Workstation Services and
Kerberos Authentication
at Project Athena

Don Davis, MIT Staff
Ralph Swick, Digital Equipment Comp.
02/14/89

Table of Contents

introduction
Authentication of Workstation Services

Problem to be Solved

Constraints on Solutions

Discussion of the Problem

Our Proposed Solution

Ticket LHetimes and Renewal
Ticket Propagation

Problem to be Solved

Constraints on Solutions

Discussion of the Problem

Our Proposed Solutlon
Acknowledgments

Appendix: Prootf of Correctness for the Proposed Protocol

DN ~JOTTORNMENN~ =L

Introduction
This document proposes solutions for two problems obstructing Project Athena’s
implementation of workstation services.

The principal problem is that workstation services demand a more flexible mutual-
authentication protocol than Kerberos currentiy provides. The egregious X access-control
hack, xhost, for example, has lack of authentication as its root cause. This protocol weakness
is also the reason that public workstations can't accept authenticated connections from rlogin,
rep, rsh, etc. We propose an extension to the Kerberos Ticket Granting Service protocol, that
cleanly supports user-to-user mutual authentication.

QOur second proposal addresses the problem of ticket propagation. Currently, if a user
wants tickets that are valid on a remote host, he has to run kinit in an encrypted rlogin session,
unless he's willing to send his password in cleartext. As an example of the use of our protocol
extension, we describe a Kerberos application that would support a limited facility for secure
ticket-propagation.

Authentication of Workstation Services

Probiem to be Solved

Public workstation users can't offer authenticated network services. Currently, only
physically secure hosts can offer such services, because Kerberos’ client-to-server
authentication requires each server to store its private key in /etc/srvtab. Public workstations
are insecure, so we can't extend the srvtab approach to workstations.

The basic Kerberos protocol, 'which allows a user to gain a service ticket in exchange for
a password, is not at fault in this problem. In fact, the basic protocol, lacking the complications
of TGT's and srvtab, offers a trivia!, albeit limited, sclution: Kerberos can supply anyone who
asks with an encrypted keyfticket pair of the form {Kc.sp e {Tc.sp} Ksp} Kﬁ.2 Of course, the
keys K, and Ksp are private keys, s¢ both client and server must enter their passwords each
time they make a connection. The problem, restated, is thus to relieve users of the frequent
need 1o enter their passwords.

The clients’ half of this problem has been completely solved by the Ticket-Granting-
Ticket (TGT) protocol. Athena has addressed the servers’ half of the problem, but only weakly,
by storing each server's private key in /etc/srvtab. Thus, clients and servers currently use
user-to-host authentication. This deesn't work on public workstations, for two reasons:

"Needham & Schroeder's 1978 protocol, pius timestamps. See: Roger M. Needham and Michael D. Schroeder,
“Using Encryption for Authentication in Large Networks of Computers”. CACM Vel. 21, No. 12, Dec. 1978, pp.
993-999.

2Here, the subscripts "c" & "sp” refer to the client and service-provider, respactively. The eliipsis represents our
omission of the timestamp, server’s ID, and other data. Otherwise, our notation foliows Steiner, Neuman, & Schiller,
"Kerberos: An Authentication Sarvice for Open Network Systems”, USENIX Winter Conference, February, 1988,

» Public workstations are vulnerable to various privacy attacks, and hence cannot
securely hold any long-lived secret.

¢ In most cases, what we really want is user-to-user, not user-to-host,
authentication.

An immediate coroilary of public workstations' insecurity is that idle public workstations’
services cannot be authenticated, because insecure hosts ¢can readily be impersonated in any
protocol. Thus, we believe that no general user-to-host scheme can embrace public
workstations. Accordingly, this proposal will address only the goal of a fully general user-to-
user mutual authentication protocol. A user-to-user protocol raises the probiem of dynamically
mapping users to hosts, but we will not address such mapping in this document.

Constraints on Solutions
These are non-negotiable, in case you're wondering:

1. We can't add state to the Kerberos server's process at all.

2. We can't add frequently-changing state to the Kerberos database.

3. We should make at most one transaction with Kerberos per connection.

4. More generally, loading the Kerberos server is always to be avoided.

5. No infinite-life keys { like srvtab’s) can be stored on an insecure host (for

example, public workstations).
Constraints 1 - 4 are "scaling issues”. Constraints 1 and 2 limit the difficulty of

replicating Kerberos with slave servers. As a consequence of Constraint 1, Kerberos can
never initiate any protocol, because to ask for something requires that Kerberos await the

response, which requires process-state. For the same reason, Kerberos can't measure time
intervais at all.

Discussion of the Problem

if the server workstation is to autonomously authenticate on its user's behalf, it will have
to store a secret that only the user and Kerberos share; this is axiomatic. Furthermore,
because the workstation’s secret could be compromised at any time,3this secret must be short-
lived. We propose to use the user's session-key with the TGS as the "service secret”.

Then Kerberos’ most natural response to a service-ticket request takes the form
{Kesp o { Tespl Kepagst Kegs: Unhappily, itis not straightforward to enable Kerberos to
build such a response. If Kerberos is to use both users’ TGS session keys to encrypt the
service-ticket, Kerberos must receive both users’ TGT s4simultaneously. Note that Constraint
1 implies that Kerberos cannot judge "simultaneity” of these fickets’ arrival, unless they arrive
together in one message.

3via an unattended console, for exampls.

“To a good approximation, C’s TGT = { C, time/life, Kesgs! Kgs -

It is troublesome, though, for one user to pass both TGT's to Kerberos, because the
TGT protocol requires that each TGT be presented to Kerberos with a time-stamped
authenticator. Further, the TGT protocol has no provision for one user to present another
user's credentials. However, for one user to possess another's TGT is actually neither
troublesome nor remarkable, since in order to use the TGT, any impersonator would need the
corresponding session key. Indeed, when any user requests service tickets, he sends his TGT
along in a cleartext request, making the TGT available to anyone on the net.

The source of the TGT protocol's “crossed-credentials” prohibition, is a flawed analogy
between TGT's and service tickets. The basic Kerberos protocol requires that a user present
an authenticator when using his service ticket, so as to prevent replay of service tickets. The
TGT protocol conservatively makes the same requirement, on the assumption that what is
secure for other services, is secure for the ticket granting service. But, in fact, a TGT-mediated
service ticket request is actually more analogous 1o the basic Kerberos ticket-request, which
does not include an authenticator: neither request can usefully be replayed, because the TGS’
responses are always encrypted in the requester’s key.

Thus, in essence, a principal authenticates himself by using his secret key; reading an
encrypted message serves this purpose as well as does sending an encrypted authenticator,
and doing both ts redundant. Further, Kerberos’ role is not to authenticate the service's
principals, but to enable the principals to authenticate one another. Thus, we argue that the
TGT-protocol's authenticator requirement can safely be relaxed, so as to allow either member
of a client-server pair to present both members’ TGT’s.?

Notation

We introduce the notation t, ., for the conversation key K_ .., service-id, ticket lifetime,
and other data, that accompany the service ticket in a credentials message from Kerberos.
The identity T, o, == (C, t, &) is a good approximation.®Thus, what we've represented as

{Kosp vl To.spd Kopags | Kegs
is properly written

{ tc.sp o Tc.sp} Ksp.hgs } Kc,tgs
As mentioned above, our notation otherwise follows Steiner, Neuman, and Schiller [88].

Sactually, the TGS protocol could retain the authenticater requirement, if the TGS were willing to unseal TGT.P after
verifying the credentials in TGT...

%The Kerberos Request For Comments (RFC), currently in preparation, is the best refarence for the existing
pretocol's message contents.

Our Proposed Solution

We've chosen to have the client do the talking with Kerberos, because to do so requires
time-out state, which burden can't be borne by all application servers. An added benefit of this
choice, is that if a network connectivity fault separates a server from Kerberos, some of its
clients will still be able to authenticate.

1. Client C asks server SP for service, in cleartext.
C—>8P : (CwantsSP)

2. SP sends its TGT to C.
SP—>C ! {TguetKigs

3. C asks Kerberos for a service ticket, sending SP's TGT and C's own TGT.
C-—>Krb : ({ Tetgsttgs 1 Tsmgs}ths)

4. In response, Kerberos:
« decrypts the two TGT's, vielding the users’ names and TGS session keys;

* prepares a new session key K, ., for C and SP to share;

* composes service-ticket contents T, ., from the TGTs' name-fields, the
new session key, and other data;

e uses SP's TGS session key K to encrypt the ticket contents into a

service ticket;

» sends the service ticket, the new session key, and other credentials to C,
encrypted in C's TGS session key Ketgs -

Krb -—>C {tc,sp J {TC.SP} KSPJQS} K°nt93

sp.igs

5. On receipt of the ticket/key pair, C:

= uses C's TGS session key to decrypt the credentials, yielding the new
session key K the service ticket, and other data;

c.sp !
* checks the service-provider's name and the timestamp int, o, ,
* uses K, ., to encrypt an authenticator, and

* sends the service-ticket and authenticator to SP.

C—>8P : ({Auth} K, i T Kepgo)

6. On receipt of the ticket-authenticator pair, SP:
* uses SP's TGS session key to decrypt the ticket, gaining K, o, ;

+ checks the names and the lifetime in Tc,sp ,

s uses Kc,sp to decrypt C's authenticator, and

= uses K_ . to encrypt a corresponding authenticator of its own, which it
returns to C (optional for physically-secure services).

SP > C :{Auth) K. o

7. For each additional connection, C and SP need to repeat only messages 5 and 6
(optional).

Note that in step 3, C specifies SP not by name, but by giving SP’s TGT. In step 4, the
TGS uses the TGTs' name-fields to build C's credentials, thereby securely identifying C and
SP to one another as the owners of the key K_ . Thus, C's and SP’s checks of the
credentiais’ name-fields foils intruders’ replay of TGT's in the unauthenticated messages 2 and
3.

For uniformity’s sake, we propose to authenticate physically-secure servers in this way,
as well. Such a server-host would still keep its private-key in srvtab, but would use the key to
get a TGT; its daemons would use the TGT in this protocol in order to accept connections.
This uniformity in the protocol comes at the cost of these hosts having to maintain up-to-date
TGT's. However, this TGT-maintenance can be handled by a Kerberos application. More
important in this question is the extra exchange 1 - 2 that this protocol imposes on secure
servers.

Note finally that Kerberos, to support this protocol, doesn’t need access to the database,
but needs only the TGS’ service-key ths Thus, our proposed changes affect only Kerberos'
Ticket Granting Service; the Kerberos database would not be changed.

Ticket Lifetimes and Renewal

The protocol we've presented so far, doesn't support ticket renewal. The service ticket
is timestamped to expire as soon as either principal's TGT expires.”Whenever either user runs
kinit to refresh her TGT, the client and service-provider processes need 1o be able to renew
their conversation key and service ticket. This renewal of session credentials should proceed
invisibly to the users.

There are three expiration/renewat scenarios:

s Servers’ right to accept connections should expire with their TGT's; all remaining
clients’ service-tickets will expire simultaneously. These clients should renew their
service-tickets only when they need a fresh connection.

« Clients’ right to use a conversation key in an established service-connection may
expire, if the service applies the service-ticket lifetime to the conversation key.

« Established client/server sessions may wish to change their conversation keys
periodically, even if the service-ticket doesn't expire.

Service-ticket lifetime enforcement must be coded into the application-servers, as is
done now. Clients should not try t¢ enforce anticipated lifetimes on tickets, because servers
may have idiosyncratic lifetime-rules. Once the client reaiizes that it needs a new ticket’key

"This assumes that the maximal service-ticket Ifetime == TGT lfelime. These litetimes may be different.

pair, all three types of renewal require that the client talk again to Kerberos with up-to-date
TGT's. Thus, in step 4, Kerberos should be abie to respond to out-of-date TGT's with an
error-code that tells which TGT has expired, so that the client-user can know what to do.

Ticket Propagation

Problem to be Solved

Kerberos' current suite of applications doesn't allow users 10 get tickets for use on
remote hosts. Rlogin users sometimes need such tickets in order to authenticate their remote
sessions, e.g., S0 as to remotely access their NFS lockers.®We anticipate that other remote
processes will need access to their client-users’ tickets.

Constraints on Solutlons
« Passwords and keys require encrypted transmission.

« The propagated tickets must be created anew for the recipient host; that is, the
tickets' format must retain the "host id" field.

+ Propagation of tickets must require a password; that is, it can’t be automatic. (to
prevent "unattended console” ticket-thefts).

« The local host must not cache tickets for a remote host (unattended console
again).

+ Propagated should normally have a reduced lifetime, since it's harder for the user
to destroy them.

« As usual, we prefer not to change the Kerberos protocols.

Actually, it wouid probably be safe to allow automatic propagation of reduced-
authorization tickets, but this is hampered by the difficulty of adding a notion of "reduced
authorization” to Kerberos. Until it's better understood, automatic propagation is risky enough
that Kerberos should only support it, when an application demonstrates an ¢verriding need.

Discussion of the Problem

We propose a new service, called "rkinit”, whose purpose is to transfer tickets on
encrypted connections. How will ticket-propagation be used, and how wili it work? Depending
on whether the donor or the recipient initiates the transfer, we’ll distinguish between "pushing”
and "pulling” tickets, respectively. For example, a user might push tickets to a remote host
before using rlogin, or he might rlogin first, and then use the remote session to pull his tickets
after him.

Pulling is more convenient for ricgin and teinet users, who don’'t always need remote

%Project Athena's NFS-implementation demands Kerberos authentication for protected accesses.

tickets. It wouid be nice to support both pushing and puiling of tickets at Athena, but only
pushing is necessary. It's likely, in fact, that only rtogin and other "cycle services" can use
puliing to advantage, so that it's best to equip those protocols with toggled-encryption. This
would allow such users to run kinit remotely and securely.

Our Proposed Solution
Pushing is the more elegant approach:
1. The donor requests rkinit service of the receiver host, and uses the resulting
encrypted connection to identify himself.

2. The receiver rkinitd asks Kerberos for normal tickets in the normal way. Rkinitd
then returns Kerberos' encrypted response to the donor.

3. The donor code prompts the user for his password, uses the password to decrypt
the tickets just as kinit does, and returns the tickets to the receiver, via the
encrypted connection.

4. The receiver host's rkinitd puts the tickets into a ticket-file.

Puliing is quite hard to implement, because it always requires that the donor-user see a
remote process’ password-prompt.
1. The receiver runs kinit 1o get tickets, which are encrypted in the donor's private
key. Kinit must be told the donor's host-name.

2. kinit then calls the donor's host, and uses the receiver-host's administrator's TGT
to gain an encrypted connection.

3. The encrypted connection can be used to either get a password from the donor,
or to send the tickets to him for decryption. in either case, the donor's host must
raise a password-prompt somewhere. This is difficult if X-windows aren’t
available, and spoofable even then, After decrypting the tickets, the donor
returns them to the receiver.

4. The receiver host’s rkinitd puts the tickets into a ticket-file.

in summary, we propose that rkinit use the pushing protocol.

Acknowledgments

Mark Lillibridge and Jon Rochiis helped us solve the problem. Jennifer Steiner
suggested the probiem statement, and answered many questions. Jerry Saltzer found a
security hole in a late draft of this document.

Appendix: Proof of Correctness for the Proposed Protocol
This proof uses a formal protocol-analysis logic.® We begin by breaking step 3 into two
single-ticket messages, and analyze what happens when the TGS receives a single TGT:

LetY, = (A<--Ka'tgs-->TGS). N, = (A, time, life),
and X, = (N, , Y, #(Y,))
Then we're analyzing the message
C->TGS: {X,} Kigs-
TGS |+ (Krbe--K ->TGS) and TGS <) {Xa}Kigs
s0 TGS <) X, an TGS |+ Krb |~ X,, by msg- meaning rule.
now, the nonce N, is principally a Ilfespan, 80 TGS [+ #(N,),
and TGS |+ Krb |+ Xa, by nonce-verif. rule.
TGS |+ Krb |+ (Y,, #(Y,)); we assume that
TGS |+ Krb => (Y, #(Y,)),
s0 TGS |+ Y, and TGS |+ #(Y,), by jurisdiction rule.

Substituting C & SP for Ain X_ and Y, we find that these conclusions provide what we need to
assume of the keys K, ;oc & Ko 1.

The next protocol step is the credentials message:

LetY = (C<--Kc'sp-->SP) and X = (Y, #(Y)), and

Z=(Ng X

Then we re analyzing the message

TGS ->C:{Z {C, Z} Ko ags) Ko tge-

we have C |+ (C<--K, cgs™> GS),and C <) { Z,.. K, 1gs’ SO
CH+TGS|~(Z {C, & Kep), by msg-meaning rule

As above, C |+ #(Ng,), so Ck?s +#(Z,{C, Z}), and
CHTGS+(Z { C Z} K t9=,)) by nonce-verit. rule.

in particular, C |+ TGS |+ X and we assume that C |+ TGS => X,
sowe have C |+ X, so C [+ Y and C |+ #(Y), as desired.
Further, we have C <) { C, Z} Ksp"gs.

Now we analyze the service request, with ticket & authenticator:
C->8P:{C,Z} Kepagsr ({ Ne» YIK, opSigned o]

SP<){C,Z} K, and SP |+ (SP':&ZP@ ->TGS), so
SP [+ TGS |~ (&'F). Now, recall that 2 o Ngp: X):

as usual, SP |+ #(Nsp) s0 SP |+ #(N sp’ . X),

80 SP |+ TGS |+ (N, X}, by the nonce-verif. rule.

In particular, SP |+ TS&S |+ X; we assume SP |+ TGS => X, 50 SP |+ X.
That is, SP |+ Y and SP |+ #(Y), as desired.

Further, SP <) ({ N, Y}K, 4.Signed C),

soSP [+ C |~ (N, Y) and SP <) (N, Y).

SP |+ #{N), s0 SP [+ #{N_, Y}, s0 SP |+ C |+ (N, Y).

Thus, SP |+ Cj+ Y.

Since we already have C |+ Y, this completes C's authentication to SP.

The analysis of SP's responding authenticator is analogous to
that of C's authenticator.

“Michael Burrows, Martin Abadi, and Roger Needham, "Authentication: A Practical Study in Belief and Action”,
(1987) Digital Equipment Corporation Systems Research Center,

