
A Hardware Architecture for Implementing Protection Rings*

Michael D. Schroeder and Jerome H. Saltzer
Massachusetts Institute Of Technology**

Cambridge, Massachusetts

October 8, 1971

Abstract: Protection of computations and information is an
important aspect of a computer utility. In a system which uses
segmentation as a memory addressing scheme, protection can be
achieved in part by associating concentric rings of decreasing
access privilege with a computation. This paper describes hardware
processor mechanisms for implementing these rings of protection.
The mechanisms allow cross-ring calls and subsequent returns to
occur without trapping to the supervisor. Automatic hardware
validation of references across ring boundaries is also performed.
Thus, a call by a user procedure to a protected subsystem
(including the the supervisor) is identical to a call to a
companion user procedure. The mechanisms of passing and
referencing arguments are the same in both cases as well.

Key Words and Phrases: protection, protection rings, protection
hardware, access control, hardware access control, computer
utility, time-sharing, shared information, segmentation, virtual
memory, Multics

CR Categories: 4.32, 6.21

* This is a revised version of a paper which appeared in the
Proceedings of the 3rd ACM Symposium on Operating Systems
Principles, October 18-20, 1971, pp. ??-??

** Project MAC and Department of Electrical Engineering. Work
reported herein was supported in part by Project MAC, an M.l.T.
research program sponsored by the Advanced Research Projects
Agency, Department of Defense, under Office of Naval Research
Contract N00014-70-A-0362-0001.

 Final Draft for CACM
© ACM, 1972. This is the authorsʼ version of the
work, posted by permission of ACM. The
d e fi n i t i v e v e r s i o n w a s p u b l i s h e d i n
Communications of the ACM 15, 3 (March 1972).
http://doi.acm.org/10.1145/800212.806498

http://doi.acm.org/10.1145/800212.806498
http://doi.acm.org/10.1145/800212.806498

Introduction

The topic of this paper is the control of access to stored

information in a computer utility. The paper describes a set of

processor access control mechanisms that were devised as part of

the second iteration of the hardware base for the Multics system.

These mechanisms provide a hardware implementation of protection

rings which limit the access privileges of an executing program.

Multics is a general purpose, multiple user, interactive

computer system developed at Project MAC of MIT in a joint effort

with the Cambridge Information Systems Laboratory of Honeywell

Information Systems Inc. and, until 1969, the Bell Telephone

Laboratories. It was built and is being run as an experiment in

designing, implementing, operating, and evaluating a prototype

computer utility. (Reference [14] contains a bibliography of

publications on Multics.)

Multics is currently implemented on a Honeywell 645 computer

system. The 645 represents a first attempt to define a suitable

hardware base for a computer utility. While containing special

logic to support a segmented virtual memory, the 645 processor

[10] provides only a limited set of access control mechanisms,

forcing software intervention to implement protection rings. In

the course of Multics development a second iteration of the design

of the hardware base has been undertaken. The resulting new

hardware system is being built as a replacement for the 645 using

the technology of the Honeywell 6000 series computer systems. The

new processor includes an improved set of access control

Schroeder/Saltzer Final Draft for CACM Page 2 of 43

mechanisms, described here, which implement rings almost

completely in hardware. These mechanisms were developed from a

scheme described in [16]. Although specifically designed for

Multics, the mechanisms are applicable to any computer system

which uses segmentation as a memory addressing scheme.

This paper begins by establishing the general need to control

access to stored information in a computer utility and by

presenting several criteria for comparing different sets of access

control mechanisms. Relevant aspects of the organization of

segmented memories are then sketched, and the processor mechanisms

for implementing protection rings are described. The paper

concludes by illustrating how rings can be used and by evaluating

the impact of a hardware system design.

Access Control in a Computer Utility

Protection of computations and information is an important

aspect of a computer utility. The multiple users of a computer

utility have different goals and are responsible to different

authorities. Such a diverse group will use the same system only if

it is possible for them to achieve independence from one another.

On the other hand, a great potential benefit of a computer utility

is its ability to allow users to easily communicate, cooperate,

and build upon one another's work. The role of protection in a

computer utility is to control user interaction -- guaranteeing

total user separation when desired, allowing unrestricted user

cooperation when desired, and providing as many intermediate

Schroeder/Saltzer Final Draft for CACM Page 3 of 43

degrees of control as will be useful.

While there are many manifestations of protection in a

computer utility, most may be related to controlling access to

stored information. Because stored information represents both

data and executable procedure, control of access to stored

information serves to regulate information processing as well.

Four criteria can be applied to a set of access control

mechanisms to judge its usefulness in a computer utility:

functional capability, economy, simplicity, and programming

generality. The first means that a set of access control

mechanisms should be able to meet an interesting set of user

protection needs in a natural way. The ability to meet interesting

protection needs must be a quality of the basic mechanisms, while

the ability to do so in a natural way is a quality of their user

interface. An obvious goal in designing new protection mechanisms

is to maximize functional capability.

The second criterion, economy, means that the cost of

specifying and enforcing a particular kind of access constraint

with a set of mechanisms should be so low that it is not an

important consideration in determining the type of access control

to be used in a particular application. In addition, cost should

be proportional to the functional capability actually used. The

existence of access control mechanisms with sophisticated

capabilities should cost no extra to those with unsophisticated

needs. Cost includes the subsystem complexity and user

inconvenience that result from use of the access control

mechanisms, as well as any associated extra storage space and

Schroeder/Saltzer Final Draft for CACM Page 4 of 43

execution time.

Simplicity is the third criterion. While it is true that

simplicity often leads to economy, something more is at stake. For

a set of access control mechanisms to be accepted there must be

confidence that no way exists to circumvent it. The best way to

achieve confidence is to keep the mechanisms so simple that they

may be completely understood. With respect to access control

mechanisms, lack of simplicity often implies lack of security.

The fourth criterion, programming generality, is often

neglected. It means that individual procedures may be combined

easily into larger units without understanding or altering their

internal organizations. Programming generality allows sharing to

be effective in encouraging users to build upon one another's

work. An implication of programming generality of relevance to

access control mechanisms is that it should be possible to change

the protection environment of procedures and collections of

procedures without altering their internal structure.

It clearly is difficult to design access control mechanisms

which satisfy all four of these criteria simultaneously. Increases

in functional capability come at the expense of economy,

simplicity, and programming generality. The challenge in designing

a set of access control mechanisms is to maximize functional

capability within the constraints of the other three criteria. In

the following sections a set of hardware access control mechanisms

that was devised in the course of Multics development is

described. These mechanisms appear to provide a significant

Schroeder/Saltzer Final Draft for CACM Page 5 of 43

improvement in the simultaneous satisfaction of the four criteria

as compared with the mechanisms in the initial Multics

implementation.

The Segmented Virtual Memory Environment

The processor access control mechanisms described here

regulate the ability of an executing program to reference

information in a segmented virtual memory. As a basis for

understanding these access control mechanisms this section briefly

reviews the structure of a typical segmented virtual memory. (See

[1-3] for detailed descriptions of several segmented virtual

memories.)

A machine language program for a segmented environment does

not reference memory by absolute address. Rather, its memory

consists of independent segments identified by number. Each

segment is a separate array of words. A two-part address (s, w)

identifies word w of the segment numbered s.

The collection of segments in the virtual memory is defined

by a descriptor segment containing an array of segment descriptor

words (SDW's). Each SDW can describe a single segment in the

virtual memory. The number of a segment is just the index of the

corresponding SDW in the descriptor segment. Among other things,

an SDW contains the absolute address of the beginning of the

corresponding segment in memory. The absolute address of the

beginning of the descriptor segment is contained in the descriptor

base register (DBR) of a processor. Each processor contains logic

for automatically translating two-part addresses into the

Schroeder/Saltzer Final Draft for CACM Page 6 of 43

corresponding absolute addresses. Address translation, done with

an indexed retrieval of the appropriate SDW from the descriptor

segment, occurs each time a word in the virtual memory is

referenced, i.e. each time an instruction, indirect word, or

instruction operand reference is made by an executing program.

Storage for segments is usually allocated with a paging

scheme in scattered fixed-length blocks. If used, paging is also

taken into account by the address translation logic, but is

totally transparent to an executing machine language program.

Paging, if appropriately implemented, need not affect access

control; it will be ignored in the remainder of this paper.

Changing the absolute address in the DBR of a processor will

cause the address translation logic to interpret two-part

addresses relative to a different descriptor segment. This

facility can be used to provide each user of the system with a

separate virtual memory. A single segment may be part of several

virtual memories at the same time, allowing straightforward

sharing of segments among users.

Controlling Access in a Segmented Virtual Memory

To provide a framework for discussion, three specific

assumptions true of Multics are introduced. First, a process with

a new virtual memory is created for each user when he logs in to

the system, and the name of the user is associated with the

process. The process is the active agent of the user, and is his

only means of referencing and manipulating information stored on-

line. Second, on-line storage is organized as a collection of

Schroeder/Saltzer Final Draft for CACM Page 7 of 43

segments of information. A process can reference a segment of on-

line storage only if the segment is first added to the virtual

memory of the process. Third, the users that are permitted to

access each segment are named by an access control list associated

with each segment. As will be seen, any system providing access

control of the type under discussion will probably have analogous

assumptions. The application of the rest of the discussion to

other systems with segmented virtual memories is straightforward.

Adding a segment to a virtual memory, an operation performed

by supervisor programs, provides the initial opportunity for

controlling access to information stored on-line. The name of the

user associated with a process must match some entry on the access

control list of a segment before the supervisor will add that

segment to the the virtual memory of the process.

Once a segment is included in the virtual memory, however,

finer control on access is required. (If a process could, say,

write in any segment to which it had access, little sharing of

information among users would occur.) If this finer control is to

be effective against arbitrary machine language programs

constructed by users, it must be implemented as hardware access

validation on each reference. The structure of the virtual memory

makes it natural to record these finer constraints in the SDW

associated with each segment. Since the processor must examine the

SDW for a segment each time that segment is referenced by two-part

address anyway, there is little effort added to validate the

intended access against constraints recorded there. With this

Schroeder/Saltzer Final Draft for CACM Page 8 of 43

structure it is also possible to change the allowed access to a

segment by changing the finer constraints recorded in the SDW, and

to expect the change to be immediately effective, although the

need for such dynamic changes is rare.

Flags which enable a segment to be read, written, and

executed are natural constraints to record in each SDW. The value

for each flag comes from the access control list entry which

matched the name of the user associated with the process. An

attempt by a process to change the contents of a word of a

segment, for example, would be allowed by the processor only if

the write flag were on in the SDW for the segment. This mechanism

provides individual control on the ability of each user's process

to read, write, and execute the words in each segment stored on-

line. It also makes a segment the smallest unit of information

that can be separately protected.

With the access control mechanisms described so far, all

programs executed as part of some process have the same

information accessing capabilities. However, there seems to be an

intrinsic need in many computations for the access capabilities of

a process to vary as the execution point passes through the

various programs that direct the computation. The most obvious

examples of this need are explicit invocations of supervisor

programs during the course of a computation. The execution point

may pass from a user program to a supervisor program to initiate

an input/output operation or change the access control list of a

segment, and then pass back to the user program. Presumably the

Schroeder/Saltzer Final Draft for CACM Page 9 of 43

executing supervisor program can access information in some way

that the user program cannot. In a system that allows and

encourages sharing of information among users, other examples

appear. For instance, user A may wish to allow user B to access a

sensitive data segment, but only through a special program,

provided by A, that audits references to the segment. During the

course of a computation in a process of user B, access to the

sensitive data segment should be allowed only when the execution

point is in the special program provided by A.

The word "domain" is frequently associated with a set of

access capabilities. The examples above point to an intrinsic need

for multiple domains to be associated with a process and for the

domain in which the process is executing to occasionally change as

the execution point passes from one program to another. A

descriptor segment with read, write, and execute flags in the

SDW's defines a single domain. Additional mechanisms are required

to allow multiple domains to be associated witha single process.

A very general set of access control mechanisms would place

no restriction on the number of domains which could be associated

with a process, and would force no restrictive relationships to

exist among the sets of access capabilities included in the

domains. Unfortunately, devising such a set of access control

mechanisms that also meets the criteria of economy, simplicity,

and programming generality is a difficult research problem. (See

[5,7,8,12, 13, 17] for several approaches that have been

explored.) In Multics the strategy was adopted of limiting the

Schroeder/Saltzer Final Draft for CACM Page 10 of 43

number of domains which may be associated with a process, and of

forcing certain relationships to exist among the sets of access

capabilities included in the domains. The result is protection

rings.

The characterization of rings as a restricted implementation

of domains is the result of hindsight. When developed, rings were

viewed as a natural generalization of the supervisor/user modes

that provided protection in many computers. This path of

development was chosen because it solved the most pressing

problems of access control involved in the prototype computer

utility and, due to the inherent simplicity of the idea, it was a

path that the Multics designers felt confident they could

successfully complete. Even today rings appear to provide an

effective trade-off among the criteria mentioned above.

Protection Rings

Associated with each process are a fixed number of domains

called protection rings. These r rings are named by the integers 0

through r-1. The access capabilities included in ring m are

constrained to be a subset of those in ring n whenever m > n. Put

another way, the sets of access capabilities represented by the

various rings of a process form a collection of nested subsets,

with ring 0 the largest set and ring r-1 the smallest set in the

collection. Thus, a process has the greatest access privilege when

executing in ring 0, and the least access privilege when executing

in ring r-1. The total ordering of the sets of access capabilities

defined by the consecutively numbered rings of a process is the

Schroeder/Saltzer Final Draft for CACM Page 11 of 43

property which allows a straightforward implementation of rings in

hardware.

As described earlier, the permission flags for each segment

in the virtual memory of a process simply indicate that the

segment can or cannot be read, written, or executed by the

process. With the addition of rings, the flags must be extended to

indicate which rings include each access capability. Because of

the nested subset property of rings, the capability, say, to write

a particular segment, if available to a process at all, is

included in all rings numbered less than or equal to some value w.

The range of rings over which this write permission applies is

called the write bracket of the segment for the process. Read and

execute brackets for each segment can be established in the same

way. A process is permitted to read, write, or execute a segment

in its virtual memory only if the ring of execution of the process

is within the proper bracket.

A partial hardware implementation of rings places numbers

indicating the top of each bracket of a segment in the SDW of the

segment, along with the read, write, and execute flags. If a flag

is on, then the number specifies the extent of the corresponding

bracket. Turning a flag off indicates that the corresponding

access capability is not included in any ring of the process. For

example, a data segment might have its execute flag turned off or

a pure procedure segment might have its write flag turned off. A

register is added to the processor to record the current ring of

execution of the process. The processor can then validate each

reference to a segment by making the obvious comparisons when the

Schroeder/Saltzer Final Draft for CACM Page 12 of 43

SDW for the segment is examined for address translation.

Figure 1 illustrates the flags and brackets that might be

associated with a writable data segment for some process. (In

Multics, eight was chosen as the appropriate number of rings.

Eight rings are shown in the examples, although more or fewer

rings might be appropriate in another system.)

The association of multiple domains of protection with a

process generates the need for a new kind of access capability --

the capability to change the domain of execution of a process.

Since changing the domain of execution has the potential to make

additional access capabilities available to a process, it is an

operation that must be carefully controlled. An understanding of

the sort of control required can be gained by reviewing the

purpose of domains. A domain provides the means to protect

procedure and data segments from other procedures that are part of

the same computation. Using domains, it should be possible to make

certain access capabilities available to a process only when

particular programs are being executed. Restricting the start of

execution in a particular domain to certain program locations,

called gates, provides this ability, for it gives the program

sections that begin at those locations complete control over the

use made of the access capabilities included in the domain. Thus,

changing the domain of execution must be restricted to occur only

as the result of a transfer of control to one of these gate

locations of another domain.

With a completely general implementation of domains, each

Schroeder/Saltzer Final Draft for CACM Page 13 of 43

Figures are at the
end of this file.

domain could provide protection against the procedures executing

in all other domains of a process. The corresponding property of

rings is that the protection provided by a given ring of a process

is effective against procedures executing in higher numbered

rings. Switching the ring of execution to a lower number makes

additional access capabilities available to a process, while

switching the ring to a higher number reduces the available access

capabilities. Thus, the downward ring switching capability must be

coupled to a transfer of control to a gate into the lower numbered

ring. Gates are specified by associating a (possibly empty) list

of gate locations with each segment in the virtual memory of a

process. If the execution point of the process is transferred to a

segment while the ring of execution is above the top of the

execute bracket for the segment, then the transfer must be

directed to one of the gate locations in the segment. If the

transfer is to a gate, then the ring of execution of the process

will switch down to the top of the execute bracket of the segment

as the transfer occurs. If the transfer is not directed to one of

the gate locations, then the transfer is not allowed.

To provide control of this downward ring switching capability

which is consistent with the subset property of rings, a gate

extension to the execute bracket of a segment is defined. The gate

extension specifies the consecutively numbered rings above the

execute bracket of the segment that include the "transfer to a

gate and change ring" capability for the segment. The gate list

and the gate extension to the execute bracket can both be

Schroeder/Saltzer Final Draft for CACM Page 14 of 43

specified with additional fields in each SDW.

In contrast to downward ring changes, switching the ring of

execution to a higher numbered ring can only decrease the

available access capabilities of a process. Thus, an upward ring

switch is an unrestricted operation that can be performed by any

executing procedure. (The instruction to be executed immediately

following an upward ring switch must come from a segment that is

executable in the new, higher numbered ring.) For programming

convenience, the upward ring switch may be coupled to a special

transfer instruction.

The abstract description of rings is now one step from

completion. The last step comes from the observation that for each

procedure segment in the virtual memory of each process there is a

lowest numbered ring in which that procedure is intended to

execute. In order to provide the means for preventing the

accidental transfer to and execution of a procedure in a ring

lower than intended, the requirement that execute brackets have a

lower limit at ring 0 is relaxed and instead an arbitrary lower

limit is allowed. For many procedure segments the execute bracket

will include exactly one ring -- the ring in which the procedure

is intended to execute. Procedure segments with wider execute

brackets normally will contain commonly used library subroutines

that are certified as acceptable for execution in any of several

rings.

The arbitrary lower limit on the execute bracket of a segment

can be implemented by using the field of an SDW which specifies

the top of the write bracket to specify the bottom of the execute

Schroeder/Saltzer Final Draft for CACM Page 15 of 43

bracket as well. The double use of this field does not appear to

remove any interesting functional capability. In fact, it

eliminates an unwanted degree of freedom in access specification,

thereby removing the potential to make certain types of errors,

such as allowing both writing and execution of a segment in more

than one ring of a process.

Figure 2 shows example access indicators for a pure procedure

segment containing gates, and illustrates how the execute and

write brackets specified in an SDW must be related.

The gate list and the numbers specifying the read, write, and

execute brackets and gate extension in each SDW all come from the

access control list entry which permitted the process to include

the corresponding segment in its virtual memory, as did the values

for the read, write, and execute flags.

Call and Return

As argued above, a change in the domain of execution of a

process can only occur when the executing procedure transfers

control to a gate of another domain. In the context of most

programming languages, an interprocedure transfer represents a

subroutine call, a return following a call, or a nonlocal goto.

Linguistically, all three operations produce a change in the

environment of the execution point; this change affects the

binding of variable names to virtual storage locations. The call

operation has the additional function of transmitting arguments

and recording a return point. Performing these functions generally

Schroeder/Saltzer Final Draft for CACM Page 16 of 43

requires the cooperation of both the procedure initiating the

operation and the procedure receiving control. If a call, return,

or goto changes the domain of execution because it happens to be

directed to a gate location of another domain, then the situation

becomes more complicated, for neither procedure can depend upon

the other to cooperate. An important simplification introduced by

restricting domains to a ring structure is that a procedure may

assume the cooperation of procedures in lower numbered rings.

When procedures are shared among different processes and

different domains, the addressing environment is usually defined

via processor registers, for the procedures must be pure and it is

not convenient to embed addresses within them. Part of the

function of the call, return, and goto operations is to properly

update this environment pointer. In Multics, pure procedures are

used with a per process stack, and a stack pointer register

provides the required environment definition. The stack of a

process is implemented with a separate segment for each ring being

used. The stack segment for procedures executing in ring n has

read and write brackets that end at ring n. Thus, stack areas for

these procedures are not accessible to procedures executing in any

ring m > n. In the following discussion the stack pointer register

is used as a typical example of the required environment pointer.

The most common ways of changing the ring of execution of a

process are a call to a gate of a lower numbered ring and the

subsequent upward return. A downward call represents the

invocation of a user-provided protected subsystem or a supervisor

Schroeder/Saltzer Final Draft for CACM Page 17 of 43

procedure. Because the Honeywell 645 was designed around the usual

supervisor/user protection method, the version of Multics for this

machine implements rings by trapping to a supervisor procedure

when downward calls and upward returns are performed. The hardware

mechanisms detailed in the next section eliminate the need to trap

in these cases. Using these improved hardware access control

mechanisms, downward calls and upward returns occur without the

intervention of a supervisor procedure and are performed by the

same object code sequences that perform all calls and returns.

It is the nested subset property of rings that makes a

straightforward hardware implementation of downward calls and

upward returns possible. Because of this property, the called

procedure automatically has all access capabilities required to

reference any arguments that the calling procedure can

legitimately specify and to return to the calling procedure in the

ring from which it called. However, three problems remain. First,

the called procedure must have a way of finding a new stack area

without depending upon information provided by the calling

procedure. Second, the called procedure must have a way of

validating references to arguments, so that it cannot be tricked

into reading or writing an argument that the caller could not also

read or write. Finally, the called procedure must have a way of

knowing for certain the ring in which the calling procedure was

executing, so that the called procedure cannot be tricked into

returning control to a ring not as high as that of the calling

procedure.

Schroeder/Saltzer Final Draft for CACM Page 18 of 43

The key to solving the first problem, finding a new stack

area, is a rule relating the segment number of the stack segment

for a ring to the ring number. Using this rule, the processor

automatically calculates the segment number of the proper stack

segment for the called procedure's ring of execution. By

convention, a fixed word of each stack segment can point to the

beginning of the next available stack area. Thus, the stack

segment number alone can provide the called procedure with enough

information from which to construct its own stack pointer. Because

the processor provides the stack segment number, no procedure

executing in a higher numbered ring, e.g. the calling procedure,

can affect the value of the stack pointer for the called

procedure.

The second problem, validating argument references, is solved

by providing processor mechanisms which allow a procedure to

assume the more restricted access capabilities of any higher

numbered ring for particular operand references. Using these

mechanisms, the called procedure can validate access when

referencing arguments as though execution were occurring in the

(higher numbered) ring of the calling procedure. Thus, the called

procedure, even though it is executing in a ring with more access

capabilities than the ring of the calling procedure, can prevent

itself from reading or writing any argument that the calling

procedure could not also read or write.

The final problem, knowing the ring of the caller, is solved

by having the processor leave in a program accessible register the

number of the ring in which execution was occurring before the

Schroeder/Saltzer Final Draft for CACM Page 19 of 43

downward call was made. The subsequent return is made to that

ring. Thus the calling procedure has no opportunity to lower the

number of the ring to which the return is made.

The next two sections describe in more detail how downward

calls, argument referencing and validation, and upward returns are

implemented. Before proceeding to that description, however, there

are two other possibilities to consider: a call and return that do

not change the ring of execution, and an upward call and the

subsequent downward return. The first presents no protection

problem, as both the calling and the called procedures have

available the same set of access capabilities. The hardware

mechanisms for downward calls and upward returns also work when no

change of ring is needed.

The last possibility is more difficult to handle. An upward

call occurs when a procedure executing in ring n calls an entry

point in another procedure segment whose execute bracket bottom is

m > n. When the call occurs, the ring of execution will change to

m. The subsequent return is downward, resetting the ring of

execution to n. These cases exhibit two unpleasant characteristics

of a general cross-domain call and return that were not present in

the other cases.

The first is that the calling procedure may specify arguments

that cannot be referenced from the ring of the called procedure.

(For a downward call, the nested subset property of rings

guaranteed that this could not happen.) There are at least three

possible solutions to this problem. One is to require that the

calling procedure specify only arguments that are accessible in

Schroeder/Saltzer Final Draft for CACM Page 20 of 43

the higher numbered ring of the called procedure. This solution

compromises programming generality by forcing the calling

procedure to take special precautions in the case of an upward

call. Another possible solution is to dynamically include in the

ring of the called procedure the capabilities to reference the

arguments. Because a segment is the smallest unit of information

for which access can be individually controlled, this forces

segments which contain arguments to contain no other information

that should be protected differently, again compromising

programming generality, unless segments are inexpensive enough

that, as a matter of course, every data item is placed in its own

segment. It may also be expensive to dynamically include and

remove the argument referencing capabilities from the called ring.

The third possible solution is copying arguments into segments

that are accessible in the called ring, and then copying them back

to their original locations on return. This solution restricts the

possibility of sharing arguments with parallel processes. None of

the three solutions lend themselves to a straightforward hardware

implementation.

The second unpleasant characteristic is that a gate must be

provided for the downward return. (For an upward return the nested

subset property of rings made a return gate unnecessary.) The

return gate must be created at the time of the upward call and be

destroyed when the subsequent return occurs. If recursive calls

into a ring are allowed, then this gate must behave as though it

were stored in a push-down stack, so that only the gate at the top

Schroeder/Saltzer Final Draft for CACM Page 21 of 43

of the stack can be used. The gates specified in SDW's seem poorly

suited to this sort of dynamic behavior. Processor mechanisms to

provide dynamic, stacked return gates are not obvious at this

time.

Because of these two problems, the hardware described in the

next section does not implement upward calls and downward returns

without software intervention. Although the same object code

sequences that perform all calls and returns are used in these

cases as well, the hardware responds to each attempted upward call

or downward return by generating a trap to a supervisor procedure

which performs the necessary environment adjustments.

The manner in which the stack pointer register value of the

calling procedure is saved when a call occurs and restored when

the subsequent return occurs has not yet been discussed. For a

same-ring or downward call, it is reasonable to trust the called

procedure to save the value left in the stack pointer register by

the calling procedure and then restore it before the subsequent

return, since in these cases the called procedure has access

capabilities which allow it to cause the calling procedure to

malfunction in other ways anyway. For an upward call and the

subsequent downward return, the same convention can be used

without violating the protection provided by the lower ring if the

intervening software verifies the restored stack pointer register

value when performing the downward return.

The Hardware Implementation of Rings

In this section the ideas presented in the previous sections

Schroeder/Saltzer Final Draft for CACM Page 22 of 43

are gathered into a description of a design for processor hardware

to implement rings. The description touches upon only those

aspects of the processor organization that are relevant to access

control. The segmented addressing hardware described earlier

serves as the foundation of the ring implementation mechanisms.

Figure 3 presents a schematic description of storage formats

and processor registers that are relevant to the discussion which

follows. The DBR and SDW's have already been mentioned. The three

3-bit ring numbers in an SDW (SDW.RI, SDW.R2, and SDW.R3) delimit

the read, write, and execute brackets and the gate extension. The

write bracket is rings 0 through SDW.RI, the execute bracket

SDW.Rl through SDW.R2, and the gate extension SDW.R2+1 through

SDW.R3. Rather than providing a fourth number to specify the top

of the read bracket, SDW.R2 is reused for this purpose. Thus the

read bracket is rings 0 through SDW.R2. Forcing the top of the

read and execute brackets to coincide in this manner does not seem

to preclude any important cases, and saves one ring number in the

SDW. Supervisor code for constructing SDW's must guarantee that

SDW.Rl ≤ SDW.R2 ≤ SDW.R3 is true. The single-bit read, write, and

execute flags (SDW.R, SDW.W, and SDW.E) also appear. Finally, the

list of gate locations of a segment is compressed to a single

length field (SDW.GATE) by requiring all gate locations to be

gathered together, beginning at location 0 of a segment. SDW.GATE

contains the number of gate locations present.

The instruction pointer (IPR) specifies the current ring of

Schroeder/Saltzer Final Draft for CACM Page 23 of 43

execution and the two-part address of the next instruction to be

executed. The general form of an instruction word in memory (INS)

is also shown for later reference.

The program accessible pointer registers (PR0, PR1, ...) each

contain a two-part address and a ring number. Because segment

numbers are not generally known at the time a segment is compiled,

machine instructions specify two-part operand addresses by giving

an offset (in INST.OFFSET) relative to one of the PR's (specified

by INST.PRNUM) or IPR. The ring number in a pointer register

(PRn.RING) is used to specify a validation level for the address,

and is part of the mechanism that allows an executing procedure to

assume the access capabilities of a higher numbered ring for

referencing arguments. One of the PR's is intended to serve as the

stack pointer register mentioned earlier.

Indirect addressing may be specified in an instruction by

setting the indirect flag (INST.I). Indirect words (IND) contain

the same information as PR's, and may also indicate further

indirection with an indirect flag (IND.I).

 The final item in Figure 3 is the temporary pointer register

(TPR). The TPR is an internal processor register that is not

program accessible. It is used to form a two-part address of each

virtual memory reference made. The ring number (TPR.RING)

provides the value with respect to which permission to reference

the virtual memory location is validated.

There are two aspects to the implementation of rings in

hardware. The first is access checking logic, integrated with the

Schroeder/Saltzer Final Draft for CACM Page 24 of 43

segmented addressing hardware, that validates each virtual memory

reference. The second is special instructions for changing the

ring of execution. The best way to describe the first aspect is to

trace the processor instruction cycle, giving particular attention

to the places where operations related to access validation occur.

The second aspect will be discussed when the description of the

instruction cycle reaches the point where the instruction is

actually performed.

The first phase of the instruction cycle, retrieving the next

instruction to be performed, is described in figure 4. At the

point during address translation that the SDW for the segment

containing the instuction becomes available, the ring of execution

(TPR.RING) is matched against the execute bracket defined in the

SDW and the execute flag is checked. If the segment may be

executed from the current ring of execution the instruction fetch

is completed. The access violations and other conditions requiring

software intervention shown in this and following figures generate

traps, derailing the instruction cycle. A traps action is

described later in this section.

The next phase of the instruction cycle, calculating in TPR

the effective address of the instruction's operand, is described

in Figure 5. This phase occurs only if the instruction has an

operand in memory. The effective address is the final two-part

address of the operand (after all address modifications and

indirections have taken place) together with an effective ring

number which is used to validate the actual reference to the

operand.

Schroeder/Saltzer Final Draft for CACM Page 25 of 43

The formation of a two-part address in TPR.SEGNO and

TPR.WORONO is very straightforward and is described by Figure 5.

The calculation of the ring number portion of the effective

address in TPR.RING and the access validation performed before

retrieving indirect words, also shown in Figure 5, need further

comment.

The effective ring portion of the effective address provides

a procedure with the means of voluntarily assuming the access

capabilities of a higher numbered ring when making an instruction

operand reference. The effective ring number also records the

highest numbered ring from which a procedure (in the same process)

possibly could have influenced the effective address calculation.

The first opportunity for the value of TPR.RING to change during

effective address calculation occurs if the instruction contains

an address that is an offset relative to some PRn. In this case

TPR.RING is updated with the larger of its current values (still

the current ring of execution) and the ring number in the

specified pointer register (PRn.RING). Thus, if PRn.RING contains

a value that is greater than the current ring of execution,

validation of the operand reference will be as though execution

were occurring in this higher numbered ring.

The remaining opportunities to change the value of TPR.RING

occur in conjunction with the processing of indirect words

involved in the effective address calculation. Each time an

indirect word is retrieved, TPR.RING is updated with the larger of

its current values, the ring number in the indirect word

(INO.RING), and the top of the write bracket for the segment

Schroeder/Saltzer Final Draft for CACM Page 26 of 43

containing the indirect word (SDW.Rl). The ring number in the

indirect word has the same purpose as the ring number in a pointer

register -- forcing validation of the operand reference relative

to some higher numbered ring. Including in the calculation the top

of the write bracket of the segment containing the indirect word,

however, has another purpose. The top of the write bracket

represents the highest numbered ring from which a procedure in the

same process could have altered the indirect word and thereby

influenced the result of the effective address calculation. Taking

into account SDW.Rl when updating TPR.RING guarantees that the

operand reference will be validated with respect to the highest

numbered ring which could have influenced the effective address.

The capability to read an indirect word during effective

address formation must be validated before the indirect word is

retrieved. Validation is with respect to the value in TPR.RING at

the time the indirect word is encountered. At the conclusion of

the effective address calculation described in Figure 5, TPR

contains the effective address of the instruction operand,

including the effective ring number with respect to which the

reference to the operand will be validated.

The next phase of the instruction cycle is to perform the

instruction. For the purpose of access validation, the possible

instructions may be broken into three groups, according to the

type of reference made to the operand. Figure 6 shows the access

validation for the straightforward cases of instructions which

read their operands and instructions which write their operands.

Schroeder/Saltzer Final Draft for CACM Page 27 of 43

The third group, instructions which do not reference their

operands, is illustrated in Figure 7. One set in this group is the

"Effective Address to Pointer Register" type (EAP-type)

instructions which load the RING, SEGNO, and WORONO fields of PRn

with the corresponding fields of TPR. The operand is not

referenced, so no access validation is required. Instructions of

this type are important, as will be seen later, for they are the

only way to load PR'S.

The remaining instructions illustrated in Figure 7 are

transfer instructions. To provide some protection against changing

the ring of execution by accident, all transfer instructions

except two, CALL and RETURN, are constrained from doing so. Since

a transfer instruction does not reference its operand, but just

loads the address of its operand into the instruction counter, no

access validation is really required. However, an advance check on

whether reloading IPR from TPR will result in an access violation

when the next instruction is retrieved is very useful from the

standpoint of debugging, for it catches the access violation while

it is still possible to identify the instruction which made the

illegal transfer. Figure 7 describes the advance check for

transfer instructions other than CALL and RETURN.

The two instructions that remain to be considered are the

instructions which can change the ring of execution: CALL and

RETURN. They are intended to be used to implement the same-named

linguistic operations.* CALL will automatically switch the ring of

execution to a lower number and RETURN to a higher number if the

Schroeder/Saltzer Final Draft for CACM Page 28 of 43

* RETURN may also be used to implement the non-local goto

operation.

occasion requires it. These instructions also function properly

for calls and returns within the same ring. When used to perform

an upward call or a downward return, the instructions cause traps

which allow software intervention.

Figure 8 describes the access validation and performance of

the CALL instruction. Several points require further explanation.

The first concerns gates. From Figure 8 it is apparent that a

CALL must be directed at a gate location even when the called

procedure will execute in the same ring as the calling procedure.

The rationale for this use of the gate list of a segment is that

it can provide protection against accidental calls to locations

that are not entry points, even when the call comes from within

the same ring. Thus, SDW.GATE for a procedure segment usually

specifies the number of externally defined entry points in the

procedure segment. These become gates for higher numbered rings in

the sense described in the previous sections only if the top of

the gate extension of the segment is above the top of the execute

bracket, i.e. only if SDW.R3 > SDW.R2 for the segment. The price

paid for this error detection ability is that if any externally

defined entry point in a procedure segment is a gate for a higher

numbered ring, then all are. On intersegment transfers of control

within the same ring, the gate restriction can be bypassed by

using a normal transfer instruction rather than a CALL. The only

exception to having a CALL instruction respect the gate list of

the operand segment occurs if the operand is in the same segment

as the instruction. Allowing a CALL instruction to ignore the gate

list of the segment containing the instruction permits it to be

used to implement calls to internal procedures.

Schroeder/Saltzer Final Draft for CACM Page 29 of 43

The access validation for the CALL instruction is made

relative to the ring number computed as part of the effective

address. Since, as a result of PR-relative addressing and

indirection, the effective ring value (TPR.RING) can be higher

than the current ring of execution (IPR.RING), what would appear

to be a call within the same ring or to a lower ring with respect

to TPR.RING can in fact be an upward call with respect to

IPR.RING. Because in normal circumstances this situation

represents an error, the decision is made to generate an access

violation when it occurs, even if the current ring of execution is

within the execute bracket of the called procedure segment.

CALL generates in PR0 a pointer to word 0 of the stack

segment for the new ring of execution. (The PR to use as this

stack base pointer is chosen arbitrarily.) The stack segment

selection rule illustrated in figure 8 is that the segment number

of the appropriate stack segment is the same as the new ring

number.* The final transfer of control is achieved by reloading

IPR.RING, IPR.SEGNO, and IPR.WORONO from the corresponding fields

of TPR.

* Two subtle features may be included at this point by using a

more sophisticated stack segment selection rule. If the CALL
instruction does not change the ring of execution, then the
segment number for the stack base pointer is taken directly from
the stack pointer register, allowing the continued use of a
nonstandard stack segment for procedures executing in the same
ring. If the CALL instruction does change the ring of execution
then the new stack segment number is calculated by adding the
new ring number to an additional DBR field that specifies the
eight consecutively numbered segments that are the standard
stack segments of the process. The use of the additional DBR
field allows more flexibility in stack segment assignment,
facilitating the preservation of stack history following an
error and the implementation of forked stacks.

Schroeder/Saltzer Final Draft for CACM Page 30 of 43

The RETURN instruction is described by Figure 9. The access

validation is the same as for other transfer instructions. The

ring to which the return is made is specified by the effective

ring portion of the effective address generated by the RETURN

instruction. In the case that the return is upward, the ring

number fields in all pointer registers are replaced with the

larger of their current values and the new ring of execution. This

replacement, together with the fact that PR'S can only be loaded

with EAP-type instructions, guarantees that PRn.RING can never

contain a value that is less than IPR.RING, a fact which proves

very useful when passing arguments on a downward call and which

makes it easy to perform an upward return to the proper ring. (See

the next section for details.)

Two items remain to be considered to complete the description

of the processor hardware for implementing rings. One is the

action of a trap. Traps are generated by a variety of conditions

in Figures 4-9, as well as by missing segments and pages, I/O

completions, etc. When the processor detects such a condition, it

changes the ring of execution to zero and transfers control to a

fixed location in the supervisor. A special instruction allows the

state of the processor at the time of the trap to be restored

later if appropriate, resuming the disrupted instruction.

The other item concerns privileged instructions. Certain

instructions, if executable by all procedure segments, could

invalidate the protection provided by the ring mechanisms. Among

these are the instructions to load the DBR, start I/O, and restore

Schroeder/Saltzer Final Draft for CACM Page 31 of 43

the processor state after a trap. Such instructions are designated

as privileged and will be executed by the processor only in ring

o. This convention restricts their use to supervisor procedures.

Call and Return Revisited

The intended use of the hardware mechanisms just described is

illustrated by considering again two key aspects of the linguistic

meaning of the operations call and return.

The first aspect to be reconsidered is the way arguments are

passed and referenced. A procedure making a call constructs an

array of indirect words containing the addresses of the various

arguments to be passed with the call. To inform the called

procedure of the location of this argument list, the calling

procedure loads a specific PR designated by software convention

(call it PRa) with the address of the beginning of the argument

list. An instruction of the called procedure can reference the nth

argument as its operand by using an indirect address. The location

of the indirect word is specified in the instruction as PRa offset

by n. If this operand reference constitutes an upward cross-ring

argument reference then the proper validation is automatic, for

PRa.RING, as set by the calling procedure, must contain a number

that is greater than or equal to the number of the ring in which

the calling procedure was executing when the call was made. Thus,

validation of all argument references by the called procedure will

be with respect to an effective ring that is at least as high as

the ring of the caller.

Schroeder/Saltzer Final Draft for CACM Page 32 of 43

The ring number in PRa, then, allows the called procedure to

automatically assume the fewer access capabilities of the calling

procedure in the case of an upward cross-ring argument reference

via PRa and the argument list. Not all argument references,

however, will be made in this way. For example, if an argument is

an array, then the corresponding argument list indirect word will

address the first element. The called procedure may find it

convenient to load some free PR, say PR1, with the actual two-part

address of the beginning of that array argument so that array

indexing can be more easily accomplished. IfPR1 is loaded with an

EAP-type instruction whose operand address is specified via PRa

and the argument list, then the proper effective ring number will

automatically be put in PRI.RING, and subsequent references to the

argument via PR1 will also be validated with respect to an

effective ring that is at least as high as the ring of the caller.

If PR1 is then stored as an indirect word, this effective ring is

put into the RING field of the indirect word. In fact, as long as

the called procedure does not make an explicit effort to lower the

effective ring associated with an argument address, e.g. by

zeroing the RING field of an indirect word, then all manipulations

of the argument address are safe, and all argument references will

be validated with respect to an effective ring that is at least as

high as the ring of the caller.*

* This property allows the correct argument validation to occur

naturally when an argument is passed along a chain of downward
calls. The RING field of an argument list indirect word will
specify the ring which originally provided the argument. If this
value is higher than the value of PRa.RING, then the indirect
word ring number will become the effective ring for validation
of references to the corresponding argument.

Schroeder/Saltzer Final Draft for CACM Page 33 of 43

The second aspect to be reconsidered with respect to call and

return is the way in which a return to the proper ring is

accomplished. As described earlier, the hardware guarantees that

the RING fields in all PR'S always contain values greater than or

equal to the current ring of execution. Thus, after a call all

PR'S except PRO, which is altered by the CALL instruction,

initially contain the rIng of the caller (or some higher number)

in their RING fields. It follows that any scheme for returning

which depends upon one of these values is secure. For example, the

convention described earlier for restoring the stack pointer

register value of the caller before a return makes it natural to

address the operand of the RETURN instruction via this restored

PR. (For this scheme to work, the return point must have been

saved by the caller at a standard position in its stack area

before the call occurred.) The RETURN instruction is thus

guaranteed to generate an effective ring number no lower than the

ring of the calling procedure and therefore will return control to

the ring of the caller or some higher numbered ring.

Use of Rings

Some insight into the functional capabilities of rings can be

gained by considering briefly the way the basic mechanisms

described in the previous sections are used in Multics.

The ring protection scheme allows a layered supervisor to be

included in the virtual memory of each process. In Multics, the

lowest-level supervisor procedures, such as those implementing the

primitive operations of access control, input/output, memory

Schroeder/Saltzer Final Draft for CACM Page 34 of 43

multiplexing, and processor multiplexing, execute in ring O. The

remaining supervisor procedures execute in ring 1. Examples of

ring 1 supervisor procedures are those performing accounting,

input/output stream management, and file system search direction.

(Deciding how many layers to use and which procedures should

execute in each layer is an interesting engineering design

problem.) Supervisor data segments have read and write brackets

that end at ring 0 or ring 1, depending on which layer of the

supervisor needs to access each.

Implicit invocation of certain ring 0 supervisor procedures

occurs as a result of a trap. Explicit invocation of selected ring

0 and ring 1 supervisor procedures by procedures executing in

rings 2-5 of a process is by standard subroutine calls to gates.

Procedures executing in rings 6 and 7 are not given access to

supervisor gates.

Because separate access control lists for each segment and

separate descriptor segments for each process provide the means to

control separately the use of each segment by each user's process,

not all gates into supervisor rings need be available to the

processes of all users, and not all gates need have the same gate

extension associated with them. For example, some gates into ring

0 are accessible to the processes of all users, but only to

procedures executing in ring 1. Such gates provide the internal

interfaces between the two layers of the supervisor. Some gates

into ring 1 are accessible to procedures executing in rings 2-5 in

the processes of selected users, but are not accessible at all

from the processes of other users. An example of the latter kind

Schroeder/Saltzer Final Draft for CACM Page 35 of 43

is a gate for registering new users that is available only from

the processes of system administrators.

As pointed out by Dijkstra [6], a layered supervisor has

several advantages. Constructing the supervisor in layers enforced

by ring protection reinforces these advantages. It limits the

propagation of errors, thereby making the supervisor easier to

modify correctly and increasing the level of confidence that the

supervisor functions correctly. For example, changes can be made

in ring 1 without having to recertify the correct operation of the

procedures in ring O.

By arranging for standard user procedures to execute in ring

4, rings 2 and 3 become available for the protection of user-

constructed subsystems. Subsystems executing in rings 2 and 3 of a

process can be protected from procedures executing in rings 4-7 in

the same way that the supervisor is protected from procedures

executing in rings 2-7. All comments made about a supervisor

implemented in rings 0 and 1 of each process apply to protected

subsystems implemented in rings 2 and 3. Different protected

subsystems may be operated simultaneously in rings 2 and 3 of

different processes and several processes may share the use of the

same protected subsystem simultaneously. The ring protection

scheme allows the operation of user-constructed protected

subsystems without auditing them for inclusion in the supervisor.

(The software facility that forces standard user procedures to

execute in ring 4, and yet allows all users to freely provide ring

3 protected subsystems for one another, is not discussed here.)

Schroeder/Saltzer Final Draft for CACM Page 36 of 43

Examples of protected subsystems that might be provided by various

users are a proprietary compiler or a subsystem to provide

interpretive access to some sensitive data base and safely log

each request for information.

With most user procedures executing in ring 4, rings 5, 6,

and 7 are available for user self-protection. For example, a user

may debug a program by executing it in ring 5, where only

procedure and data segments intended to be referenced by the

program would be made accessible. The ring protection mechanisms

would detect many of the addressing errors that could be made by

the program and would prevent the untested program from accidently

damaging other segments accessible from ring 4. In the same way

ring 5 can be used for the execution of an untrusted program

borrowed from another user.

Because supervisor gates are not accessible from rings 6 and

7 of any process in Multics, procedures executed in these rings

have no explicit access to supervisor functions; they may,

however, be given permission to call user-provided gates into

rings 4 or 5. Ring 6 of a process might be used, for example, to

provide a suitably isolated environment for student programs being

evaluated by a grading program executing in ring 4.

The complete description of a software access control

facility based on rings that allows them to be used in the manner

just outlined would require another paper. A fundamental

constraint enforced by this software facility is that a program

executing in ring n cannot specify Rl, R2, or R3 values of less

than n in an access control list entry of any segment. Although a

Schroeder/Saltzer Final Draft for CACM Page 37 of 43

given ring may simultaneously protect different subsystems in

different processes, each ring of each process can protect only

one subsystem at a time. A usable software access control facility

must constrain each user's ability to dynamically set and modify

access control specifications so that this sole occupant property

can be verified and enforced when necessary.

Conclusions

The hardware mechanisms derived and described in this paper

implement a methodical generalization of the traditional

supervisor/user protection scheme that is compatible with a shared

virtual memory based on segmentation. This generalization solves

three significant kinds of problems of a general purpose system to

be used as a computer utility:

- users can create arbitrary, but protected, subsystems for
use by others,

- the supervisor can be implemented in layers which are

enforced,

- the user can protect himself while debugging his own (or
borrowed) programs.

The subset access property of rings of protection does not provide

for what may be called "mutually suspicious programs" operating

under the control of a single process. On the other hand, it is

just that subset property which imposes an organization which is

easy to understand and thus allows a system or subsystem designer

to convince himself that his implementation is complete. Also, it

is just the subset property which is the basis for a hardware

implementation that is integrated with segmentation mechanisms,

Schroeder/Saltzer Final Draft for CACM Page 38 of 43

requiring very small additional costs in hardware logic and

processor speed.

The long-range effect of hardware protection mechanisms which

permit calls to protected subsystems that use the same mechanisms

as calls to other procedures is bound to be significant. In the

interface to the supervisor of most systems there are many

examples of facilities whose interface design is biased by the

assumption that a call to the supervisor is relatively expensive;

the usual result is to place several closely related functions

together in the supervisor, even though only one of the group

really needs protection. For example, in the Multics typewriter I/

O package, only the functions of copying data in and out of shared

buffer areas and of executing the privileged instruction to

initiate I/O channel operation need to be protected. But, since

these two functions are deeply tangled with typewriter operation

strategy and code conversion, the typewriter I/O control package

is currently implemented as a set of procedures all located in the

lowest numbered ring of the system, thus increasing the quantity

of code which has maximum privilege.

A similar example is found in many file system designs, where

complex file search operations are carried out entirely by

protected supervisor routines rather than by unprotected library

packages, primarily because a complex file search requires many

individual file access operations, each of which would require

transfer to a protected service routine, which transfer is

presumed costly.

Schroeder/Saltzer Final Draft for CACM Page 39 of 43

The initial version of Multics used software implemented

rings of protection. The result was a very conservative use of the

rings: originally just two supervisor rings and one user ring were

employed, and the two supervisor rings were temporarily collapsed

into one (thus exploiting the programming generality objective

referred to before) while the software ring crossing mechanisms

were tuned up. Today, although there are many obvious applications

waiting, the ability to use more than two rings in a computation

is just beginning to be exploited. The availability with the new

Multics processor of hardware implemented rings which make

downward calls and upward returns no more complex than calls and

returns in the same ring should significantly increase such

exploitation.

Background and Acknowledgements

The concepts embodied in the mechanisms described here were

the result of seven years of maturing of ideas suggested by many

workers. The original idea of generalizing the supervisor/user

relationship to a multiple ring structure was suggested by R.M.

Graham, E.L. Glaser and F.J. Corbató. An initial software

implementation of rings using multiple descriptor segments [14]

was worked out by Graham and R.C. Daley, and constructed by

members of the Multics system programming team. That

implementation makes use of hardware access mode indicators stored

in the segment descriptor word of the Honeywell 645 computer.

Graham [9], in 1967, proposed a partial hardware implementation of

rings of protection which included three ring numbers embedded in

Schroeder/Saltzer Final Draft for CACM Page 40 of 43

segment descriptor words. and a processor ring register, but which

still required software intervention on all ring crossings. Though

a related scheme was implemented in the Hitac 5020 time-sharing

system [15], this hardware scheme was never implemented in

Multics, which today (1971) still uses a version of the software

implementation of rings. The complete automation of downward calls

and upward returns was proposed in a thesis in 1969 [16]; the

description in this paper extends that thesis slightly with the

addition of ring numbers to indirect words and the processor

pointer registers, as suggested by Daley. The CALL and RETURN

instructions proposed there have also been simplified.

The hardware implemented call and return, and automatically

managed stacks, were at least partly inspired by similar

mechanisms which have long been used on computer systems of the

Burroughs Corporation [4, 11].

In addition to those named above, D.D. Clark, C.T. Clingen,

R.J. Feiertag, J.M. Grochow, N.I. Morris, M.A. Padlipsky, M.R.

Thompson, V.L. Voydock, and V.A. Vyssotsky contributed significant

help in understanding and implementing rings of protection.

References

1. Apfelbaum, H., and Oppenheimer, G. Design of virtual memory
systems. Proceedings of the 1971 IEEE International. Computer
Society Conference, Boston, 115-116.

2. Arden, B.W., et al. Program and addressing structure in a
time-sharing environment. Journal of the ACM 13, 1 (January,
1966), 1-16.

Schroeder/Saltzer Final Draft for CACM Page 41 of 43

3. Bensoussan, A., Clingen, C.T., and Daley, R.C. The Multics
virtual memory. Proceedings of the Second ACM Symposium on
Operating Systems Principles. Princeton, N.J., 1969, 30-42.
---NOTE TO THE EDITOR: The paper cited in this reference has been
accepted for publication in CACM. If possible, please change this
reference to cite the CACM version of this paper.---

4. Burroughs Corporation. A Narrative Description of the
Burroughs B5500 Master Control Program. Detroit, October, 1969.

5. Dennis, J.B., and Van Horn, E.C. Programming semantics for
multiprogrammed computations. Communications of the ACM 9, 3
(March, 1966), 143-155.

6. Dijkstra, E.W. The structure of the "THE" multiprogramming
system. Communications of the ACM 11, 5 (May, 1968), 341-346.

7. Evans, D.C., and LeClerc, J.Y. Address mapping and the
control of access in an interactive computer. AFIPS Conference
Proceedings 30, (1967 SJCC), Thompson Books, Washington D.C.,
23-30.

8. Fabry, R.S. Preliminary description of a supervisor for a
computer organized around capabilities. Quarterly Progress Report
No. 18, Institute of Computer Research, U. of Chicago, I-B 1-97.

9. Graham, R.M. Protection in an information processing utility.
Communications of the ACM 11,5 (May, 1968), 365-369.

10. Honeywell Information Systems Inc., Cambridge Information
Systems Laboratory. Model 645 Processor Reference Manual, April,
1971.

11. Hauck, E.A., and Dent, B.A. Borrough's B6500/B7500 stack
mechanisms. AFIPS Conference Proceedings 32, (1968 SJCC),
Thompson Books, Washington, D.C., 245-251.

12. Lampson, B.W. An Overview of the CAL Time-Sharing System.
Computation Center, University of California, Berkeley, September
1969.

13. -------. Dynamic protection structures. AFIPS Conference
Proceedings 35, (1969 FJCC), AFIPS Press, Montvale, N.J., 27-38.

14. Massachusetts Institute of Technology, Project MAC. Multics
Programmer's Manual. 1969.

15. Motobayashi, S., Masuda, T., and Takahashi, N. The Hitac 5020
time-sharing system. Proceedings of the ACM 24th National
Conference, (1969), ACM Puublication P-69, 419-429.

16. Schroeder, M.D. Classroom model of an information and
computing service. S.M. Thesis Massachusetts Institute of

Schroeder/Saltzer Final Draft for CACM Page 42 of 43

Technology, Department of Electrical Engineering, February 1969.
[An expanded version of this thesis is available as Project MAC
Technical Report MAC-TR-80.]

17. Vanderbilt, D.H. Controlled information sharing in a computer
utility. Massachusetts Institute of Technology, Project MAC, MAC-
TR-67, 1969.

Schroeder/Saltzer Final Draft for CACM Page 43 of 43

Figure 1. Example access indicators for a writable data segment.

Figure 2. Example access indicators for a pure procedure segment
which contains gates.

Schroeder/Saltzer Figures for CACM Page 1 of 8

Figure 3. Schematic description of relevant storage formats and
processor registers.

Schroeder/Saltzer Figures for CACM Page 2 of 8

Figure 4. Retrieval of next instruction to be executed.

Schroeder/Saltzer Figures for CACM Page 3 of 8

Figure 5. Formation in TPR of effective address of instruction
operand.

Schroeder/Saltzer Figures for CACM Page 4 of 8

Figure 6. Access validation for instructions which read or write
their operands.

Schroeder/Saltzer Figures for CACM Page 5 of 8

Figure 7. Access validation for instructions which do not
reference their operands.

Schroeder/Saltzer Figures for CACM Page 6 of 8

Figure 8. Access validation and performance of the CALL
instruction.

Schroeder/Saltzer Figures for CACM Page 7 of 8

Figure 9. Access validation and performance of the RETURN
instruction.

Schroeder/Saltzer Figures for CACM Page 8 of 8

