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Introduction 

The topic of this paper is the control of access to stored 

information in a computer utility.  The paper describes a set of 

processor access control mechanisms that were devised as part of 

the second iteration of the hardware base for the Multics system. 

These mechanisms provide a hardware implementation of protection 

rings which limit the access privileges of an executing program.

Multics is a general purpose, multiple user, interactive 

computer system developed at Project MAC of MIT in a joint effort 

with the Cambridge Information Systems Laboratory of Honeywell 

Information Systems Inc. and, until 1969, the Bell Telephone 

Laboratories. It was built and is being run as an experiment in 

designing, implementing, operating, and evaluating a prototype 

computer utility. (Reference [14] contains a bibliography of 

publications on Multics.)

Multics is currently implemented on a Honeywell 645 computer 

system. The 645 represents a first attempt to define a suitable 

hardware base for a computer utility. While containing special 

logic to support a segmented virtual memory, the 645 processor 

[10] provides only a limited set of access control mechanisms, 

forcing software intervention to implement protection rings. In 

the course of Multics development a second iteration of the design 

of the hardware base has been undertaken. The resulting new 

hardware system is being built as a replacement for the 645 using 

the technology of the Honeywell 6000 series computer systems. The 

new processor includes an improved set of access control 
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mechanisms, described here, which implement rings almost 

completely in hardware. These mechanisms were developed from a 

scheme described in [16]. Although specifically designed for 

Multics, the mechanisms are applicable to any computer system 

which uses segmentation as a memory addressing scheme.

This paper begins by establishing the general need to control 

access to stored information in a computer utility and by 

presenting several criteria for comparing different sets of access 

control mechanisms. Relevant aspects of the organization of 

segmented memories are then sketched, and the processor mechanisms 

for implementing protection rings are described. The paper 

concludes by illustrating how rings can be used and by evaluating 

the impact of a hardware system design.

Access Control in a Computer Utility 

Protection of computations and information is an important 

aspect of a computer utility. The multiple users of a computer 

utility have different goals and are responsible to different 

authorities. Such a diverse group will use the same system only if 

it is possible for them to achieve independence from one another. 

On the other hand, a great potential benefit of a computer utility 

is its ability to allow users to easily communicate, cooperate, 

and build upon one another's work. The role of protection in a 

computer utility is to control user interaction -- guaranteeing 

total user separation when desired, allowing unrestricted user 

cooperation when desired, and providing as many intermediate 
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degrees of control as will be useful.

While there are many manifestations of protection in a 

computer utility, most may be related to controlling access to 

stored information. Because stored information represents both 

data and executable procedure, control of access to stored 

information serves to regulate information processing as well.

Four criteria can be applied to a set of access control 

mechanisms to judge its usefulness in a computer utility: 

functional capability, economy, simplicity, and programming 

generality. The first means that a set of access control 

mechanisms should be able to meet an interesting set of user 

protection needs in a natural way. The ability to meet interesting 

protection needs must be a quality of the basic mechanisms, while 

the ability to do so in a natural way is a quality of their user 

interface. An obvious goal in designing new protection mechanisms 

is to maximize functional capability.

The second criterion, economy, means that the cost of 

specifying and enforcing a particular kind of access constraint 

with a set of mechanisms should be so low that it is not an 

important consideration in determining the type of access control 

to be used in a particular application. In addition, cost should 

be proportional to the functional capability actually used. The 

existence of access control mechanisms with sophisticated 

capabilities should cost no extra to those with unsophisticated 

needs. Cost includes the subsystem complexity and user 

inconvenience that result from use of the access control 

mechanisms, as well as any associated extra storage space and 
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execution time. 

Simplicity is the third criterion. While it is true that 

simplicity often leads to economy, something more is at stake. For 

a set of access control mechanisms to be accepted there must be 

confidence that no way exists to circumvent it. The best way to 

achieve confidence is to keep the mechanisms so simple that they 

may be completely understood. With respect to access control 

mechanisms, lack of simplicity often implies lack of security. 

The fourth criterion, programming generality, is often 

neglected. It means that individual procedures may be combined 

easily into larger units without understanding or altering their 

internal organizations. Programming generality allows sharing to 

be effective in encouraging users to build upon one another's 

work. An implication of programming generality of relevance to 

access control mechanisms is that it should be possible to change 

the protection environment of procedures and collections of 

procedures without altering their internal structure. 

It clearly is difficult to design access control mechanisms 

which satisfy all four of these criteria simultaneously. Increases 

in functional capability come at the expense of economy, 

simplicity, and programming generality. The challenge in designing 

a set of access control mechanisms is to maximize functional 

capability within the constraints of the other three criteria. In 

the following sections a set of hardware access control mechanisms 

that was devised in the course of Multics development is 

described. These mechanisms appear to provide a significant 
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improvement in the simultaneous satisfaction of the four criteria 

as compared with the mechanisms in the initial Multics 

implementation.

The Segmented Virtual Memory Environment 

The processor access control mechanisms described here 

regulate the ability of an executing program to reference 

information in a segmented virtual memory. As a basis for 

understanding these access control mechanisms this section briefly 

reviews the structure of a typical segmented virtual memory. (See 

[1-3] for detailed descriptions of several segmented virtual 

memories.) 

A machine language program for a segmented environment does 

not reference memory by absolute address. Rather, its memory 

consists of independent segments identified by number. Each 

segment is a separate array of words. A two-part address (s, w) 

identifies word w of the segment numbered s. 

The collection of segments in the virtual memory is defined 

by a descriptor segment containing an array of segment descriptor 

words (SDW's). Each SDW can describe a single segment in the 

virtual memory. The number of a segment is just the index of the 

corresponding SDW in the descriptor segment. Among other things, 

an SDW contains the absolute address of the beginning of the 

corresponding segment in memory. The absolute address of the 

beginning of the descriptor segment is contained in the descriptor 

base register (DBR) of a processor. Each processor contains logic 

for automatically translating two-part addresses into the 
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corresponding absolute addresses. Address translation, done with 

an indexed retrieval of the appropriate SDW from the descriptor 

segment, occurs each time a word in the virtual memory is 

referenced, i.e. each time an instruction, indirect word, or 

instruction operand reference is made by an executing program. 

Storage for segments is usually allocated with a paging 

scheme in scattered fixed-length blocks. If used, paging is also 

taken into account by the address translation logic, but is 

totally transparent to an executing machine language program. 

Paging, if appropriately implemented, need not affect access 

control; it will be ignored in the remainder of this paper. 

Changing the absolute address in the DBR of a processor will 

cause the address translation logic to interpret two-part 

addresses relative to a different descriptor segment. This 

facility can be used to provide each user of the system with a 

separate virtual memory. A single segment may be part of several 

virtual memories at the same time, allowing straightforward 

sharing of segments among users.

Controlling Access in a Segmented Virtual Memory 

To provide a framework for discussion, three specific 

assumptions true of Multics are introduced. First, a process with 

a new virtual memory is created for each user when he logs in to 

the system, and the name of the user is associated with the 

process. The process is the active agent of the user, and is his 

only means of referencing and manipulating information stored on-

line.  Second, on-line storage is organized as a collection of 
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segments of information. A process can reference a segment of on-

line storage only if the segment is first added to the virtual 

memory of the process. Third, the users that are permitted to 

access each segment are named by an access control list associated 

with each segment. As will be seen, any system providing access 

control of the type under discussion will probably have analogous 

assumptions. The application of the rest of the discussion to 

other systems with segmented virtual memories is straightforward. 

Adding a segment to a virtual memory, an operation performed 

by supervisor programs, provides the initial opportunity for 

controlling access to information stored on-line. The name of the 

user associated with a process must match some entry on the access 

control list of a segment before the supervisor will add that 

segment to the the virtual memory of the process. 

Once a segment is included in the virtual memory, however, 

finer control on access is required. (If a process could, say, 

write in any segment to which it had access, little sharing of 

information among users would occur.) If this finer control is to 

be effective against arbitrary machine language programs 

constructed by users, it must be implemented as hardware access 

validation on each reference. The structure of the virtual memory 

makes it natural to record these finer constraints in the SDW 

associated with each segment. Since the processor must examine the 

SDW for a segment each time that segment is referenced by two-part 

address anyway, there is little effort added to validate the 

intended access against constraints recorded there. With this 
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structure it is also possible to change the allowed access to a 

segment by changing the finer constraints recorded in the SDW, and 

to expect the change to be immediately effective, although the 

need for such dynamic changes is rare. 

Flags which enable a segment to be read, written, and 

executed are natural constraints to record in each SDW. The value 

for each flag comes from the access control list entry which 

matched the name of the user associated with the process. An 

attempt by a process to change the contents of a word of a 

segment, for example, would be allowed by the processor only if 

the write flag were on in the SDW for the segment. This mechanism 

provides individual control on the ability of each user's process 

to read, write, and execute the words in each segment stored on-

line. It also makes a segment the smallest unit of information 

that can be separately protected. 

With the access control mechanisms described so far, all 

programs executed as part of some process have the same 

information accessing capabilities. However, there seems to be an 

intrinsic need in many computations for the access capabilities of 

a process to vary as the execution point passes through the 

various programs that direct the computation. The most obvious 

examples of this need are explicit invocations of supervisor 

programs during the course of a computation. The execution point 

may pass from a user program to a supervisor program to initiate 

an input/output operation or change the access control list of a 

segment, and then pass back to the user program. Presumably the 
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executing supervisor program can access information in some way 

that the user program cannot. In a system that allows and 

encourages sharing of information among users, other examples 

appear. For instance, user A may wish to allow user B to access a 

sensitive data segment, but only through a special program, 

provided by A, that audits references to the segment. During the 

course of a computation in a process of user B, access to the 

sensitive data segment should be allowed only when the execution 

point is in the special program provided by A. 

The word "domain" is frequently associated with a set of 

access capabilities. The examples above point to an intrinsic need 

for multiple domains to be associated with a process and for the 

domain in which the process is executing to occasionally change as 

the execution point passes from one program to another. A 

descriptor segment with read, write, and execute flags in the 

SDW's defines a single domain. Additional mechanisms are required 

to allow multiple domains to be associated witha single process. 

A very general set of access control mechanisms would place 

no restriction on the number of domains which could be associated 

with a process, and would force no restrictive relationships to 

exist among the sets of access capabilities included in the 

domains. Unfortunately, devising such a set of access control 

mechanisms that also meets the criteria of economy, simplicity, 

and programming generality is a difficult research problem. (See 

[5,7,8,12, 13, 17] for several approaches that have been 

explored.) In Multics the strategy was adopted of limiting the 
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number of domains which may be associated with a process, and of 

forcing certain relationships to exist among the sets of access 

capabilities included in the domains. The result is protection 

rings. 

The characterization of rings as a restricted implementation 

of domains is the result of hindsight. When developed, rings were 

viewed as a natural generalization of the supervisor/user modes 

that provided protection in many computers. This path of 

development was chosen because it solved the most pressing 

problems of access control involved in the prototype computer 

utility and, due to the inherent simplicity of the idea, it was a 

path that the Multics designers felt confident they could 

successfully complete. Even today rings appear to provide an 

effective trade-off among the criteria mentioned above. 

Protection Rings

Associated with each process are a fixed number of domains 

called protection rings. These r rings are named by the integers 0 

through r-1. The access capabilities included in ring m are 

constrained to be a subset of those in ring n whenever m > n. Put 

another way, the sets of access capabilities represented by the 

various rings of a process form a collection of nested subsets, 

with ring 0 the largest set and ring r-1 the smallest set in the 

collection. Thus, a process has the greatest access privilege when 

executing in ring 0, and the least access privilege when executing 

in ring r-1. The total ordering of the sets of access capabilities 

defined by the consecutively numbered rings of a process is the 
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property which allows a straightforward implementation of rings in 

hardware. 

As described earlier, the permission flags for each segment 

in the virtual memory of a process simply indicate that the 

segment can or cannot be read, written, or executed by the 

process. With the addition of rings, the flags must be extended to 

indicate which rings include each access capability. Because of 

the nested subset property of rings, the capability, say, to write 

a particular segment, if available to a process at all, is 

included in all rings numbered less than or equal to some value w. 

The range of rings over which this write permission applies is 

called the write bracket of the segment for the process. Read and 

execute brackets for each segment can be established in the same 

way. A process is permitted to read, write, or execute a segment 

in its virtual memory only if the ring of execution of the process 

is within the proper bracket. 

A partial hardware implementation of rings places numbers 

indicating the top of each bracket of a segment in the SDW of the 

segment, along with the read, write, and execute flags. If a flag 

is on, then the number specifies the extent of the corresponding 

bracket. Turning a flag off indicates that the corresponding 

access capability is not included in any ring of the process. For 

example, a data segment might have its execute flag turned off or 

a pure procedure segment might have its write flag turned off. A 

register is added to the processor to record the current ring of 

execution of the process. The processor can then validate each 

reference to a segment by making the obvious comparisons when the 
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SDW for the segment is examined for address translation.

Figure 1 illustrates the flags and brackets that might be 

associated with a writable data segment for some process. (In 

Multics, eight was chosen as the appropriate number of rings. 

Eight rings are shown in the examples, although more or fewer 

rings might be appropriate in another system.) 

The association of multiple domains of protection with a 

process generates the need for a new kind of access capability --

the capability to change the domain of execution of a process. 

Since changing the domain of execution has the potential to make 

additional access capabilities available to a process, it is an 

operation that must be carefully controlled. An understanding of 

the sort of control required can be gained by reviewing the 

purpose of domains. A domain provides the means to protect 

procedure and data segments from other procedures that are part of 

the same computation. Using domains, it should be possible to make 

certain access capabilities available to a process only when 

particular programs are being executed. Restricting the start of 

execution in a particular domain to certain program locations, 

called gates, provides this ability, for it gives the program 

sections that begin at those locations complete control over the 

use made of the access capabilities included in the domain. Thus, 

changing the domain of execution must be restricted to occur only 

as the result of a transfer of control to one of these gate 

locations of another domain. 

With a completely general implementation of domains, each 
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domain could provide protection against the procedures executing 

in all other domains of a process. The corresponding property of 

rings is that the protection provided by a given ring of a process 

is effective against procedures executing in higher numbered 

rings. Switching the ring of execution to a lower number makes 

additional access capabilities available to a process, while 

switching the ring to a higher number reduces the available access 

capabilities. Thus, the downward ring switching capability must be 

coupled to a transfer of control to a gate into the lower numbered 

ring. Gates are specified by associating a (possibly empty) list 

of gate locations with each segment in the virtual memory of a 

process. If the execution point of the process is transferred to a 

segment while the ring of execution is above the top of the 

execute bracket for the segment, then the transfer must be 

directed to one of the gate locations in the segment. If the 

transfer is to a gate, then the ring of execution of the process 

will switch down to the top of the execute bracket of the segment 

as the transfer occurs. If the transfer is not directed to one of 

the gate locations, then the transfer is not allowed. 

To provide control of this downward ring switching capability 

which is consistent with the subset property of rings, a gate 

extension to the execute bracket of a segment is defined. The gate 

extension specifies the consecutively numbered rings above the 

execute bracket of the segment that include the "transfer to a 

gate and change ring" capability for the segment. The gate list 

and the gate extension to the execute bracket can both be 
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specified with additional fields in each SDW. 

In contrast to downward ring changes, switching the ring of 

execution to a higher numbered ring can only decrease the 

available access capabilities of a process. Thus, an upward ring 

switch is an unrestricted operation that can be performed by any 

executing procedure. (The instruction to be executed immediately 

following an upward ring switch must come from a segment that is 

executable in the new, higher numbered ring.) For programming 

convenience, the upward ring switch may be coupled to a special 

transfer instruction. 

The abstract description of rings is now one step from 

completion. The last step comes from the observation that for each 

procedure segment in the virtual memory of each process there is a 

lowest numbered ring in which that procedure is intended to 

execute. In order to provide the means for preventing the 

accidental transfer to and execution of a procedure in a ring 

lower than intended, the requirement that execute brackets have a 

lower limit at ring 0 is relaxed and instead an arbitrary lower 

limit is allowed. For many procedure segments the execute bracket 

will include exactly one ring -- the ring in which the procedure 

is intended to execute. Procedure segments with wider execute 

brackets normally will contain commonly used library subroutines 

that are certified as acceptable for execution in any of several 

rings. 

The arbitrary lower limit on the execute bracket of a segment 

can be implemented by using the field of an SDW which specifies 

the top of the write bracket to specify the bottom of the execute 
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bracket as well. The double use of this field does not appear to 

remove any interesting functional capability. In fact, it 

eliminates an unwanted degree of freedom in access specification, 

thereby removing the potential to make certain types of errors, 

such as allowing both writing and execution of a segment in more 

than one ring of a process. 

Figure 2 shows example access indicators for a pure procedure 

segment containing gates, and illustrates how the execute and 

write brackets specified in an SDW must be related.

The gate list and the numbers specifying the read, write, and 

execute brackets and gate extension in each SDW all come from the 

access control list entry which permitted the process to include 

the corresponding segment in its virtual memory, as did the values 

for the read, write, and execute flags.

 

Call and Return

As argued above, a change in the domain of execution of a 

process can only occur when the executing procedure transfers 

control to a gate of another domain. In the context of most 

programming languages, an interprocedure transfer represents a 

subroutine call, a return following a call, or a nonlocal goto. 

Linguistically, all three operations produce a change in the 

environment of the execution point; this change affects the 

binding of variable names to virtual storage locations. The call 

operation has the additional function of transmitting arguments 

and recording a return point. Performing these functions generally 
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requires the cooperation of both the procedure initiating the 

operation and the procedure receiving control. If a call, return, 

or goto changes the domain of execution because it happens to be 

directed to a gate location of another domain, then the situation 

becomes more complicated, for neither procedure can depend upon 

the other to cooperate. An important simplification introduced by 

restricting domains to a ring structure is that a procedure may 

assume the cooperation of procedures in lower numbered rings. 

When procedures are shared among different processes and 

different domains, the addressing environment is usually defined 

via processor registers, for the procedures must be pure and it is 

not convenient to embed addresses within them. Part of the 

function of the call, return, and goto operations is to properly 

update this environment pointer. In Multics, pure procedures are 

used with a per process stack, and a stack pointer register 

provides the required environment definition. The stack of a 

process is implemented with a separate segment for each ring being 

used. The stack segment for procedures executing in ring n has 

read and write brackets that end at ring n. Thus, stack areas for 

these procedures are not accessible to procedures executing in any 

ring m > n. In the following discussion the stack pointer register 

is used as a typical example of the required environment pointer.

The most common ways of changing the ring of execution of a 

process are a call to a gate of a lower numbered ring and the 

subsequent upward return. A downward call represents the 

invocation of a user-provided protected subsystem or a supervisor 
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procedure. Because the Honeywell 645 was designed around the usual 

supervisor/user protection method, the version of Multics for this 

machine implements rings by trapping to a supervisor procedure 

when downward calls and upward returns are performed. The hardware 

mechanisms detailed in the next section eliminate the need to trap 

in these cases. Using these improved hardware access control 

mechanisms, downward calls and upward returns occur without the 

intervention of a supervisor procedure and are performed by the 

same object code sequences that perform all calls and returns. 

It is the nested subset property of rings that makes a 

straightforward hardware implementation of downward calls and 

upward returns possible. Because of this property, the called 

procedure automatically has all access capabilities required to 

reference any arguments that the calling procedure can 

legitimately specify and to return to the calling procedure in the 

ring from which it called. However, three problems remain. First, 

the called procedure must have a way of finding a new stack area 

without depending upon information provided by the calling 

procedure. Second, the called procedure must have a way of 

validating references to arguments, so that it cannot be tricked 

into reading or writing an argument that the caller could not also 

read or write. Finally, the called procedure must have a way of 

knowing for certain the ring in which the calling procedure was 

executing, so that the called procedure cannot be tricked into 

returning control to a ring not as high as that of the calling 

procedure. 
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The key to solving the first problem, finding a new stack 

area, is a rule relating the segment number of the stack segment 

for a ring to the ring number. Using this rule, the processor 

automatically calculates the segment number of the proper stack 

segment for the called procedure's ring of execution. By 

convention, a fixed word of each stack segment can point to the 

beginning of the next available stack area. Thus, the stack 

segment number alone can provide the called procedure with enough 

information from which to construct its own stack pointer. Because 

the processor provides the stack segment number, no procedure 

executing in a higher numbered ring, e.g. the calling procedure, 

can affect the value of the stack pointer for the called 

procedure. 

The second problem, validating argument references, is solved 

by providing processor mechanisms which allow a procedure to 

assume the more restricted access capabilities of any higher 

numbered ring for particular operand references. Using these 

mechanisms, the called procedure can validate access when 

referencing arguments as though execution were occurring in the 

(higher numbered) ring of the calling procedure. Thus, the called 

procedure, even though it is executing in a ring with more access 

capabilities than the ring of the calling procedure, can prevent 

itself from reading or writing any argument that the calling 

procedure could not also read or write. 

The final problem, knowing the ring of the caller, is solved 

by having the processor leave in a program accessible register the 

number of the ring in which execution was occurring before the 
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downward call was made. The subsequent return is made to that 

ring. Thus the calling procedure has no opportunity to lower the 

number of the ring to which the return is made. 

The next two sections describe in more detail how downward 

calls, argument referencing and validation, and upward returns are 

implemented. Before proceeding to that description, however, there 

are two other possibilities to consider: a call and return that do 

not change the ring of execution, and an upward call and the 

subsequent downward return. The first presents no protection 

problem, as both the calling and the called procedures have 

available the same set of access capabilities. The hardware 

mechanisms for downward calls and upward returns also work when no 

change of ring is needed. 

The last possibility is more difficult to handle. An upward 

call occurs when a procedure executing in ring n calls an entry 

point in another procedure segment whose execute bracket bottom is 

m > n. When the call occurs, the ring of execution will change to 

m. The subsequent return is downward, resetting the ring of 

execution to n. These cases exhibit two unpleasant characteristics 

of a general cross-domain call and return that were not present in 

the other cases. 

The first is that the calling procedure may specify arguments 

that cannot be referenced from the ring of the called procedure. 

(For a downward call, the nested subset property of rings 

guaranteed that this could not happen.) There are at least three 

possible solutions to this problem. One is to require that the 

calling procedure specify only arguments that are accessible in 
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the higher numbered ring of the called procedure. This solution 

compromises programming generality by forcing the calling 

procedure to take special precautions in the case of an upward 

call. Another possible solution is to dynamically include in the 

ring of the called procedure the capabilities to reference the 

arguments. Because a segment is the smallest unit of information 

for which access can be individually controlled, this forces 

segments which contain arguments to contain no other information 

that should be protected differently, again compromising 

programming generality, unless segments are inexpensive enough 

that, as a matter of course, every data item is placed in its own 

segment. It may also be expensive to dynamically include and 

remove the argument referencing capabilities from the called ring. 

The third possible solution is copying arguments into segments 

that are accessible in the called ring, and then copying them back 

to their original locations on return. This solution restricts the 

possibility of sharing arguments with parallel processes. None of 

the three solutions lend themselves to a straightforward hardware 

implementation. 

The second unpleasant characteristic is that a gate must be 

provided for the downward return. (For an upward return the nested 

subset property of rings made a return gate unnecessary.) The 

return gate must be created at the time of the upward call and be 

destroyed when the subsequent return occurs. If recursive calls 

into a ring are allowed, then this gate must behave as though it 

were stored in a push-down stack, so that only the gate at the top 
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of the stack can be used. The gates specified in SDW's seem poorly 

suited to this sort of dynamic behavior. Processor mechanisms to 

provide dynamic, stacked return gates are not obvious at this 

time. 

Because of these two problems, the hardware described in the 

next section does not implement upward calls and downward returns 

without software intervention. Although the same object code 

sequences that perform all calls and returns are used in these 

cases as well, the hardware responds to each attempted upward call 

or downward return by generating a trap to a supervisor procedure 

which performs the necessary environment adjustments. 

The manner in which the stack pointer register value of the 

calling procedure is saved when a call occurs and restored when 

the subsequent return occurs has not yet been discussed. For a 

same-ring or downward call, it is reasonable to trust the called 

procedure to save the value left in the stack pointer register by 

the calling procedure and then restore it before the subsequent 

return, since in these cases the called procedure has access 

capabilities which allow it to cause the calling procedure to 

malfunction in other ways anyway. For an upward call and the 

subsequent downward return, the same convention can be used 

without violating the protection provided by the lower ring if the 

intervening software verifies the restored stack pointer register 

value when performing the downward return.

The Hardware Implementation of Rings 

In this section the ideas presented in the previous sections 
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are gathered into a description of a design for processor hardware 

to implement rings. The description touches upon only those 

aspects of the processor organization that are relevant to access 

control. The segmented addressing hardware described earlier 

serves as the foundation of the ring implementation mechanisms. 

Figure 3 presents a schematic description of storage formats 

and processor registers that are relevant to the discussion which 

follows. The DBR and SDW's have already been mentioned. The three 

3-bit ring numbers in an SDW (SDW.RI, SDW.R2, and SDW.R3) delimit 

the read, write, and execute brackets and the gate extension. The 

write bracket is rings 0 through SDW.RI, the execute bracket 

SDW.Rl through SDW.R2, and the gate extension SDW.R2+1 through 

SDW.R3. Rather than providing a fourth number to specify the top 

of the read bracket, SDW.R2 is reused for this purpose. Thus the 

read bracket is rings 0 through SDW.R2. Forcing the top of the 

read and execute brackets to coincide in this manner does not seem 

to preclude any important cases, and saves one ring number in the 

SDW. Supervisor code for constructing SDW's must guarantee that 

SDW.Rl ≤ SDW.R2 ≤ SDW.R3 is true. The single-bit read, write, and 

execute flags (SDW.R, SDW.W, and SDW.E) also appear.  Finally, the 

list of gate locations of a segment is compressed to a single 

length field (SDW.GATE) by requiring all gate locations to be 

gathered together, beginning at location 0 of a segment. SDW.GATE 

contains the number of gate locations present. 

The instruction pointer (IPR) specifies the current ring of 
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execution and the two-part address of the next instruction to be 

executed. The general form of an instruction word in memory (INS) 

is also shown for later reference. 

The program accessible pointer registers (PR0, PR1, ...) each 

contain a two-part address and a ring number. Because segment 

numbers are not generally known at the time a segment is compiled, 

machine instructions specify two-part operand addresses by giving 

an offset (in INST.OFFSET) relative to one of the PR's (specified 

by INST.PRNUM) or IPR. The ring number in a pointer register 

(PRn.RING) is used to specify a validation level for the address, 

and is part of the mechanism that allows an executing procedure to 

assume the access capabilities of a higher numbered ring for 

referencing arguments. One of the PR's is intended to serve as the 

stack pointer register mentioned earlier. 

Indirect addressing may be specified in an instruction by 

setting the indirect flag (INST.I). Indirect words (IND) contain 

the same information as PR's, and may also indicate further 

indirection with an indirect flag (IND.I).

 The final item in Figure 3 is the temporary pointer register 

(TPR).  The TPR is an internal processor register that is not 

program accessible.  It is used to form a two-part address of each 

virtual memory reference made.  The ring number (TPR.RING) 

provides the value with respect to which permission to reference 

the virtual memory location is validated.

There are two aspects to the implementation of rings in 

hardware. The first is access checking logic, integrated with the 

Schroeder/Saltzer Final Draft for CACM Page 24 of 43



segmented addressing hardware, that validates each virtual memory 

reference. The second is special instructions for changing the 

ring of execution. The best way to describe the first aspect is to 

trace the processor instruction cycle, giving particular attention 

to the places where operations related to access validation occur. 

The second aspect will be discussed when the description of the 

instruction cycle reaches the point where the instruction is 

actually performed. 

The first phase of the instruction cycle, retrieving the next 

instruction to be performed, is described in figure 4. At the 

point during address translation that the SDW for the segment 

containing the instuction becomes available, the ring of execution 

(TPR.RING) is matched against the execute bracket defined in the 

SDW and the execute flag is checked. If the segment may be 

executed from the current ring of execution the instruction fetch 

is completed. The access violations and other conditions requiring 

software intervention shown in this and following figures generate 

traps, derailing the instruction cycle. A traps action is 

described later in this section.

The next phase of the instruction cycle, calculating in TPR 

the effective address of the instruction's operand, is described 

in Figure 5. This phase occurs only if the instruction has an 

operand in memory. The effective address is the final two-part 

address of the operand (after all address modifications and 

indirections have taken place) together with an effective ring 

number which is used to validate the actual reference to the 

operand. 
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The formation of a two-part address in TPR.SEGNO and 

TPR.WORONO is very straightforward and is described by Figure 5. 

The calculation of the ring number portion of the effective 

address in TPR.RING and the access validation performed before 

retrieving indirect words, also shown in Figure 5, need further 

comment. 

The effective ring portion of the effective address provides 

a procedure with the means of voluntarily assuming the access 

capabilities of a higher numbered ring when making an instruction 

operand reference. The effective ring number also records the 

highest numbered ring from which a procedure (in the same process) 

possibly could have influenced the effective address calculation. 

The first opportunity for the value of TPR.RING to change during 

effective address calculation occurs if the instruction contains 

an address that is an offset relative to some PRn. In this case 

TPR.RING is updated with the larger of its current values (still 

the current ring of execution) and the ring number in the 

specified pointer register (PRn.RING). Thus, if PRn.RING contains 

a value that is greater than the current ring of execution, 

validation of the operand reference will be as though execution 

were occurring in this higher numbered ring.

The remaining opportunities to change the value of TPR.RING 

occur in conjunction with the processing of indirect words 

involved in the effective address calculation. Each time an 

indirect word is retrieved, TPR.RING is updated with the larger of 

its current values, the ring number in the indirect word 

(INO.RING), and the top of the write bracket for the segment 
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containing the indirect word (SDW.Rl). The ring number in the 

indirect word has the same purpose as the ring number in a pointer 

register -- forcing validation of the operand reference relative 

to some higher numbered ring. Including in the calculation the top 

of the write bracket of the segment containing the indirect word, 

however, has another purpose. The top of the write bracket 

represents the highest numbered ring from which a procedure in the 

same process could have altered the indirect word and thereby 

influenced the result of the effective address calculation. Taking 

into account SDW.Rl when updating TPR.RING guarantees that the 

operand reference will be validated with respect to the highest 

numbered ring which could have influenced the effective address. 

The capability to read an indirect word during effective 

address formation must be validated before the indirect word is 

retrieved. Validation is with respect to the value in TPR.RING at 

the time the indirect word is encountered. At the conclusion of 

the effective address calculation described in Figure 5, TPR 

contains the effective address of the instruction operand, 

including the effective ring number with respect to which the 

reference to the operand will be validated. 

The next phase of the instruction cycle is to perform the 

instruction. For the purpose of access validation, the possible 

instructions may be broken into three groups, according to the 

type of reference made to the operand. Figure 6 shows the access 

validation for the straightforward cases of instructions which 

read their operands and instructions which write their operands. 
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The third group, instructions which do not reference their 

operands, is illustrated in Figure 7. One set in this group is the 

"Effective Address to Pointer Register" type (EAP-type) 

instructions which load the RING, SEGNO, and WORONO fields of PRn 

with the corresponding fields of TPR. The operand is not 

referenced, so no access validation is required. Instructions of 

this type are important, as will be seen later, for they are the 

only way to load PR'S. 

The remaining instructions illustrated in Figure 7 are 

transfer instructions. To provide some protection against changing 

the ring of execution by accident, all transfer instructions 

except two, CALL and RETURN, are constrained from doing so. Since 

a transfer instruction does not reference its operand, but just 

loads the address of its operand into the instruction counter, no 

access validation is really required. However, an advance check on 

whether reloading IPR from TPR will result in an access violation 

when the next instruction is retrieved is very useful from the 

standpoint of debugging, for it catches the access violation while 

it is still possible to identify the instruction which made the 

illegal transfer. Figure 7 describes the advance check for 

transfer instructions other than CALL and RETURN. 

The two instructions that remain to be considered are the 

instructions which can change the ring of execution: CALL and 

RETURN. They are intended to be used to implement the same-named 

linguistic operations.* CALL will automatically switch the ring of 

execution to a lower number and RETURN to a higher number if the 
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occasion requires it. These instructions also function properly 

for calls and returns within the same ring. When used to perform 

an upward call or a downward return, the instructions cause traps 

which allow software intervention.  

Figure 8 describes the access validation and performance of 

the CALL instruction. Several points require further explanation. 

The first concerns gates.  From Figure 8 it is apparent that a 

CALL must be directed at a gate location even when the called 

procedure will execute in the same ring as the calling procedure. 

The rationale for this use of the gate list of a segment is that 

it can provide protection against accidental calls to locations 

that are not entry points, even when the call comes from within 

the same ring. Thus, SDW.GATE for a procedure segment usually 

specifies the number of externally defined entry points in the 

procedure segment. These become gates for higher numbered rings in 

the sense described in the previous sections only if the top of 

the gate extension of the segment is above the top of the execute 

bracket, i.e. only if SDW.R3 > SDW.R2 for the segment. The price 

paid for this error detection ability is that if any externally 

defined entry point in a procedure segment is a gate for a higher 

numbered ring, then all are. On intersegment transfers of control 

within the same ring, the gate restriction can be bypassed by 

using a normal transfer instruction rather than a CALL. The only 

exception to having a CALL instruction respect the gate list of 

the operand segment occurs if the operand is in the same segment 

as the instruction. Allowing a CALL instruction to ignore the gate 

list of the segment containing the instruction permits it to be 

used to implement calls to internal procedures. 
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The access validation for the CALL instruction is made 

relative to the ring number computed as part of the effective 

address. Since, as a result of PR-relative addressing and 

indirection, the effective ring value (TPR.RING) can be higher 

than the current ring of execution (IPR.RING), what would appear 

to be a call within the same ring or to a lower ring with respect 

to TPR.RING can in fact be an upward call with respect to 

IPR.RING. Because in normal circumstances this situation 

represents an error, the decision is made to generate an access 

violation when it occurs, even if the current ring of execution is 

within the execute bracket of the called procedure segment. 

CALL generates in PR0 a pointer to word 0 of the stack 

segment for the new ring of execution. (The PR to use as this 

stack base pointer is chosen arbitrarily.) The stack segment 

selection rule illustrated in figure 8 is that the segment number 

of the appropriate stack segment is the same as the new ring 

number.*  The final transfer of control is achieved by reloading 

IPR.RING, IPR.SEGNO, and IPR.WORONO from the corresponding fields 

of TPR.

__________________________ 
* Two subtle features may be included at this point by using a 

more sophisticated stack segment selection rule. If the CALL 
instruction does not change the ring of execution, then the 
segment number for the stack base pointer is taken directly from 
the stack pointer register, allowing the continued use of a 
nonstandard stack segment for procedures executing in the same 
ring. If the CALL instruction does change the ring of execution 
then the new stack segment number is calculated by adding the 
new ring number to an additional DBR field that specifies the 
eight consecutively numbered segments that are the standard 
stack segments of the process. The use of the additional DBR 
field allows more flexibility in stack segment assignment, 
facilitating the preservation of stack history following an 
error and the implementation of forked stacks.
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The RETURN instruction is described by Figure 9. The access 

validation is the same as for other transfer instructions. The 

ring to which the return is made is specified by the effective 

ring portion of the effective address generated by the RETURN 

instruction. In the case that the return is upward, the ring 

number fields in all pointer registers are replaced with the 

larger of their current values and the new ring of execution. This 

replacement, together with the fact that PR'S can only be loaded 

with EAP-type instructions, guarantees that PRn.RING can never 

contain a value that is less than IPR.RING, a fact which proves 

very useful when passing arguments on a downward call and which 

makes it easy to perform an upward return to the proper ring. (See 

the next section for details.) 

Two items remain to be considered to complete the description 

of the processor hardware for implementing rings. One is the 

action of a trap. Traps are generated by a variety of conditions 

in Figures 4-9, as well as by missing segments and pages, I/O 

completions, etc. When the processor detects such a condition, it 

changes the ring of execution to zero and transfers control to a 

fixed location in the supervisor. A special instruction allows the 

state of the processor at the time of the trap to be restored 

later if appropriate, resuming the disrupted instruction. 

The other item concerns privileged instructions. Certain 

instructions, if executable by all procedure segments, could 

invalidate the protection provided by the ring mechanisms. Among 

these are the instructions to load the DBR, start I/O, and restore 
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the processor state after a trap. Such instructions are designated 

as privileged and will be executed by the processor only in ring 

o. This convention restricts their use to supervisor procedures. 

Call and Return Revisited 

The intended use of the hardware mechanisms just described is 

illustrated by considering again two key aspects of the linguistic 

meaning of the operations call and return. 

The first aspect to be reconsidered is the way arguments are 

passed and referenced. A procedure making a call constructs an 

array of indirect words containing the addresses of the various 

arguments to be passed with the call. To inform the called 

procedure of the location of this argument list, the calling 

procedure loads a specific PR designated by software convention 

(call it PRa) with the address of the beginning of the argument 

list. An instruction of the called procedure can reference the nth 

argument as its operand by using an indirect address. The location 

of the indirect word is specified in the instruction as PRa offset 

by n. If this operand reference constitutes an upward cross-ring 

argument reference then the proper validation is automatic, for 

PRa.RING, as set by the calling procedure, must contain a number 

that is greater than or equal to the number of the ring in which 

the calling procedure was executing when the call was made. Thus, 

validation of all argument references by the called procedure will 

be with respect to an effective ring that is at least as high as 

the ring of the caller. 
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The ring number in PRa, then, allows the called procedure to 

automatically assume the fewer access capabilities of the calling 

procedure in the case of an upward cross-ring argument reference 

via PRa and the argument list. Not all argument references, 

however, will be made in this way. For example, if an argument is 

an array, then the corresponding argument list indirect word will 

address the first element. The called procedure may find it 

convenient to load some free PR, say PR1, with the actual two-part 

address of the beginning of that array argument so that array 

indexing can be more easily accomplished. IfPR1 is loaded with an 

EAP-type instruction whose operand address is specified via PRa 

and the argument list, then the proper effective ring number will 

automatically be put in PRI.RING, and subsequent references to the 

argument via PR1 will also be validated with respect to an 

effective ring that is at least as high as the ring of the caller. 

If PR1 is then stored as an indirect word, this effective ring is 

put into the RING field of the indirect word. In fact, as long as 

the called procedure does not make an explicit effort to lower the 

effective ring associated with an argument address, e.g. by 

zeroing the RING field of an indirect word, then all manipulations 

of the argument address are safe, and all argument references will 

be validated with respect to an effective ring that is at least as 

high as the ring of the caller.*

________________________________
* This property allows the correct argument validation to occur 

naturally when an argument is passed along a chain of downward 
calls. The RING field of an argument list indirect word will 
specify the ring which originally provided the argument. If this 
value is higher than the value of PRa.RING, then the indirect 
word ring number will become the effective ring for validation 
of references to the corresponding argument. 
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The second aspect to be reconsidered with respect to call and 

return is the way in which a return to the proper ring is 

accomplished. As described earlier, the hardware guarantees that 

the RING fields in all PR'S always contain values greater than or 

equal to the current ring of execution. Thus, after a call all 

PR'S except PRO, which is altered by the CALL instruction, 

initially contain the rIng of the caller (or some higher number) 

in their RING fields. It follows that any scheme for returning 

which depends upon one of these values is secure. For example, the 

convention described earlier for restoring the stack pointer 

register value of the caller before a return makes it natural to 

address the operand of the RETURN instruction via this restored 

PR. (For this scheme to work, the return point must have been 

saved by the caller at a standard position in its stack area 

before the call occurred.) The RETURN instruction is thus 

guaranteed to generate an effective ring number no lower than the 

ring of the calling procedure and therefore will return control to 

the ring of the caller or some higher numbered ring.

 

Use of Rings 

Some insight into the functional capabilities of rings can be 

gained by considering briefly the way the basic mechanisms 

described in the previous sections are used in Multics. 

The ring protection scheme allows a layered supervisor to be 

included in the virtual memory of each process. In Multics, the 

lowest-level supervisor procedures, such as those implementing the 

primitive operations of access control, input/output, memory 
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multiplexing, and processor multiplexing, execute in ring O. The 

remaining supervisor procedures execute in ring 1. Examples of 

ring 1 supervisor procedures are those performing accounting, 

input/output stream management, and file system search direction. 

(Deciding how many layers to use and which procedures should 

execute in each layer is an interesting engineering design 

problem.) Supervisor data segments have read and write brackets 

that end at ring 0 or ring 1, depending on which layer of the 

supervisor needs to access each. 

Implicit invocation of certain ring 0 supervisor procedures 

occurs as a result of a trap. Explicit invocation of selected ring 

0 and ring 1 supervisor procedures by procedures executing in 

rings 2-5 of a process is by standard subroutine calls to gates. 

Procedures executing in rings 6 and 7 are not given access to 

supervisor gates. 

Because separate access control lists for each segment and 

separate descriptor segments for each process provide the means to 

control separately the use of each segment by each user's process, 

not all gates into supervisor rings need be available to the 

processes of all users, and not all gates need have the same gate 

extension associated with them. For example, some gates into ring 

0 are accessible to the processes of all users, but only to 

procedures executing in ring 1. Such gates provide the internal 

interfaces between the two layers of the supervisor. Some gates 

into ring 1 are accessible to procedures executing in rings 2-5 in 

the processes of selected users, but are not accessible at all 

from the processes of other users. An example of the latter kind 
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is a gate for registering new users that is available only from 

the processes of system administrators. 

As pointed out by Dijkstra [6], a layered supervisor has 

several advantages. Constructing the supervisor in layers enforced 

by ring protection reinforces these advantages. It limits the 

propagation of errors, thereby making the supervisor easier to 

modify correctly and increasing the level of confidence that the 

supervisor functions correctly. For example, changes can be made 

in ring 1 without having to recertify the correct operation of the 

procedures in ring O. 

By arranging for standard user procedures to execute in ring 

4, rings 2 and 3 become available for the protection of user-

constructed subsystems. Subsystems executing in rings 2 and 3 of a 

process can be protected from procedures executing in rings 4-7 in 

the same way that the supervisor is protected from procedures 

executing in rings 2-7. All comments made about a supervisor 

implemented in rings 0 and 1 of each process apply to protected 

subsystems implemented in rings 2 and 3. Different protected 

subsystems may be operated simultaneously in rings 2 and 3 of 

different processes and several processes may share the use of the 

same protected subsystem simultaneously. The ring protection 

scheme allows the operation of user-constructed protected 

subsystems without auditing them for inclusion in the supervisor. 

(The software facility that forces standard user procedures to 

execute in ring 4, and yet allows all users to freely provide ring 

3 protected subsystems for one another, is not discussed here.) 
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Examples of protected subsystems that might be provided by various 

users are a proprietary compiler or a subsystem to provide 

interpretive access to some sensitive data base and safely log 

each request for information. 

With most user procedures executing in ring 4, rings 5, 6, 

and 7 are available for user self-protection. For example, a user 

may debug a program by executing it in ring 5, where only 

procedure and data segments intended to be referenced by the 

program would be made accessible. The ring protection mechanisms 

would detect many of the addressing errors that could be made by 

the program and would prevent the untested program from accidently 

damaging other segments accessible from ring 4. In the same way 

ring 5 can be used for the execution of an untrusted program 

borrowed from another user. 

Because supervisor gates are not accessible from rings 6 and 

7 of any process in Multics, procedures executed in these rings 

have no explicit access to supervisor functions; they may, 

however, be given permission to call user-provided gates into 

rings 4 or 5. Ring 6 of a process might be used, for example, to 

provide a suitably isolated environment for student programs being 

evaluated by a grading program executing in ring 4. 

The complete description of a software access control 

facility based on rings that allows them to be used in the manner 

just outlined would require another paper. A fundamental 

constraint enforced by this software facility is that a program 

executing in ring n cannot specify Rl, R2, or R3 values of less 

than n in an access control list entry of any segment. Although a 
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given ring may simultaneously protect different subsystems in 

different processes, each ring of each process can protect only 

one subsystem at a time. A usable software access control facility 

must constrain each user's ability to dynamically set and modify 

access control specifications so that this sole occupant property 

can be verified and enforced when necessary. 

Conclusions 

The hardware mechanisms derived and described in this paper 

implement a methodical generalization of the traditional 

supervisor/user protection scheme that is compatible with a shared 

virtual memory based on segmentation. This generalization solves 

three significant kinds of problems of a general purpose system to 

be used as a computer utility:

- users can create arbitrary, but protected, subsystems for 
use by others,

  
- the supervisor can be implemented in layers which are 

enforced,

- the user can protect himself while debugging his own (or 
borrowed) programs.

 
The subset access property of rings of protection does not provide 

for what may be called "mutually suspicious programs" operating 

under the control of a single process. On the other hand, it is 

just that subset property which imposes an organization which is 

easy to understand and thus allows a system or subsystem designer 

to convince himself that his implementation is complete. Also, it 

is just the subset property which is the basis for a hardware 

implementation that is integrated with segmentation mechanisms, 

Schroeder/Saltzer Final Draft for CACM Page 38 of 43



requiring very small additional costs in hardware logic and 

processor speed. 

The long-range effect of hardware protection mechanisms which 

permit calls to protected subsystems that use the same mechanisms 

as calls to other procedures is bound to be significant. In the 

interface to the supervisor of most systems there are many 

examples of facilities whose interface design is biased by the 

assumption that a call to the supervisor is relatively expensive; 

the usual result is to place several closely related functions 

together in the supervisor, even though only one of the group 

really needs protection. For example, in the Multics typewriter I/

O package, only the functions of copying data in and out of shared 

buffer areas and of executing the privileged instruction to 

initiate I/O channel operation need to be protected. But, since 

these two functions are deeply tangled with typewriter operation 

strategy and code conversion, the typewriter I/O control package 

is currently implemented as a set of procedures all located in the 

lowest numbered ring of the system, thus increasing the quantity 

of code which has maximum privilege. 

A similar example is found in many file system designs, where 

complex file search operations are carried out entirely by 

protected supervisor routines rather than by unprotected library 

packages, primarily because a complex file search requires many 

individual file access operations, each of which would require 

transfer to a protected service routine, which transfer is 

presumed costly. 
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The initial version of Multics used software implemented 

rings of protection. The result was a very conservative use of the 

rings: originally just two supervisor rings and one user ring were 

employed, and the two supervisor rings were temporarily collapsed 

into one (thus exploiting the programming generality objective 

referred to before) while the software ring crossing mechanisms 

were tuned up. Today, although there are many obvious applications 

waiting, the ability to use more than two rings in a computation 

is just beginning to be exploited. The availability with the new 

Multics processor of hardware implemented rings which make 

downward calls and upward returns no more complex than calls and 

returns in the same ring should significantly increase such 

exploitation. 

Background and Acknowledgements

The concepts embodied in the mechanisms described here were 

the result of seven years of maturing of ideas suggested by many 

workers. The original idea of generalizing the supervisor/user 

relationship to a multiple ring structure was suggested by R.M. 

Graham, E.L. Glaser and F.J. Corbató. An initial software 

implementation of rings using multiple descriptor segments [14] 

was worked out by Graham and R.C. Daley, and constructed by 

members of the Multics system programming team. That 

implementation makes use of hardware access mode indicators stored 

in the segment descriptor word of the Honeywell 645 computer. 

Graham [9], in 1967, proposed a partial hardware implementation of 

rings of protection which included three ring numbers embedded in 
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segment descriptor words. and a processor ring register, but which 

still required software intervention on all ring crossings. Though 

a related scheme was implemented in the Hitac 5020 time-sharing 

system [15], this hardware scheme was never implemented in 

Multics, which today (1971) still uses a version of the software 

implementation of rings. The complete automation of downward calls 

and upward returns was proposed in a thesis in 1969 [16]; the 

description in this paper extends that thesis slightly with the 

addition of ring numbers to indirect words and the processor 

pointer registers, as suggested by Daley. The CALL and RETURN 

instructions proposed there have also been simplified. 

The hardware implemented call and return, and automatically 

managed stacks, were at least partly inspired by similar 

mechanisms which have long been used on computer systems of the 

Burroughs Corporation [4, 11]. 

In addition to those named above, D.D. Clark, C.T. Clingen, 

R.J. Feiertag, J.M. Grochow, N.I. Morris, M.A. Padlipsky, M.R. 

Thompson, V.L. Voydock, and V.A. Vyssotsky contributed significant 

help in understanding and implementing rings of protection. 
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Figure 1. Example access indicators for a writable data segment.

Figure 2. Example access indicators for a pure procedure segment 
which contains gates.
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Figure 3. Schematic description of relevant storage formats and 
processor registers.
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Figure 4. Retrieval of next instruction to be executed.
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Figure 5. Formation in TPR of effective address of instruction 
operand.
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Figure 6. Access validation for instructions which read or write 
their operands.
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Figure 7. Access validation for instructions which do not 
reference their operands.
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Figure 8. Access validation and performance of the CALL 
instruction.
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Figure 9. Access validation and performance of the RETURN 
instruction.
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