name,
di fferent from everyone else, is recorded for hhn. The password,
typed at login time, Is a check on the authenticity of a user
claiming that he Is registered. For convenience In specifying
access control, users may be organized into groups who are
working together. Each such group is given a unique name also,
known as a proiect Identifier. For purposes of controlling
access, the name of a logged In user Is the concatenation of the
user's registered name and his project's name. Two typical
access control names are:

Wllllams.Apollo.a
Jones.MathSlm.a

The third component of the name can be different for each
instance of a particular user, If he has two Jobs In the system
at once, or Is logged In twIce. An ACL consls_ts_of a series of
access control names, followed by the made of access allowed to
that name. A user can access a segment only if hIs name matches
one of the entries on the ACL. For example, the ACL

Willlams.Apollo.a re
Jones.MathSlm.a rw

would grant access to just those two users, and no one else. To
'grant access to all members of a given project, one of the ACL
entries may specify ca0m"A bY pl~clng ~n asterisk In the field
normally occupl,d by the personal name.Slmflarfy, asterisks may
be placed In the other two fIelds, Thus the acdess control list

Wllllams.Apollo.* rew
.Apol10. rw
..* r

would permit Williams, when working on project Apollo, to access
the segment with all modes of access, all other Apollo project
members with slightly restricted access, and all other users of
the system, with read access only.

Access control lists are constructed and modified with the
aid of three commands: setacl, deleteacl, and llstacl.
Permission to use these commands is based on a simple
hierarchical rule: directories also have access control lists.
Permission to modify a directory carrle$wlt" It the permission
to set the ACLs of segments stored In that directory. Thus, most
users are assIgned a dIrectory by their project supervisor; he

ACCESS CONTROL IN MULTICS 3-31

sets the ACL of the directory to allow the user to modify the
directory, and the user then has co~plete control over who may
access segments he places there.

One minor point of interest here is that the project
supervisor must have had permission to modify the next higher
level directory in order to create the us~r's new directory, as
well as to set the ACL permitting the user to modify the new
directory. That permission Is derived in the same way, by an ACL
controlling the next higher directory. This general pattern
continues up to the root directory, which has an ACL which
permits only the system administrator ability to modify its
contents.

Multics distinguishes among several ways of using
directories, and an ACl Intended for a directory indicates these
ways in a manner analogous to the access modes of a segment. The
directory access modes are:

s (3,tatus)

m (modify)

a (.append)

The user may list the contents and find
out the attributes (such as ACLs) of the
entr1es In the directory.

The user may delete entries from the
directory and may modify the attributes
of entries In the dIrectory.

The user may add an entry to the
directory, but he may not later delete it
unless he also m access.

The "a" access mode is handy for implementing mai lbox faci 1 ities
in which the only form of access is to leave a message.

In order that the user not be plagued with constant need to
specify ACLs, each directory contains an initial access control
list (fnita1 ACL) which is automatically placed on every entry
added to that directory. Also, most standard facilities for
creating segments routinely specify appropriate access for at
least the user who created the segment. Thus, a common strategy
is to place in the inltal ACL the entries

..* re
..* s

thus allowing al] other users freedom to explore, but not change,
the segments and directories contained tn the user's directory.

Finally, certain system services such as off-line printing
of segments and backup copying of new and modified segments are
performed by system processes which must have access to any
segments they print or copy. Appropriate ACL entries are
automatically placed on every segment unless the user takes
explicit steps to prevent them from appearing.

3-32 BEGINNER'S GUIDE TO THE USE OF MULTICS

W he r e .m ~ .fJ:.wn li.t:a

This chapter has illustrated the typical usage of some
commonly used commands. However, even a beginning user will
rapidly develop needs fpr many of the more sophisticated
facilities available. On the other hand, a cover-to-cover
reading of the Reference Guide is probably not the most
efficient method of gradually expanding one's grasp of system
facilities. Reading the following sequence of material from the
Reference Guide may be useful tn getting started:

1. Read the Reference Guide section entitled The Multlcs
Command Repertoire to become familIar with the kinds of
commands available, and their names.

2. Peruse the remaining parts of Section 1'of the Reference
Guide (The Multlcs Command Langu8P Envlronrnt!nt) so that
you will know what klnds of QuestIons·· are answet'ed there.
Deta 11 ed study of these parts can be defl!!rredCto the t'me
when a need arises.

3. Read the Reference Guide section, The Storage System
Directory Hierarchy, and skim the remainder of the
sections on Using the Multlcs Storage System.

4. Read the following command descriptions; they represent
the set which wIll be most used, at first:

edm
print
dprlnt
delete
help

link
un1 ink
list
llstacl
setacl
mal 1

login
logout
rename
p11
getquota
who

5. Read the first few pages of the description of the debug
command. This facility Is extremely powerful, but a
beginner will find that there are a lot of Ideas to
master before he can use debug to Its full effectiveness.

6. Read Chapter Four for an Introduction to the programming
enivironment.

7. Look at the Reference Guide section, List of System
Status Codes and Meanings, to see what kinds of
info.rmation are 1 isted there.

8. At the next level down, the following less frequently
used commands are also good to know about:

copy
hold
start
new_proc
release
program_Interrupt

change_wdir
prlnt_wdfr
archive
status
where

WHERE TO GO FROM HERE 3-33

9. Before beginning to write programs In earnest, review the

section on The Multlcs Programming Environment, and

especially the part entitled The Subroutine Repertoire.

10. Finally, read the section on Use of the Input and Output

Facilities.

The set of section and command write-ups suggested above

should provide a thorough introduction to both the facilities

available on 'Multlcs and also the kinds of reference material

found In this manual.

This empty page was substihlted for a
blank page in the original document.

C HAP T E R 4

PROGRAMM I NG I N THE MULTI CS ENV IRONMENT

SePtember 20, 1973

A programmer may, if he wishes, treat Mu1tics as simply a
PL/I, FORTRAN, APL, BASIC, or LISP machine, and contain his
activities to just the features provided in his preferred
programming language. On the other hand, much of the richness of
the Multics programming environment involves use of system
facilities for which there are no available constructs in the
usua 1 languages. To use these features, It is gene ra 11 y
necessary to ca 11 upon 1i b ra ry and superv i sor subrout i nes •
Unfortunately, a simple description of how to call a subroutine
may give little clue to how it Is intended to be used. The
purpose of this chapter Is to illustrate typical ways in which
one uti) izes many of the properties of the Multics programming'
environment.

The programmer choosing a language for his implementation
should carefully consider the extent to which he will want to go
beyond his language and use system facilIties of Multics which
are missing from his language. As a general rule, one may say
that each of the t!u 1 tics 1 anguages ma tches some we ll-known
standard for completeness of that language (e.g., .RSI or IBM).
However, in going beyond the standard languages, the programmer
will find that Multics tends to be biased towards convenience of
the PL/I programmer. For example, if one plans to write programs
which directly call the Nu1tics storage system privacy and
protection entries, he will be asked to supply arguments which
are, in PL/I, structures. If he is writing in FORTRAN or BASIC,
he has no convenient way to express such structures. Note that
the situation is not hopeless, however. Programs which stay
within the original language can be written with no trouble.
Also, in many cases, one can construct a trivial PL/I interface
subroutine, callable from, say, a FORTRAN program and which goes
on to reinterpret arguments and invoke the Multics facility
desired. Using such techniques, almost any program originally
prepared for another system can be moved into the Multics
environment.

4-2 PROGRAMMING IN THE MULTICS ENVIRONMENT

Probably the quickest way for an experienced programmer to
get a feel for how to program in a new environment is to examine
sample programs. This chapter consists of ~everal examples of
programming for tvlultics. Each program is annotated with comments
to guide the reader. Unfortunately, programs do not always
invoke features in the best order for understanding, so the
following strategy may be useful: as you read each comment, if
its implications are clear and you feel you understand it, check
it off. If you encounter one which does not fit in to your
mental image of what is going on, skip It for the moment. later
comments may shed some light on the situation, as will Tater
reference to other parts of the MPM. Finally, a hard core of
obscure points may remain unexplained, in which case the advice
of an experienced Multics programmer is probably needed. Be
\'1arned that the range of comments is very wide, from trivial to
significant, from simple to sophisticated, and from obvious to
extremely subtle.

The notes presume that the reader
language. Only those aspects of the
provides some unusual implication are
have been printed out on an IBM 27~1
the ASCII circumflex character appears

is familiar with the Pl/I
language for which Multics
mentioned. The programs
(golf-ball) typewriter, so
as a hooked overbar.

Finally, some comments provide suggestions for "good
programming practice." Such suggestions are usually subjective,
and often controversial. Nonetheless, the concept of choosing
among various possible implementation methods one which has
clarity, is consistent, and minimizes side effects is valuable,
so the suggestions are provided as a starting point for the
reader who may wish to develop his own style of good programming
practice.

Basic Agdressjng Technjgues

The most significant difference between the Multics
programming environment and that of most other contemporary
computer programming systems lIes In its approach to addressing
onl ine storage. Most compu.ter systems have two sharply dIstInct
environments: a resident fIle storage system In which programs
are created, and translated programs and data are stored, and an
execution environment consistIng of a processor (actually
allocated in short tIme bursts) and a "core Image", which
contains the Instructions and data for the processor.- SupervIsor
procedures provide subroutines for physically moving copIes of
programs and data back and forth between the two environments.

In Multics, the line between these two environments has been
deliberately blurred, so as to simplify program construction:
most programs need to be cognizant of only one environment rather

BASIC ADDRESSING TECHNIQUES 4-3

than two. This blending of the two environments is accomplished
by extending the processor/core-image environment. In Mu1tics,
the share of the processor is termed a process, and the core
image is abstracted into what is called an address space. Each
user when he logs in is assigned one newly ereated address space,
and a single process which can execute in it.

A Muttics address space is not like the usual core image,
however: it is larger, and it is segmented*. A segment may be
of any size between 0 and 256K 36-bit words and an address space
may have a large number of segments -- a typical Muttics process
has about 200 segments. (The hardwar~ places a limit of 256K
distinct segments, but table sizes in the current software limit
an address space to a number closer to 2000.) Typically, each
separately translated program resides in a differe"t segment;
collections of data which are large enough to be worthy of a
separate name are placed in a segment by themselves.

The segment is also the unit of storage of the Multics
catalogued file storage environment. (Called the Multjcs stora£e
sYstem.) These two environments, distinct in many other systems,
are automatically mapped together on demand, by the Multics
vi rtual memory system. \lhen a program already appearing in the
current address space calls to another one which is not yet
there, a dynamic linking fault occurs, the supervisor locates the
needed procedure, and maps it into the current address space,
assigning it some as yet unused segment number. Similarly, data
segments are mapped into the address space. In contrast to many
other systems, this address space is retained throughout the
login session, and its contents gradually are increased as
different programs and data objects are accessed. (Facilities
are also available for starting over with a new address space, or
removing items no longer needed in the address space.) Finally,
all supervisor procedures and commands called by the user are
mapped into the very same address space. Thus, there is a great
uniformity of access methods, to user-written programs, to data,
to library or supervisor programs, and to items never before used
but catalogued in the storage system.

As will be seen in the examples which follow, the effect of
the mapping together of these two environments can range from the
negligible (programs can be written as though there were a
traditional two-environment system, if desired) to a significant
simplification of programs which make extensive use of the

* This discussion presumes that the reader is familiar with
the purposes of and mechanisms which allow memory segmentation.
For further background in this area, see the bibliography at the
end of Lhapter One and the first parts of Chapter Two. In
addition, books by Organick <.Ih.e. f,1ultjcs SY;item: ..2n Explanation
of ~ Stryctyre) and Watson (Time Sharing System Design
Concepts) motivate segmentation.

PROGRAMMING IN THE MULTICS ENVIRONMENT

catalogued storage system. We begin with seven brief examples of
programs which are generally simpler than those encountered In
practice, but which I llustf'ate ways in which on-line storace is
accessed in Multics.

1. Internal Automatic VariabJes. The following program
types the word "Hello" on four successive lines of terminal
output:

a: procedure;
declare I fixed binary;
do I • 1 to ,;

put list (~110");
PUt steIp;
end;

retura;
end a;

The varIable t Is by default of PlJI storace class "internal
automatic": In Mul-tlcs it 15 stored In the st~k of the current
process and Is avaU_le by nane only to procr:.- "a" and only
until "a" returns to its calle... It Is; d~lared binary for
clarity, 50 that tbere will be no quest'en tnthe reader's mind
whether or not a presumably slo.er decl .. l addition Is Involved.

2. Internal Stetlc Variables. The f011o.lna program, each
time it 15 called, types out the nulAbar oftlma. It has been
called:

b: procedure;
declare j·flxed binary Jnternal static Inltlal(l); t

pUt list (j, "calls to b.");
pUt skip;
j • j + 1;
return;
end b;

The variable j Is of PL/I storqe class "Internal static";
In Multics It 15 stored In bls Hntace sectton (discussed later)
and Is available by n-. only to pros.,. .. · b. Its value fs
preserved for the 11 fe of the. process, ,or unt 11 procedure b Is
recompiled, whichever time Is shot"ter. T~e '" ni tla]" dec1 arat Ion
causes the value of j to be Inl tlallzed at the time this
procedure is first used In a process.

3 and 4. External Static. Suppose we wIsh to set a value
from one program and have It printed bV some other program In the
same process:

c:

d:

BASIC ADDRESSING TECHNIQUES

procedure;
declare z fixed binary external static;
z = 4;
return;
end c;

procedure;
declare z fixed binary external static;
put list (z);
put skip;
return;
end'd;

4-5

In both programs, the variable z Is of Pl/l storage class
"external static"; in Multics It is stored in a particular
segment (named stat_ by default, but changeable), and Is
available to all procedures In a particular process, until the
process is destroyed. External static Is analogous to COMMON in
FORTRAN, but with the important difference that data Items are
accessed by name rather than by relative position In a
declaration.

Each variable which Is accessed In this form generates a
dynamic linking fault the first time It is used. later
references to the variable by the same prGcedure on that or
subsequent calls do not generate the fault. A more complete
discussion of dynamic linking appears In a later section of this
chapter.

5. Direct Intersegment References. The following program
prints the sum of the 1000 Integers stored in the segment w:

1
2
3
4
5
6
7
8
9

10
11

e: procedure;
declare w$(1000) fIxed binary external;
declare (I, sum) fixed binary;
sum • 0;
do I = 1 to 1000;

sum • sum + w$(I);
end;

pu t 1 1st (sum);
put ski p;
return;
end e;

The dollar sign is recognized as a special identifier by the
Pl/l compiler, and code for statement 6 Is constructed which
anticipates dynamic linking to the segment named w. Upon first
execution, a dynamic 1 inking fault is trlgger,ed, and a search
undertaken for a segment named w. If one is found, the 1 Ink is
"snapped," which means that all future references will occur with
a single machine Instruction.

4-6 PROGRAMMING IN THE MULTICS ENVIRONMENT

If no segment named w is found, the dynamic linker will
return to command level and report an error to the user. As
described later, It is possible to create an appropriate segment
named w, and then continue execution of the interrup'ted program,
if such action is approprIate.

6. Reference to Named Offsets. The following procedure
calculates the sum of 1000 integers stored in segment x starting
at the named offset u:

f: procedure;
declare xSu(lOeO) fixed binary external;
declare (I, su.> fixed ~inary;
SUM - a;
do I • 1 to 1a,.;

sua • SUM + xtu(I);
end;

put 1 fst (~;
PUt skip;
return;:
end f;

The difference between this example and the previous one is
that segment x Is pr.sumed to have some substructure, with named
Internal locations, called of'fset-s. "Fo Tnltla11 y create a
seament with such a substructure, one normally uses one of the
compilers or asseml>lers, sInce an Inbound Hnleaae section must be
constructed for the segment to I ndlcate- to the II nker where
within the segment the offsets may be found. Unfortunately, the
PL/' language permIts specification of such structured segments
only for procedures, not for data. The ALM assembler can be used
for creating structured data segments. fltc f's' expected that In
the future better techniques will become available.)

7. External Reference Starting With a Cberacter String. In
many cases, one starts. wi til a eharae •• ,. stT Inc ret»'"esentat fon of
the name of a segment wh:lch I s to be aC-ce.ssed,. rn those cases, a
call to the Multfcs storage system Is req.ulred cln order to map
the segment Into the virtual lIlefRCM"y and to obtain a pointer to
t t:

g: procedure(strlng);
declare string character(.);
declare p pointer;
declare (I, sUM) fixed binary;
declare v(lOOG) fixed binary based(p);
caJ I hcs_Smak8Jt.r (s trf IlL p);'
SUtn • 0;
do I • 1 to 1000;

sum • SUR + v(I);
end;

return;
end g;

A PROGRAM WHICH TESTS FOR PRIME NUMBERS 4-7

The calling sequence to hcs_$make-ptr is simplified from
real life. The real calling sequence reQyires specification of
several options unimportant to us here. (this Is the only sample
program which will not work If typed in literally as shown. See
the write-up of hcs_$make_ptr in the subroutine section of the
MPM for the complete calling sequence.)

One may also use, in place of hcs_$make_ptr, another storage
system entry named hcs_$initiate. When using hcs_$initiate, one
directly specifies the path name of the segment desired: no
search is undertaken for the segment as in the case of a dynamic
linking fault. This procedure dfffers greatly from the examples
above, In which a search is involved. An intermediate situation,
in which library routines are used to construct a tree name
starting with an entry name, is found tn the "simple text editor"
example, which appears later in this chapter.

A Prog(~ Which Tests fQL Prime Number~

In figure 4-1 is a typical small PL/I program, which may be
used as a model for many simple caJcylatlons not involving
special Multics system properties. T~e program is confined
entirely to the PL/J language; presumably It would run unchanged
on any computer system which has a PL/I, assuming that all the
necessary PL/I features are available. The program is organized
assuming that input and output will go from and to an interactive
console. The comments following are keyed to the line numbers
printed to the left of the program. (Note: the source program
is typed in withoyt line numbers. We have added them here to
facilitate making comments, with an asterisk indicating lines
typed by the user, as 1n chapter 3.)

line cOI1111ent

5. All identifiers are explicitly declared,
suprise defaults occur, and to make
reading the program for someone else
maintain It.

to be sure that no
easier the job of
who is asked to

7. These two identifiers are not expl1citly used in the
program, but they are implicitly involved tn the put list
and get list statements.

9. Character and bit strings are delimited with the ASCII
double Quote mark in the Multics PL/I language.

9. Note that the upper case and lower case letters are
different, whether appearing in comments, literal strings,
or i den t I fie rs.

13. The underscored word ~ will properly go through all the
mechanisms and come out the other end. If we had used
edit-type I/O statements (that is, format statements) we
would have noticed one minor problem: the character

4-8

1*
2
3
4
5
6
7
8
9

10
11
12
13
III
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36*
37
38
39
40*
41{*)
42
43
44
45*
46{*)
47
48

PROGRAMMING IN THE MULTICS ENVIRONMENT

print prlmetest.pl1

pr imetest: procedure;

declare prime_input fixed binary;
declare.{sqrt,mod) builtin;
declare (sysprfnt,sysin) file;

put list ("Type prime to be tested: II);
,et list (prime_Input);
If prtme(prime_input)

then put ltst Cprlme_lnput, uis a prlme. tI
);

else pu t I J s t (p rt mI!_ i npu t , It t S .wu. apr t me • ") ;
put skip;
return;

prime: procedure{trtal-prfme) returns Cblt(I»;

declare trlal-prlme fixed binary,
trial_factor fixed binary,
last_factor fIxed binary;

last factor • sqrtCtrfal-prime);
do trial_factor • 2 to last_factor;

If modCtrial-prime, trtal_factor) • 0
then return (ItOtlb);

end;
return ("I Ub);

end prime;

end pr 'metes t;

r 1406 1.712 9.359 176

pl1 primetest
PL/I
r 1409 7.041 56.437 1217

prlmetest
Type prime to be tested: 121

121 is D21 a prime.
r 1410 2.960 10.627 557

primetest
Type prime to be tested:

397
r 1410 .305 3.172 98

397
is a prime.

Figure 4-1: A program which tests for prime numbers.

CHECKING ON THE PERFORMANCE OF A PROGRAM 4-9

position counts in format statements are in terms of storage
locations occupied by a character string rather than print
positions required to print the character string. Thus the
string ~ would require 9, rather than 3, spaces in a
format specification. (Three letters, three backspaces, and
three underscores.>

17. This Internal procedure is not recursive, and meets several
other rules which permit the compiler to generate a very
fast (I-instruction) calling sequence to it. Storage for
variables of the Internal procedure Is actually allocated in
the automatic storage area of primetest Itself for this
special case. Thus, non-recursive internal procedures are
quite economical organizing tools.

23. The algorithm used to test for ~imeness Is actually quite
brute force: the only work reduction technique it employs is
to note that at least one factor of a number must be less
than or equal to the square root of the number.

23. Note that the use of the sqrt built-in function involves
conversion from integer to flo,tlng-point representation,
and back. These conversions are automaticallY supplied by
PL/I, but the programmer should be aware when he Invokes
them, so as not to trigger unnecessary conversion.

In the examples of use of the program, note that the ready
message cost of use is substantially larger the first time the
program is Invoked. (Compare 1 ines 43 and 48.) This effect is
due to the initial dynamic linking of the procedure to its
environment, including primarily the Input and output mechanisms
invoked by put and get.

Checking gn ~ performance gL a program

Often, after putting together a new program, one wishes to·
improve its performance. The simplest performance measuring tool
available in Multics is to be found In the ready message. A
s 1 i ght I y more soph is t I cated approach can be" taken by us i ng the
"profile" option of the Pl/l compiler. For example, if one
wished to compile the primetest program using this option, he
would proceed as in figure 4-2.

The numbers printed in the profile are
statement-by-statement counts of the number of times that the
statement was executed, and the number of machIne language
instructions which were involved. The latter number (inthe
column headed "COST") Is shown as the sum of two parts, the
inline instruction count, and the number of transfers out to PL/I
support subroutines ("operators"). Thus, line 23 (containing a
use of the single-precision fixed point modulo operator) was
executed 30 times; it apparently consists of 13 machine language
instructions, one of which is the call to the operator which
performs the mod builtin function. The names in parentheses at

DEBUGGING PROGRAMS ON MULTICS 4-11

the right are those of the operators involved. For example, line
21 of the program takes the square root of a fixed binary
integer. Operator fx1_to_fl2 converts the integer to floating
point representation for the square root routine. Operator
call_ext_out performs the call to sqrt, and operator fl2_to_fx1
converts the result back to integer form.

Other performance measuring tools Include the page_trace
command, which prints out a list of recently-used pages. Various
clock subroutines may be used to time the execution of
subroutines to microsecond precision.

Qebuggjng programs 2n Myltics

A variety of debugging tools are available on Multics. The
most powerful of these is a program named debug, which permits
source-language breakpoint debugging of PL/I and FORTRAN
programs. The debug command also has many feature-s useful to the
machine language programmer, but we will concentrate here on a
small subset of its features which can be quickly and easily
applied to a PL/I program.

To understand the examples given below, one must first know
a little about the Multics stack. The stack is essentially a
push down list used to contain the return points from a series of
outstanding interprocedure calls. It Is also used for storage of
automatic variables. If one were to stop a running program and
trace its stack, he would find, starting at the oldest entry in
the stack, a record of the procedures used to inltia1ize the
process, followed by the command language interpreter, followed
by the procedure called at command level and any procedures it
has called. If an unexpected error occurs (or the user pr~sses
the "Quit" button), the system will mark the stack at its current
level, push it down, and call a new invocation of the coramand
interpreter. Three special commands may then be invoked:
release, hold, and start. If the user types release, the command
interpreter will unwind the stack back to its own previous
invocation, and discard the intervening stack contents. If the
user types hold, the stack contents will be preserved
indefinitely. If the user types start, the system will attempt
to return to the interrupted computation to continue it.
Depending on the nature of the error, and what the user has done
since the error occurred, the restart attempt mayor not succeed.
The user may also type any other command, but upon completion of
that command, the command interpreter will automatically perform
a release operation, unless a hold has been requested. A common
response to an unexpected error is to type hold, use other
commands and debugging tools to discover and repair the error,
and then type start, if it still makes sense to continue running
the program.

Consider, now, the script of figure 4-3: The program
printed on lines 3-11 scans the automatic array named "a", using
illegal negative subscripts. Since the program does not specify

1*
2
3
4
5
6
7
8
9

10
11
12
1~
14
15*
16
17
18
19
20
21
22*
23
24
25
26
27
28*
20*
30
31*
32
33
34

print blowup.pl1

blowup: procedure;

dcl (j,a(10),loop_Index) fixed blnarv,

do loop_Index • -1 to -100000 bv ~1;
j • a(IQop_Index);
end;

end;

r 1839 1.250 5+43

pl1 blowup -table
PL/I, Version 2

WARNING 301
The variable "a" has been refereneed but h.s never be.n ,et.
r 1840 10.351 5+355

blowup

Error: out_bounds_err by blowupl16
refereneln, stack_41777777 (In proces. dtr)
r 1840 1.087 3+35

debu&
/blowup/16at,s

J • ~(loop_lndex);
loop_I ndex
1413 113 ·169
.q
r 1841 .840 4.277 120

Filure 4.3: A sImple example of source lanlua,e debuilina.

V
I

N

~
:::0
o
C')
:::0
:I> :z
!:

z
C')

z
~
:c
"" :z
c:
r­
~

n
(I)

"" z
< -::0 o
Z
!:

"" z
~

DEBUGGING PROGRAMS ON MUlTICS 4-13

that subscript checking should be done by Pl/l, the compiled code
will attempt to do something with the negative subscriPts, in
this case scanning downwards in the stack until the bottom is
reached; a hardware trap will then catch the errant program.

Note that, in preparation for debugging a new program, the
"table" option of the compiler is used, on line 15. This option
requests the compiler to leave its symbol table embedded in the
program, for run-time use. A warning of trouble is provided by
the compiler on line 19, but this does not deter us from trying
the program, on line 22. As predicted, an out-of-bounds fault
occurs when referring to the next Jocat~bn in the stack after
location zero. A standard Multlcs notation for memory locations
is exhibited twice in the error message, once on line 24 and
again on line 25. On line 24 we see the string:

bJowupl16

which is interpreted as Itin the segment named blowup, at offset
16 (octal) locations from the baseu • (This notation should be
read "blowup offset 16".) Thus line 24 gives us the address of
the offending instruction, while line 25 tells us th~
out-of-bounds address which it attempted to reference.*

~

* The message on lines 24 and 25 Is printed by the Multics
"default error handler" which means that the program which was
running had not explicitly arranged to respond to the particular
error which occurred. (A Pl/l "on condttlont1 statement is used
for explicitly catching such errors.) The following errors are
commonly encountered:

linkage_error

record_quot~overflow

an out of range subscript or
uninitialized subscript or pointer
variable was probably used, leading to a
reference to a legal segment number but
an ill egal word address wi th I n the
segment.

a call occurred to a subroutine which
could not be found. It is possible to
type "hold", write the missing
subroutine, compile it, and then restart
the program which got the linkage error.

The user's secondary storage· allocation
has been eXceeded. I f one types "ho 1 d1

',

he may then lIst his directory, delete
something, and then restart the program
which ran into the overflow.

For the cause of and recovery from other errors, the MPM sections
on handling of unusual occurrences and condition names should be
consulted.

4-14 PROGRAMMING IN THE MULTICS ENVIRONMENT

To find out what has gone wrong, we now use the debug
command on line 28: there is no reply when the command name is
typed, so the next line, 29, contains tHe first request to debug.
The syntax of debug requests is straightforward, though cryptic
at first. One specifies first a Multics memory address, then
what to do at that address. On line 29, the string
"/blowup/16&e' specifies the address: starting from segment
named "blowup", go to the 16th location Tn the text. The string
",s" after that address specifies that the contents of that
location should be printed out, in symbolic (source-instruction)
format. Thus we see, on line 30, the line of code which caused
the out-of-bounds fault to occur.

To inspect individual variables to see what has gone wrong,
one merely mentions them by name, as on line 31, and debug will
print out their position (1413 locations from the base of the
stack, 113 from the current stack frame base) and value (-769 in
the example.) Note that this request fOllows the general form of
all debug addressing requests, but that defaults are used
profusely. In the ab$ence of a segment name, the last one
ment i oned (/b I owup/) is used; in the·· absence of spec if i c
instructions for output format, a format appropriate to the
variable (decimal integer) is used; in the absence of any other
instruction, output printing is assumed. In the place where the
variable name is typed, an arbitrarily complex identifier may be
used. Thus, if the program contained a based, two-dimensional
array named x, one could look at an element of that array by
typing:

p- >x (I, j)

The debug command would look up each variable in turn, evaluate
the subscripts, then fetch the array element in question, using
the current value of "p" as a base.

Finally, having satisfied ourselves as to the status of the
program, we exit debug by typing the request on line 33. All
debug requests not related to memory locations are preceded with
a period. Since we did not type hoJdfollowing the error, the
command language interpreter will release the stack contents upon
return from debug. We have no further use for the errant
program, and for this example It makes no sense to repair It and
continue, so a stack release is the appropriate action.

As an example of breakpoint debugging, consider the pair of
programs in figure 4-4. According to plan, one calls the program
"trev" with a string of words; trev calls recursive procedure
"rev" to reverse the order of words in the string; then it prints
the reversed string. When we try to run the program, we obtain
the particularly discouraging comment on line 29 -- apparently
the recursive procedure has run wild, and run out of stack space.
A new process, with a new stack, is created automatically but
unfortunately the current version of Multlcs discards the old
process and its stack, which contain most of the clues needed to

1*
2
3
4
5
6
7
8
9

10
11
1~
13
14*
15
16
17
18
19
20
21

22
23
24
25
26
27*
21
29
30
31
32
33*
34*
35
36*
37
38*
39
40-
41
42*
43
44*
45*
46
47
48
49
50
51
52
53

DEBUGGING PROGRAMS ON MULTICS 4-15

print trev.pl1

trev: procedure(string);

declare string character(*) unaligned,
rev entry(character(*» returns(character(32) varying);
put skip list(rey(string»;
put skip;

end;

r 1819 1.732 4.670 106

print rev.pl1

rev: procedure(string) returns(character(32) varying);

declare string character(*);
i • index (s t rI ng, II ..);

jf j • 0 then ~eturn(string);
else return{rey(substr(string,f»lf" "II

(s~bstr{string,l,J»);

end;

r 1820 .513 4.040 133

treY "now is the time"

Fatal error. Process has terminated. Out of bounds fault on stack.
New process created.
r 1.20 2.006 5.263 127

debug
/rev/&a5<
Break 0 of rev set at 34 from 34
•• trev "now is the t tme n

Break 0 at 1 ine 5 of rev, 220134
string

3561 -447 "now is the time"
.c::
Break 0 atli~e 5 of rev, 220134
string

4372 -6 It is the t .i me "
• be s t ri ng; • c
.c
Break - at line 5 of rey, 220134
string; .c

4542 -6" is the time"
Break - at line 5 of rev, 220134
string;.c

4112 -6" is the time"
QUIT
r 1822 13.873 41.426 557

600100236100

Figure 4-4: Breakpoint debugging

ldq spl100

4-16 PROGRAMMING IN THE MUlTICS ENVIRONMENT

debug the program. (Future versions of Multics will save some
information about the defunot process.)

Since there is no clue as to why the recursive procedure is
not properly stopping its recursion, we enter debug and, on line
34, place a breakpoint in procedure rev at program line 5. (The
string "&a511 means line 5, the character "<" means set a break.)
Debug responds by printing the old contents of the location it
had to modify; this information is not of Interest to us. Now,
we call, from inside debug, out to procedure Utrev", on line 36.
(Any Multics command or program may be called from within debug
by typing the two periods at the beginning of the request line.)

Now; debug calls to trev, and the next thing we know, the
break point is reached, putting us back Into debug, which prints
the message on line 37. We look at variable "string" to see what
has been handed to the subroutine as an ar.ument. Since the
string printed on line 37 is exactly what we expected, we type .c
on line 40, meaning "continue the program until the break point
is reached again." Again the break point is <eftCOuntered, and the
string inspected, and It looks OK. Being impatient, we now type
the special "macro" request on line": "whenever a break
occurs, print the contents of "string", then continue." We again
start. the program on its way, and Its faulty behavior immediately
becomes apparent as the debugger prints lines 46-51: the
argument string Is not changing after the second Iteration.
Inspection of the program reveals .the trouble; the blank
character should have been stripped from the front of "string"
before recursively calling; changing the second argument of the
first substr In line 21 to i + 1 will fix the program.

On line 52, we have exited from our looping program by
quitting out of it. This leaves us at a hlghe-r stack level, with
both our program and our Invocation of the debug command
somewhere earlier in the stack. It also leaves program rev with
a breakpoint Inserted in its code. To be careful, we should now
type the program_I nterrupt command, whi ch will return us to the
most recent invocation of debug, so that we may reset the
breakpoint gracefully. Failure to reset the breakpoint would
lead to mysterious difficulties ("mme2" faults) if we later ran
the program without using debug to control it. Of course we can
also recompile the program, In which case we also get a new copy
without breakpoints. Figure 4-5 continues the example of figure
4-4, using the program_interrupt command to return to the
debugger, on line 55. Now, to see what the stack looks
like, we request debug to trace the stack contents, with
the.t request on line 56. lines 60-78 are the successive
entries currently on the stack with the oldest entry first. The
first four entries, on lines 60-63, represent the procedures
provided by the Multics system to set up the standard command
env ironment, and are un important to us rt ght now, except to
notice that line 63 Is the command language interpreter. Online
64 is the debug command, the result of typing "debug" back on
line 33. While in debug, we called out, on line 36, to the

DEBUGGING PROGRAMS ON MUlTICS

54
55* program_interrupt
56* • t
57
58
59
60
61
62
63
64
65
66
61
68
69
70
71
72
73
14
75
16
77 ,.
19·
80

Depth Segno

o
1
2
3
4
5
6
1

10
11
12
13
14
15
16
17
20
21
22
.q

200
20i)
200
200
216
200
231
231
232
Z2'o-
220
220
220
220
220
220
220
220
220

Offset Name

120 reaJ_init_admin_115711
260 process_overseer_,150S1
460 listen_12304
760 command-processor_13127

1300 debual6651
2630 command-processor_13225
3150 ful'_command.J)rocessor _13006
3600 boun~fulJ_cP_1236i
4010 trevl117
4230 rev 1115
4'00 rev 1115
.. 550 revl115
4120 rev IllS
S070 rev J 115
5240 revJ115
5410 rev 1115
5568 revlllS
5730 revlllS
6l00revl34

r 1825 2.438 7.611 257

fi.ure 4-5: Tracing the call stack.

4-17

program we were debugging. The debug command called out to the
standard command language interpreter, since line 36 c~ntained a
standard Muttles cOIm'Iand line. Thus, ltne 65 describes a second
generation of the same program we saw earlier on line 63. Note,
however, that the location in the stack (the column labeled
Offset) is different for the two generations of the command
language interpreter: the two generations will therefore use
different copies of automatic variables.

The command line typed on line 36 provides as a single·
argument a string (including blanks) enc]osed in quotation marks.
The command language interpreter Is organized in several modules,
such that for the most common (and simplest) syntax, only a small
part of the interpreter is needed. Whenever a more elaborate
syntactical structure is encountered, a more elaborate section of
the interpreter is invoked. In the case at hand, the quoted
string argument triggers a need for the more elaborate
interpreter, so on line 66 we see that a program named
full_command-processor_ was called, and it entered an internal
block which debug has tagged with the name bound_full_cP_.

~---.--~

4-18 PROGRAMMING IN THE MUlTICS ENVIRONMENT

Finally, the command language interpreter constructed a call
to trev, the program being debugged, on 1 ine~,8. Program trev
then called rev, which called itself recursively several times
before we hit the quit button. Notice than the number of
recursive calls to rev found in the stack (IQ in this example) is
greater than the number of times that debug breakpoints were
encountered on 1 ines 35-119. RecaH that on Une II", debug was
instructed to let the pro,r.. rUrl ~w.J,t.hout stopping at
breakpoints, except for printing thjtcQntentS- of the variable
named string. The Multlcs ty.pewrit-er <wet,.t dlacka •• operates
asynchronously, which means that it beatfls typing an output
message, and s tmul taneous 1 y returns contro 1 to the process
or i g I nat i ng the messace. The process can thea"gQ on to its next
step, perhaps productng more· meSSaae51: Wohich the typewriter
package collects In a queue for tile t~rtt.r. rhus In our
exampl e, the program had gotten we 11 altead ·;01. tile· tYJ>eWf'1 ter when
both It and the typewriter output were .stopped.

An alternative way of examining the coftteats of the stack Is
to use the conmand trace_stack, which PF4Vhl.s a .~ealth of
information about each stack level: the"ar.uments used In the
call from the last level, the symbolic tnst~ctlo. which caused
the call, a list of enabled on-condtttoas at the stack level,
details of any faults or signals whichQ¢cu~red, etc. The MPM
wri te-up of trace_stack provides more 4.ta~ls ••. The trace_stack
command is especially useful for situations where somethln,
mysterious has happened, which requrres help from an expert who
Is not available at the moment. The output from trace_stack is
often sufficient to diagnose, or provide etues In the diagnosis
of very complicated problems.

The reader should not feel that these two short examples
have comp Ie te 1 y exp 1 a I ned the i ns~ and outs of us ing the debug
command. However, unti 1 he has had time to l11Q~r'e thoroughly
review the MPH wrl te-up of debug, he may find the samples useful
to imt tate wh I Ie debug I nghl s own pr-oaI'!cam5.

One final comment about symbol tables is of significance:
the symbol table (created by the "table" option of Plll) is
stored in the end of the prog.ram, rn an Qtberwl H. unused area.
If it is not explicitly used, as by the debugger, then it will
not cause any extra pagl~ng activity.. It will" however use;' up
secondary storage space. Thus, It fsre-commended that whllea
new set of programs is being debugged, the table optIon be used
in all compi lations. After one Is. reasonably satisfied that all
of his programs are working properly, he may wish to recompile
without the table option, to save l.ong term secondary storage
charges. ..

The reader should also refer to the MPM Reference Guide
section on the Multics Command Repertoire, where a list of other
useful debugging tools is provided.

ABSENTEE USE OF MULTICS 4-19

Absentee ~ Q£ MuJtics

A common programming pattern Is to develop a program
on-1 ine, using debugging tools and the ability to Interactively
try a variety of test cases to check on a program's correctness.
After- the program is working, one may wish to do a01arge
"production" run. Since the production run may produce much
output or take much time, the programmer does not wish to wait at
his terminal for the results. For such c~ses, he may develop an
absentee job, and submit It for execution. this technique has
several impl ications:

The job is not under control of a terminal, so an
absentee job control segment must be constructed.

Since there is no terminal available, all Input and
output must come from and go to the storage system.

The absentee job is placed In a queue and run as
background to the normal interactive work of the
system. This technique provides a buffer of
pre-emptable resources for Interactive peak loads, and
meanwhile helps keep the system fully uttll~ed. For
these reasons, the chargtn, rate for absentee jobs Is
normally substantially lower than for Interactive work.

The job control language of the Multics absentee facility is
identical to the command language typed at the console. In
general, an absentee job is given a name, say "au. When run, an
ordinary Multics process is logged in, but its Input stream~ Is
attached to a segment named a.absln, and it$output stream to a
segment named Ja.absout. Thus to control an absentee job, one
must first create the absentee input segment which contains the
commands to be executed.

In figure 4-6 is a version of the prlmetest program used
before. It has been modified to be a "production" program by
adding a do loop. One might interactively start this program to
check that it is producing the expected results:
pr lmetest

1 is a prime.
2 is a prime.
3 is a pr tme.
4 Is 1l2.t. a pr i me.
5 is a prime.
6 is 1l2.t. a pr i me.
7 is a prJ

QUIT
r 1519 5.834 20.147 1061

To submit the job for absentee execution, the user first
constructs a control segment to be used for input to the job.
The only Input in this case is the command line required to

, . _, '. " .. ' .'". v':' ':~"." ", >._'_.~-"_"_"._:~_:;~.:;_: •• ~." .• -.-.-."".'-.. __ ,- -' .• _" _ _

4-20 PROGRAMMING IN THE MUlTt-CS EftVIROMM£NT

.: ~;pt~~~r!~~~~j~~t~~i)~~~('~~~.;., ~~'.:: ;~; ..
tr' t_ fl_
~=.,=~~11 .. t.1~ 3:{;·;-i/~·~:~:::'<; -~.: -.'
~"1;< ~~" :?~."~,-:; ~ ~-~.,t~ ;.·tJ·p ~ !~·;n~)~ 1 :-,.1: ,_:

declare

.' . riturAer'", ..) i~: .
- -:.~ . .f~ ~-~- ->.~.; > ,,- ~ f:~

" ;.

.~~JtrJ"; './~ .
. $." " - ~ -,) - ".

n. -~"=t"'jt~!~,*i~ __

.' \

; . ~ "

Fleur. '-6: Production version of t~ "
<. '-~:~4u i. ~1 q ~. i! j ~"

, "->-

.
-,:~l~'-.:: i ~ '1"-

!' - ,: ~.. ..
J '. ~"-f': ~

DYNAMIC LINKING AND BINDING 4-21

execute program prlmetest. Thus, he creates a segment named
prirne.absin, using an editor:

1*
2
3
4*
5*
6*
7
8*
9*

111
11
12*
13
14

edm prime.absin
Segment not found.
Input.
prtmetest
logout .
Edit.
w
q
r 1537 2.373 27+21~

enter_abs_request prfme.absln
23 already requested.
r 1538 ~.8~1 9.083 319

And now, he may go about his business, whether working at
his terminal or logging out, as he chooses. Some time later,
after the jobs ahead of his are processed, a new process will be
logged in and his two cOlllllands wi 11 be executed. When the job is
finished, a segment named prime.a:bsout will appear In his
directory, which he may print on his terminal, or send to the
high-speed printer, as desired.

Our example absentee job uses only the most rudimentary
features of the absentee facility. One can also supply arguments
to be substituted inside the absentee control segment, make
absentee job steps conditional, delay absentee work until a
chosen time, and develop a periodic absentee job which is run,
say, once every two days.

Sometimes, a very elaborate absentee control segment is
constructed, and the user may wish to verify that his absentee
job will operate properly. One u~eful technlque for checking out
an absentee control segment is to use it as a- control segment for
the exec_com command, a macro_conma-nd facility which accepts the
same kind of control segment as does the absentee facility. The
MPM Reference Guide sections onenter_absentee_request and
exec_com contain further information on these facilitles.

DYnamic Linking aag Binding

A particularly potent programming tool of Multics is the
dynamic linking facility. Dynamic linking consists of delaying
the search for and mapping of a subroutine (or data segment)
until the first call for that subroutine (or use of that data
segment) occurs. DYnamic linking is accomplished by having the
compiler leave in the object code of a compiled program a special
bit pattern which, if used in an indirect address reference,
causes a machine fault (trap) to the dynamic linker. The linker
Inspects the location causing the fault, and from pointers found
there, locates the symbolic name of the program being called or

4-22 PROGRAMMING IN THE MUlTICS ENVIRONMENT

the data segment being referenced. It then locates the
appropriate segment, maps it into the current address space, and
replaces the Indirect word with a new one containing the address
of the program or data entry point, 50 that future references
\1; 11 not cause a dynamic 1 inking fault.

There are many ways in which dynamic linking can be used,
but the following three are probably most significant:

• to permit initial debugging of collections of programs
before the enti re collection is completely coded.

to permit a program to include a conditional call to an
elaborate error handling or other special-case handling
program, wi thout invokhlC a searcll Tor Or mapping of
that program unless the condition arises In which it is
actually needed.

to permit a group of
collection of related
ob ta I ns the l8,te5 t copy
it becomes available.

prQgranmers to work on a
programs, such that each one

of each 5uhrou.tlne as soon as

Whenever related subprograms are separately translated, they
are normally linked by the Mult1cs dyftamlc lhrker at the time
they are executed. If a set of related programs Is known to
always require certain lrnk.s, then aproeram·known as the binder
may be used to pack them into a sln&le sesment, permanently link.
any cross references, and condense any cORnolfoutward references
into a sinele OCttbound Hnk. In ret_n for the loss of
flexfblll ty whlcb COMes wf ttl such permanent' bhnting, one reduces
both the space reqvh"ed for the ProcraMs anc:t the number of
1 fbrary searches .. feb st be undert"" ·~o run the co'llection
of programs. In add. tlon, binding of aeparwt.Ty; translated
subroutines retains most of the advantaaes of separate
tTanslat't·on. (An alternative sc......W0U4d be to collect the
proceclvres toaether' into aslne'l. clantprocedure-,and then
recOIIIplle. ThIs .turnMtr sclt'elle; has the .~~ that a
very lone reCOlllt-ft at hm Is: Nl.cfect far,..,.., ana-:tine chanae: to
afty part of the cot 'teet fon of prear.-s:.)

To provide a brief eXi1lllP'le of the ,ing of dynanfc
llnkina, consider the sample console session' of figure 1&-1.
Procedure k, on lines 9-1", reads an inleser from the console,
and then calls one of three dl fferent.S_f!QUti'llJ8$. Only one of
these subroutines, nallled y, actually has bee. written. On line
}I., k Is Invoked, it as-lts for: lftJMlt~, __ tile lftpot value which
causes y to be calle4 1$· typed on lbae 3J. ll'ne 31 provides
evidence that y was' called. Note tltat"att.h_h tlhe stat...,.t on
1 Foe II was executed, the: cOMntiona} test "faf Jed" and a cal' to
procedure x (willett It_ nett yet been,wlt:l,t_.> cUd not occur.
S fnce- 1 tnkln. Is done ondelland,. aod·1tO ,d_aml, for x occurred,
tl'lef'ac:::t of its '....-eJltsteDCe h. not t ... t us f.... runelae our
procedure' y ..

1*
2
:5
4
5
6
7
8
9

10
11
12
13
14
IS
16
17
18
19
20*
21
22
23
24
25
2-6
27
28
29
30*
31(*)
32
33
34
35*
36{*)
37
38
39
40
41
~2
43*
44
45

DYNAMIC LINKING AND BINDING

print k.pl1

k: procedure;

declare
declare
declare

(x,y,z) external entry;
i fixed binary;
(sysprlnt,sysin) file;

put 1 is t ("What now? ft) ;
get list (i);

if i • 1 then can x;
If i • 2 then can Yi
if I • 3 then call ~;
return;

end k;

r 927 1.075 3.99' 178

print y.pl1

y: procedure;
declare sysprint file;
put Jist ("y ha5 been caJled. tI

);

put skip;
end Yi

r 927 .699 1. 8'06 79

k
What now? 2

y has been called.
r 928 .858 2.812 112

k
What now? 3

Error: linkage error by k$k1165
Refe rene i ng z 1 z.
Segment not found.
r 928 1.318 5.855 252

hold
r 928 .199 2.062 38

Figure 4-7: Dynamic linking example.

4-23

--

4-24 PROGRAMMING IN THE MUlTlCS ENVrROt~MENT

46* edm z.pll
47 Segment not found.
48 Input.
49*
SQ*
51-
52*
53·
Sfl*
55
56·
51*

z:

Edit.
w
q

procedure;
declare sysprint file;
put 1 ist ('teZ has been called");
put skip;
end z;.

5& 223 r 929 1.218 5 .. 27'
59
.. D*
61

pl1 z
Pl/I, Version 2

U 28 r 930 7.136 21.651
63
". start
65 Z has been ca.lled
66 r 931 .875 2.132 lSI

Fi~ure 4-7, Continued •

. On 1 ine 35, k is invoked again, this time with a request to
call procedure z. Since z does not yet exist, the default error
message on 1 ioes 38, 39, and 40 explains that a 1 inkage error
occurred, when subroutine k attempted to reference subroutine z.
I{ote, by the way, that 1 ine 38 uses on~ convent ion, k$k, to refer
to segment k, ent.ry poin.t k, whi Ie I ioe 39 uses a di fferent
convention, zLz, t.o refer to segment z, ent.ry p.oint z. These twO'
conventions should be considered equivalent. (One arose from a
standard compiler syntax, while the other arose from a standard
assembler syntax.)

To illustrate tnat a linkage error is normally recoverable.
a hal d command is typed on. 1 ine 43, and then a program named z is
typeq in and compiled on lines "6-62~ (See figure "'-7,
cont.inued.) When start is typed on line 64, we see that t.he
original call (from line 14 in procedure k) to subroutine z has
now succeeded.

For more information on the details of dynam,ic linking and
binding see the MPM Reference Guide sections on object segments,
system libraries and search rules, and the command bind ..

A Simple I.u.l. Editor

• Our next sample program is a text editor similar to, but
simpler than, the edm command used in Chapter Three.· It is a
typical example of an interactive program which makes use of the
Multics storage system via the virtual memory. tn overview, the

A SIMPLE TEXT EDITOR

editor creates two temporary storage areas, each large enough to
hold the entire text segment being edited. It copies the segment
into one of these areas, so as not to harm the original and then,
as the user supplies successive editing requests, constructs in
the other area an edited version of the segment. When the user
finishes a pass through the segment, the editor interchanges the
roles of the two storage areas for the next editing pass. When
finished the appropriate temporary storage area is then copied
back over the original segment.

For this example, we have available a program listing as
produced by the PL/I compiler. The program itself is derived
from the edm command of Multics, and it exhibits several
different styles of coding and commenting, since it has had many
different maintainers.

The reader will also notice that some comments appear to be
critical of the program style or of interfaces to the Multics
supervisor. These comments should be taken in the spirit of
illumination of the mechanisms involved. Often they refer to
points which could easily be repaired, but which have not been in
order to provide a more interesting illustration. Most of the
points criticized are minor in impact. Finally, some comments
mention effectiveness of compiled code for certain constructs.
Experience has shown that as PL/I compiler technology advances,
the range of constructs which produce efficient compiled code
increases. Such comments, then, should be considered to be
dated, and subject to change.

The program begins on page 40 following the comments.

Line number

fi rs t
unnum­
bered
1 i ne

fourth
unnum­
bered
1 i ne

1

The compiler both records here and encodes into
the binary object program the date and time of
compilation and the version of the compiler used.
The print_link_info command may be used to print the
date and time of compilation stored in the object
program. If it is not identical to that printed at the
top of the listing, then the listing is for a different
compilation, and should be suspected as being possibly
a different program.

The command "p11 eds -map -optimize" was typed
at the console. This line records the fact that
the map and optimize options were used. The map
option caused a listing and variable storage map to be
produced. A source segment named eds.p11 was used as
input; the compiler constructed output segments named
eds.list (containing the listing) and eds (containing
the compiled binary program.)

No explicit arguments are declared here,
eds should be called with one argument.

even though
The argument

4-26

4

6

7

9

PROGRAMMING IN THE MULTICS ENVIRONMENT

is instead picked up with a library subroutine which
can return an error Indication if the argument is
missing. Since eds is used as a command, it is a good
human engineering practice to check explicitly for
missing arguments; the PL/I language has no feature to
accomplish this check gracefully. (See lines 84-89.)

To avoid errors when program maintenance is performed
by someone other than the original coder, all variables
are explicitly declared. This practice not only avoids
surprises, but also gives an opportunity for a comment
to indicate how each variable Is used.

One default which is used here (and is subject to some
debate) is that the precision of fixed binary integers
is not specified, leading to use of fixed binary(17).
This practice has grown up in an attempt to allow the
compiler to choose a hardware supported precision, and
in fear that an exact precision specification might
cause generated code to check and enforce the specified
precision at (presumably) great cost. In fact, most
such considerations are not relevant to the Multics
Implementation; for all aligned variables with
precisions less than one word (fixed binary(3S», the
compiler generates code which uses word length hardware
and does not enforce the precision specification.
Ideally, one should consider the expected range of each
variable and specify an appropriate precision for it,
rather than depending on a forgiving implementation
which accidentallY supplies more precision than
requested.

Most character strings in this program are declared
aligned so as to insure that the fastest possible
accessing code will be produced. The only exceptions
are character strings which are to be used as arguments
to supervisor entries which require unaligned strings.
(See lines 25, 62, and 440). In programs such as this
one, the storage space loss due to use of the aligned
attribute on a few character variables is generally
trivial compared with the space required to hold
accessing code and time required to execute it.
Obviously this comment might not hold in a case where
many hundreds or thousands of character strings are
involved.

All line buffers are designed to hold one long typed
line (132 characters for input terminals with the
widest lines) plus a moderate number of
backspace/overstrike characters. To support memorandum
typing, the buffers permit a 70-character line which i.s
completely underlined. Note also that the current
typewriter input conversion package has a defect which
requires that the original input line, before erase and

10

12

17,18

18

25

34

36

40

A SIMPLE TEXT EDITOR 4-27

kill editing, and before overstrike canonicalization,
fit into the character buffers provided by the user for
correct conversion to take place.

The variable named code has precision 35 bits, since it
is used as an output argument for several supervisor
entries which return a fixed binary(35) variable. It
would seem appropriate, on a 36-bit machine, to use
fixed binary(35) declarations everywhere. However, use
of fixed binary(35) variables for routine arithmetic
should be avoided since, for example, addition of two
such variables results in a fixed binary(36) result,
forcing the compiler to generate code for double
precision operations from that point on. One must be
careful of the Pl/I language rule which requires the
compiler to maintain full implicit precision on
intermediate results.

Automatic variables with initial values are set to
their initial values every time the program is entered.
This method is at least as effective as a series of
initialization statements at the beginning of the
program, and perhaps clearer to the reader.

All editing is done by direct reference to virtual
memory locations. The variable from_ptr is set to
point to a source of text, and the based variable
from_seg is used for all reference to that text.

The general operation of the editor
from one storage area to another,
The names from_seg and to_seg are
storage areas.

is copy the text
editing on the way.
used for the two

It is necessary for this program to know the t/O stream
name on which input will be typed. Programs which
perform less sophisticated input operations can often
get along with system supplied defaults for the I/O
stream names. (See comment on line 440.)

The Pl/I language provides no direct way to express
literal control characters. The technique used here,
while adding clutter to the program listing at least
works and is machine independent.

One set of supervisor interfaces calls for 24 bit
integers; this declaration guarantees that no precision
conversion is necessary when calling these interfaces.
(See line 97).

Supervisor entries generally use fixed, rather than
varying, strings. (In an earlier compiler
implementation, varying strings were very inefficient,
and based varying strings were forbidden.) Thus, when

4-28

51

52

53

5S

56

PROGRAMMING IN THE MULTICS ENVIRONMENT

calling older supervisor entries it is occasionally
necessary to simulate a varying string by using a fixed
string and an integer count of the number of characters
in the string. (See lines 84 and 93 for the single
example in this program.)

Subroutines com_err_ and loa_ are called with a
different number of arguments each time, a feature not
normally permitted in PLfl. The Multics
implementation, . however, has a feature to permit such
calls to be compiled. The "options" clause warns the
compiler that the feature is to be used for this
external subroutine.

All subroutines other than com_err_ and ioa_ are
completely declared in order to luarantee that the
compiler can check that arguments being passed agree in
attribute with those expected by the subroutine.
Warning diagnostics are printed if the compiler finds
argument conversions to be necessary.

The procedure cu (short for command utility) has
several different entry points. The Multlcs PLfl
compiler specially handles names of external objects
which contain the dollar sign character. The dollar
sign Is taken to be a separator between a segment name
and an offset name in the compiled external linkage.
Thus, this'l ine declares the entry point name arLPtr
In the segment name cu_.

For many procedures, the segment name and entry point
name are Identical, so the compiler also permits the
briefer form cv_dec_, which Is handled Identically to
cv_dec_$cv_dec_.

The hardcore (ring zero) supervisor entries are all
easily Identifiable since they are entered through a
single Interface segment named hcs_. Segment hcs_
consists of just a set of transfers on to the
subroutine wanted. A transfer vector Is used to
isolate, in one easily available location, all gates to
the Multics supervisor. Also, it Is in principle
possible to dynamically replace a supervisor routine,
by changing a single transfer instruction.

Note that supervisor entry hcs_$make_seg takes
unaligned character strings for its first three
arguments. This property will turn out to be a
nuisance later (line 95) since the library subroutine
which constructs the arguments for hcs_$make_seg
returns aligned character strings. See the comments on
lines 93 and 95 for more information.

67

68

73,74

74

74

A SIMPLE TEXT EDITOR 4-29

This implementation-dependent declaration is a based
structure, designed to overlay on top of a 64K Multics
segment, and thereby allow construction of a pointer to
the midpoint of the segment. The declaration depends
on fixed binary variables of precision less than 36
bits occupying one word each.

The comment on this line consists of a single ASCI I
control character, for form feed (octal 014). The
closing syntax for the comment appears at the top left
edge of the next page. Such "vertical punctuation"
between major parts of a program is recommended for
program readability.

The segment name is copied into an intermediate storage
space since it may be used in an error comment. Note
that we should not use the variable ename as the second
argument in the call to hcs_$make_seg, since ename is
aligned and hcs_$make_seg requires unaligned input
arguments.

The first step in the program is to obtain a pointer to
a "scratch" or temporary segment in which intermediate
copies of the text being edited may be stored.
Subroutine hcs_$make_seg will create a segment, if one
does not already exist with the specified name. The
binary string specifies that if a segment is created,
the system should permit read and write access to the
segment. The system creates the segment, maps it into
the address space of this process, and returns a
pointer in the variable from_ptr. The first argument
to hcs_$make_seg specifies the name of the directory in
which the segment should be located. A null string, as
in this case, indicates that the segment is to be
created in the process directory, a suitable home for
temporary segments. The third argument is a place for
a reference'name, which would be specified if there
were to be later references to the segment to be
accomplished by dynamic linking. Since no such
reference will occur, a null string is specified.

Although our program has no declared static variables,
the segment eds_temp is now effectively a
program-created static variable. If, for example, one
were to quit out of the editor, issue a "hold" command
to maintain the stack level, and then reinvoke the
editor at a new, deeper, stack level, the second
invocation of the editor would, upon encountering line
74, obtain a pointer to the same segment, eds_temp,
that is being used by the earlier, interrupted
invocation. If the second invocation of eds overwrites
eds_temp, then upon later return to the earlier,
interrupted invocation one would probably be in deep
trouble. Three different techniques could have been

4-30

75

77

78

80

84

85

PROGRAMMING IN THE MUlTICS ENVIRONMENT

used to avoid this trouble: 1) document the restriction
that the editor cannot be used recursively, or 2) put a
check In the editor to see if a previously created
eds_temp exists, and give warning if one does, or 3)
implement an automatic, rather than a static, temporary
segment, by using a guaranteed unique name (Multics
subroutine unique_~hars_ can be useful here) for the
temporary segment.

If there was trouble creating a buffer segment,
hcs_$make_seg returns a null pointer. It also returns
a status code, but since a non-zero status code is
returned in some non-error cases (e.g., when a segment
named eds_temp was already there) the easiest test for
a disastrous error is on the returned pointer.

The subroutine com_err_ should be called to print out
the error message associated with the returned status
code. However, the calling sequence is quite long, so
an internal subroutine, called from many places in eds,
minimizes the amount of generated call setup code.

One exits from a Multics command by simply returning to
its caller. (See also line 351).

(See comment re line 67). Here, in an economy ITK>ve, we
create a pointer to the midpoint of the segment just
created. We thus avoid the need to create two
temporary segments for editing. At this point from_seg
points to the base of the segment and to_seg points to
the midpoint. The two halves of the segment will be
used as two buffers for editing. Note that this
strategy restricts the maximum size of a segment which
may be edited, yet the editor nowhere checks to see if
this maximum size is being exceeded, an unfortunate
omission. Since lack of a check could cause
overwriting of data, a program with this defect would
not be considered acceptable for the Multics command
library.

~~hen a user types a command such as "eds al pha" the
first string of characters is taken as the name of a
procedure to be called, while succeeding strings are
taken as character string arguments to that procedure.
Rather than declaring eds to have one argument, which
would not permit a graceful exit if no argument were
typed, we pick up the argument with subroutine
cu_$arg_ptr, which returns a pointer to the beginning
of the unaligned character string representation of the
first argument, which eds considers to be the name of
the segment to be edited.

For many
indicates

subroutines, any non-zero
that the subroutine could

status code
not proper 1 y

88

93

93

I

95

A SIMPLE TEXT EDITOR 4-31

complete, and recovery action is appropriate. In this
case, the most likely error is that the argument is
missing.

When an error occurs now, we do not immediately return,
since we have created a temporary segment, and should
clean up after ourselves first. Thus the transfer to
quit1 rather than a return. (See line 348.)

Assuming that a pointer to an argument was returned, we
must now convert that argument to a standard (directory
name, entry name) pair. The subroutine expand_path_
implements the system-wide standard practice of
interpreting the typed argument as either a path name
relative to the current working directory, or an
absolute path name from the root, as appropriate.

The third and fourth arguments to expand_path_ are
(unnecessarily) required to be pointers to the
character strings in question, rather than the strings
themselves. Because pointers are the formal arguments,
neither the reader, nor a mechanical argument checking
program, can detect whether or not the real arguments
being passed behind the pointers match In type with
those expected by the writer of expand_path_.
Examination of the MPM write-up for expand_path_ tells
us that aligned character strings are required for the
third and fourth arguments, and an unaligned character
string for the first one. (This interface is a
left-over from, a time when character string arguments
were very expensive to pass directly.) In such cases,
it is a good practice to represent the arguments as
shown, for clarity, rather than by setting and passing
pointer variables whose purpose is not clear to the
next maintainer of the program. In general, it is a
good practice to consider pointer variables to be
escapes around missing language or system features, and
therefore to isolate their use in a way which makes
clear what is being escaped around. This program
follows this practice whenever possible, but some older
supervisor interfaces force a departure.

We now call hcs_$make_seg again, to either create or
get a pointer to the source segment to be .edited, this
time specifying the directory and entry names returned
by expand_path_. As mentioned earlier, hcs_$make_seg
requires unaligned character strings in its first three
arguments, but ename and buffer are the aligned return
values from expand-path_. Therefore, the compiler,
noting that the declaration on line 56 disagrees with
those on lines 9 anci 15, will automatically generate
code to copy the ali,nedstrlngs over into unaligned
temporary variables'for the duration of the call. The
compiler will normally print a warning diagnostic when

4-32 PROGRAMMING IN THE MULTICS ENVIRONMENT

it generates such code, in case the programmer doesn't
realize that he is forcing a type conversion. To
suppress the warning message, the first two arguments
to hcs_$make_seg have been placed in parentheses, which
are taken by the compiler to be an explicit request for
conversion; therefore no message is printed.

OccasionallY one will encounter an extremely bad
practice which has been used to get around the argument
copying: subroutine hcs_$make_seg may be misdeclared
to take aligned arguments. Since it happens that the
Multics implementation of aligned character strings is
identical to unaligned character strings which start on
a word boundary, the misdeclaration happens to work.
This mapping together of aligned and a subset of
unaligned does not necessarily hold in other PL/I
implementations, and it does not hold in Multics for
variables other than strings. In any case, use of such
constructs is an outstanding example of bad programming
practice for two reasons: first, it relies on obscure
properties of the local implementation; second, one
would like to have available a mechanical technique for
detecting accidentally mismatched arguments;
intentionally mismatched ones would then frustrate
mechanical verification.

97 The storage system provides for every segment a
variable named the bit count. For a text segment, by
convention, the bit count contains the number of
information bits currently stored in the segment.
Subroutine hcs_$status_mins obtains the value of the
bit count.

97 Clearly, the calls to expand_path_, hcs_$make_seg, and
hcs_$status_mins could have been a single subroutine
call to a sUbroutine which performs all three
functions. Such an interface would eliminate the need
for this procedure to care about (and provide storage
for) such things as the number of characters in the
typed argument string, and the name of the directory
containing the segment being edited. The hassle about
aligned and unal igned strings could be avoided, too.

99 If the segment to be edited did not previously exist,
(that is, the call to hcs_$make_seg created the segment
rather than merely returning a pointer to it) then the
bit count will be zero, and the editor assumes that is
should start in input mode.

103 This statement converts the bit count to a character
count. Note that we have here embedded knowledge of
the number of hardware bits per character in this
program. If the system-wide standard had been to store
a character count with a segment instead, it would not

A SIMPLE TEXT EDITOR 4-33

have been necessary to have an implementation-dependent
statement here. Unfortunately, a stored character
count would get the system into the business of
maintaining an interpretation of the segment's
contents, which it currently does not do. A still
better strategy would have been to store a character
count in the segment itself, say in the first word,
thus maintaining the view that a segment maintains its
own interpretation.

103 The PL/I language specifies that the result of a divide
operation using the division sign is to be a scaled
fixed point number. To get integer division, the
divide built-in function is used instead.

104 Here, we invoke some of the most powerful features of
the Multics virtual memory. This simple assignment
statement copies the entire source segment to be edited
into the temporary buffer named from_seg. Highly
optimized machine code performs the actual copy loop.
Note that we are regarding the entire text segment as a
simple character string of length csize. We may regard
it this way because the storage representation for
permanent text segments is chosen to be identical to
that of a PL/I fixed character string.

106 Be sure to read the comments embedded in the program,
too.

109 Subroutine ioa_ is a handy library output package. It
provides a format facility similar to PL/I and FORTRAN
format statements, and it automatically writes onto the
I/O stream named user_output, which is normally
attached to the interactive user's terminal. When used
as shown, it appends a new line character to the end of
the string given. Programmers who are more concerned
about speed than about compatibility with other
operating systems use ioa_ in preference to PL/I "put"
statements, because ioa_ is a less general facility
which does not touch nearly as many distinct storage
pages.

111 Here we have another interface which (unnecessarily)
requires use of a pointer in its first argument.
Again, one result of this obsolete practice is that
complete type-checking by the compiler is not possible
for that argument. Some of the more sophisticated I/O
system entries use a pointer in the same position, but
with a better reason: those entries can transmit
variables of various types on different calls, so no
single variable declaration could suffice.

111 Subroutine ios_$read_ptr is often used for input rather
than the. PL/I statement "read file (sysin) into "

4-34 PROGRAMMING IN THE MULTICS ENVIRONMENT

again because the ios_ entry has fewer options and
therefore touches fewer storage pages. The PL/I
facility ultimately calls on the Multics ios_ package
anyway. (Again, if one wished to write a program which
would also work on other PL/I systems, he would be
be t te r adv i sed to use the PL/I I/O s tatemen ts ins tead.)

112 For human engineering, blank lines are ignored by the
editor. Since complete input lines from the typewriter
end with a new line character, the length of a blank
line is one, not zero.

114 The code to isolate a string of characters on the typed
input line is needed in four places, so an internal
subroutine is used. This subroutine is not recursive,
which makes it possible for the compiler to construct a
one-instruction calling sequence to the internal
procedure. Certain constructs (e.g., variables of
adjustable size declared within the subroutine) will
force a more complex calling sequence. For details,
one should review the documentation on the Multics PL/I
implementation.

116 Although the dispatching technique used here appears
costly, it is really compi led into very quick and
effective code -- 4 machine instructions for each line
of PL/I. For such a short dispatching table, there is
really no point in developing anything more elaborate.
If the table were larger, one might use subscripted
label constants for greater dispatching speed.

121 Human engineering: the typist is forced to type out
the full name of the one "powerful" editing request
which, if typed by mistake, could cause overwriting of
the original segment before that overwriting was
intended.

131 The format and decimal conversion facilities of ioa_
are used in a simple way in this example. The "not"
sign in the format string indicates where a converted
variable is to be inserted; the character following the
not sign indicates the form (in this case, a character
string) to which the variable should be converted. The
first argument is the format string, remaIning
arguments are variables to be converted and inserted in
the output line:

132 Whenever a message is typed which the typist is
probably not expecting, it is good practice to discard
any type-ahead, so that he may examine the error
message, and redo the typed lines in the light of this
new information.

138

142,143

150

152

161

177,187

206

319

A SIMPLE TEXT EDITOR 4-35

The general strategy of the editor is as follows:
lines from the typewriter go into the variable named
"buffer" until they can be examined. Another buffer,
named "line" holds the current line being "pointed at"
by the eds conceptual pointer. Subroutine "put" copies
the current line onto the end of to_seg, while
subroutine "get" copies the next line in from_seg into
the current line buffer.

If ios_$read_ptr returned a varying string rather than
a fixed string and a count, these two statements could
reduce to "1 i ne = buffer". t-lore use of vary i ng or
adjustable strings would probably simplify the
appearance of this program quite a bit.

The procedure get_num sets up the variable
the value of the next typed integer on

n to contain
the request

is not an line. Such side-effect communication
especially good programming practice.

The delete request is
from from_seg, but
If deletion were a
worthwhile to use
ahead the pointer in
copy operation.

accomplished by reading lines
failing to copy them into to_seg.
common operation, it might be

more complex code to directly push
from_seg, and thus avoid a wasted

More side-effect communication: the variable edct is
always pointing at the last character so far examined
in the typed request line.

All movement of parts of the material being edited is
accomplished by a simple string substitution, using
appropriate indexes.

The locate request is accomplished by use of the index
built-in function, used on whatever is still unedited
in from_seg.

A negat i ve number in the "nex ttl reques t resu 1 ts in
moving the conceptual pointer backwards. The resulting
code is quite complex for two reasons:

a) The eds editing strategy requires interchanging the
input and output segments before scanning
backwards, so that the backward scan is with regard
to the latest edited version of the segment.

b) At the time this program was written, there was no
Pl/I feature to perform an "index" function
starting from the end of a character string rather
than the beginning. The "reverse" built-in
function could now be used.

4-36

348

362

363

429-431

440

446

457

PROGRAMMING IN THE MULTICS ENVIRONMENT

Before exiting from the editor, the temporary segment
should be cleaned up. The question of whether the
temporary segment should be deleted or merely truncated
is a slightly fuzzy one. Since the editor is almost
certain to be used several times in a process, the
choice was made here to nQl delete it, so that later
invocations of the editor \~ill result in a faster
response from make_seg. If, on line 74, we had used a
unique name for the temporary segment, then we should
surely delete it here, since no one will ever ask for a
segment by that name again.

Another human engineering point: since the user may
have typed several 1 ines ahead, the error message
includes the offending request, so that he can tell
which one ran into trouble and where to start retyping.

Note a small "window" in this sequence of code. If the
editor is delayed (by "time-sharing") between lines 362
and 363, it is possible that the message on line 362
will be completed, and the user will have responded by
typing one or more revised input lines, all before line
363 discards all pending input. Although in principle
fixable by a reset option on the write call, Multics
currently provides no way to cover this timing window.
Fortunately, the window is small enough that most
interactive users will go literally for years without
encountering an example of a timing failure on input
read reset.

The input and output editing buffer areas are
interchanged by these three statements. Here is an
example of localizing the use of pointer variables to
make clear that they are being used as escapes to allow
interchange of the meaning of PLfl identifiers.

To go along with the entry point ios_$read_ptr which
used stream name user_input by default, £:lultics does
not have a corresponding reset entry with a default
stream name. As a result, we must embed the stream
name "user_input" in this program.

Calls to com_err_ and ioa_ take more setup than most,
because each requires passing of argument descriptors
so that the subroutine at the other end can figure out
how many and what type of arguments have been passed.
Since this editor always uses the same arguments to
call com_err_, a single call in an internal subroutine
avoids having multiple copies of the argument setup
code.

This editor considers typed-in tab characters to be
just as suitable for token delimiters as are blanks.
Ideally, tab characters would never reach the editor,

477

A SIMPLE TEXT EDITOR 4-37

instead having been replaced by blanks by the
typewriter input routines. Such complete
canonicalization of the input stream would el imlnate
lines 457-464, but would also require a more
sophisticated strategy elsewhere to handle editing of
text typed in columns.

The cv_dec_ library routine is used here rather than a
P L/ I 1 anguage featu re, because cv_dec will a 1 ways
return a value, even if the number to be converted is
ill-formed (in which case it returns zero.) Thus the
editor retains complete control over the error comments
and messages which will be presented to the user. Such
control is essential if one is to construct a
well-engineered interface which uses consistent and
relevant error messages.

The items printed after the program 1 isting by the compiler
do not have 1 ine numbers. They are referred to in the following
comments by name.

The listing of all variables includes a cross-reference
listing, by line number, to facilitate locating all uses of a
given variable. This cross-reference listing is also useful for
discovering unnecessary variables, which are set and never
referenced, or perhaps never referenced at all. Any variable
which is referenced only once is suspect, except for external
subroutines which may happen to be called only once. Variables
never referenced at all appear in the immediately following list.
~ote that structure names used only as qualifiers (e.g., a.b.c)
do not count as uses of the outer names (e.g., a and b). Passing
an entire structure as an argument, or structure substitution,
would count as a use.

(See listing of identifier alt lth). The default precision
for fixed binary numbers is 17 bits ;ith no fractional part.

"TH E RE HERE NO tJM1ES U ECLARED BY CONTEXT OR I MPL I CAT ION" .
This comment was the result of the consistent practice of
explicitly declaring everything. If some identifier had not been
declared, it would appear in a separate 1 ist here, and the
compiler would also print a special warning message to the user.

"STORAGE REQU I RH1ENTS FOR TM I S PROGRAf1". The resu 1 t of
compil ing the above program is the creation of two segments: the
listing segment (printed here) and a segment containing a binary
machine language program, known as the object segment. The
object segment actually contains several different parts, in a
format which is interpreted by the mechanisms used for 1 inking to
and executing procedures. The numbers printed under this heading
require the following picture of an object segment for
interpretation:

4-38 PROGRAMMING IN THE MULTICS ENVIRONMENT

(location 0

text

definitions
object

----------------static link

symbol

• object is the entire segment.

• ~ is the binary machine language program,

• definitions is a set of character string names of entry
points to this segment and procedures which it calls.

· link is a prototype linkage section, to be copied into
the linkage/static segment when this procedure is first
used.

static is the part of the prototype linkage section in
which PL/I internal static variables are allocated.
Initial values for such variables are stored here.

• Symbol contains relocation bits for the text and
linkage areas, in case this segment is to be
permanently bound together with some other object
segment. It also contains other things such as the
date and time of compilation and, if the table option
is specified to the compiler, a symbol table, for
debugging. The example shown here did not use the
table oPtion, so the symbol section is quite small.

All of the numbers describing storage requirements are printed in
octal, so, for example, the binary machine instructions occupy
3015 (octal) locations or 1549 (decimal) locations. Since the
program contains about 315 executable statements, each source

A SIMPLE TEXT EDITOR 4-39

program line has apparently expanded to an average of about five
machine language instructions. The program is shown as using two
words of static storage, despite the lack of variables declared
to be internal static. The two words of static storage are
allocated by the compiler for use by program trace and debugging
packages.

Following the object segment description are details about
automatic storage allocation. All internal procedures except
get_token share automatic storage with the main editor program,
which means that fast subroutine calls are compiled to them.
Subroutine get_token could have used a fast subroutine call, but
the compiler, noting the call to get_token from another internal
subroutine (on line 475) conservatively chose to use a full call,
since a back call from get_token might have caused recursion.
Future versions of the compiler may attempt to trace the flow of
such cross calls to guarantee lack of recursion, and thus permit
fast calls in more cases.

"THE FOLLOWING EXTERNAL OPERATORS ARE USED BY THIS PROGRAM."
Many frequently used PL/I features are implemented in a library
segment named pl1_operators_, and are used by fast subroutine
calls compiled into the program. It is useful to get a feeling
for what kinds of linguistic constructs result in such calls, by
examining a detailed machine language listing some time.

The list of numbers at the end of the program provides a
complete map of the machine instructions generated by each
statement. This map is useful when debugging following the
unexpected printing of a message such as "Out of bounds fault at
1 ocat ion 1104 of segmen t eds. II

Although it was not printed here, it is also possible (by
using the -list option) to have the compiler print out the
detailed machine language program which it generated. Such a
printout is useful for reviewing the performance of a program,
since it may provide clues about use of PL/I constructs which are
inherently expensive to implement.

(text continues on page 55)

HANDLING LARGE FILES ON MULTICS 4-55

Handling Large Files on I"ultics

A frequent point of confusion about Multics concerns the
handl ing of large data files within the segmented virtual memory
environment. A .fll..e., in hultics terminology is a (usually
structured) collection of data of arbitrary size. A file which
happens to require less than 256K words of storage is usually
stored in a single segment of the t~ultics storage system, and is
addressed by mapping the segment containing the entire file into
the current address space. Source and object programs, and
small, linear ASCII text fi les are examples of files handled this
way. A file which is larger than 256K words (or which is smaller
but may someday grow that large) is usual ly stored in several
segments in a single directory in the Multics storage system, and
is addressed by mapping relevant parts (records) of the file into
the current address space. The directory contains, in addition
to the raw data of the file, any maps or indexes needed to
maintain its internal organization. Three file management
facil ities (sometimes called Access Methods on IBM systems) are
available to handle the details of setting up, indexing, and
searching of files. These are:

1. Multi-segment files (MSF): There is a system-wide
standard format for ASCI I text files which require more
than 256K words of storage. Most translators, for
example, are prepared to produce very long output
listings for the printer using this format; the high
speed line printer facilities also recognize the
format.

2. File manager: A general purpose, record-oriented file
manipulation system provides sequential record files
and indexed (keyed) record files of up to 100 mill ion
bytes. The files are accessed using the virtual
memory: one calls to the file manager giving the index
or key of the record desired; the file manager returns
a pointer to the location of that record in the address
space, and the program then can manipulate the contents
of the record using, for example, a PL/I based
structure. The file manager provides interlocking
facilities for multiple users, and also guarantees
integrity of a file in the case where a system failure
occurs while the user is updating the file. The MPM
reference guide section on the file manager, and
write-ups of a set of subroutines beginning with the
name fm_ should be consulted for further information.

3. PL/I record-oriented I/O: The full ANSI standard PL/I
I/O system is implemented on fiultics*, allowing
construction of a data manipulation system which is in
principle system independent. Since the PL/I I/O

'. - 5 6 PROGRAMM I NG I N THE I'lIUL TICS ENV I ROW~ENT

system uses the I.'iult ics Fi le r'lanager (2, above) very
large files can be efficientlY set up, updated, and
searched using only the PL/I language. For further
information, one should consult the PL/I language
specifications.

In addition, users with unusually sophisticated needs such
as completely inverted files, files with indexes on different
elements, etc., will find that appropriate facil ities can easily
be developed using the virtual memory combined with techniques
similar to those used by the tlultics File t'ianager. It is
important to realize that the Multics File Manager, while
organized as a protected subsystem, is written in PL/I, using
only Multics facilities which are also available to the user.
Thus, a user could construct his own version of the File Manager,
or a more elaborate file accessing system without recourse to
special privileges or need to modify the Hultics supervisor.

Finally, the Multics I/O system, which is organized to allow
attachment of arbitrary source-sink I/O devices, may be used to
read and write magnetic tape in any of several formats, for
applications in which permanent on-l ine storage is not
appropriate.

Unfortunately, there does not yet exist a suitable set of
annota ted case stud i es on the use of the f i.1 e managemen t
facilities. The potential developer of a large file application
is advised to begin by reviewing one or more applications
previously implemented on Vultics and which use these tools.

CS-TR Scanning Project
Document Control Form

Report # Lcs -\'2> -) d-.J

Date: 1.,E::1J Jl

Each of the following should be identified by a checkmark:
Originating Department:

o Artificial Intellegence Laboratory (AI)
J(. Laboratory for Computer Science (LCS)

Document Type:

K Technical Report (TR) o Technical Memo (TM)

o Other: _________ _

Document Information Number of pages: J.l(){J.J3'-iM~C!S
- Not to Include DOD forms, printer Intstructions, etc ... original pages only.

Originals are:

o Single-sided or

~ Double-sided

Print type:
o Typewriter 0 Of'faet Press 0 Laser Print

Intended to be printed as :

o Single-sided or

~ Double-sided

o InkJet Printer ~ Unknown 0 Other:. ______ _

Check each if included with document:

XDODForm o Funding Agent Form o Cover Page

o Spine o Printers Notes o Photo negatives

o Other:

Page Data:

Blank Pages(by", numbeI): _________________________ _

PhotographsIT onal Material (by ... numbeI): _______________________ _

Other (ra. dMc:ripIIDI numbeI):
Description: Page Number:

:z:m8q mt&~ U-l,<;3)\J'INft)£> \ITLifAGb)' I ~V~;JV\~\36\Nkii";~l-'rH~~ ,_'(.)

k IlfIQ"'- d. 'J<i '1J'-J;\>8Usi·41- J,.-J ()~tJ#fi>LI< ~-7.fTNQi'\,k·IO (\
J) ~

kN~6>Ll~! J-liW.t.& 3--31l.1J>i1tGLJ<la;ttwB.lll.{ -:>b

(,,' 9 'lbr;.;}] [C&Nc.oP1'tmL) DoO; lBG'r-l Ci)

Scanning Agent Signoft:

Date Received: ~/ct9 1J..6.. Date Scanned: ~ EAr I,'{; Date Returned: JJ~I ? 6

Scanning Agent Signature:, _______ C)J....;~~'~· ~~+-,,11I~J....;~~~=--_

BIBLIOGRAPHIC DATA
SHEET

4. Title and ~ubtitl('

Report No.

MAC TR- 123

Introduction to Multics

7. Author(s)

Jerome H. Saltzer
9. Performing Organization Name and Addrt:ss

3. Recipient's Accession No.

5. Report Date: Issued
February 1974

6.

8. Performing Organization Rept.

No. MAC TR- 123
10. Project/Task/Work Unit No.

PROJECT MAC; MASSACHUSETTS INSTITUTE OF TECHNOLOGY:

545 Technology Square, Cambridge, Massachusetts 02139
11. Contract/Grant No.

N00014-70-A-0362-0006

12. Sponsoring Organization Name and Address

Office of Naval Research
Department of the Navy
Information Systems Program
Arlington. Va 22217

13. Type of Report & Period
Covere";: Interim
Scientific Report

14.

15. Supplementary Notes: 1'1ns report is a snapshot of the Introduction to the Users' Manual
for the Multics system. The complete users' manual is available from the M;r. T.
Information Processing Center.

16. Abstracts

This report is an introduction to the properties, concepts, and usage of the

Multics system. Its four chapters are designed for reading continuity rather than for

reference or completeness. Chapter 1 provides a broad overview. Chapter 2 goes into

the concepts underlying Multics. Chapter 3 is a tutorial guide to the mechanics of

using the system, with illustrative examples of terminal sessions. Chapter 4 provides

a series of examples of programming in the Multics environment.

17. Key Words and Document Analysis. 170. Descriptors

17b. Idt'ntifit'rs,'Open-Ended Tnms

170::. COSATI Fit: Id/Group

18. Availability Statement

FORM NTIS-35 IRE..V 3-721

Time-Sharing Systems

Computer Utilities

Operating Systems

Multics

Multiple-Access Computers

19. Security Class (This
RCfwrt)

" iNLI.ASSIF lED
20. Security Cbss (This

Page'
tiNCLASSIFILD

THIS FORM MAY BE REPRODUCED

21. :\0. c,f Pal'''s

213
22. Pr ieT

This empty page was substihlted for a
blank page in the original document.

Scanning Agent Identification' Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-JI029.

The scanning agent for this project was the
Document Services department of the M.I. T
Libraries. Technical support for this project was
also provided by the M.I. T. Laboratory for
Computer Sciences.

darptrgLwpw Rev. 9/94

