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AMtraet--A statistical model is described for estimating the risk of impacts by large hail on any ground installation 
(such as a solar collector array). The model is based on data for three frequency distributions: hailstone size, 
hailfall count (number of hailstones per m 2 per storm), and number of haildays per year. Other than parameters 
derived from meteorological data, the parameters of the model required to describe a particular installation are the 
number of years of surface exposure and the area of the exposed surface. The independent variable is the critical 
hailstone diameter, D. The result given by the model is the probability of a hailstone of diameter D or greater 
striking a given surface area in a given number of years. Thus it is possible to determine the "probable maximum 
hailstone size", a convenient index of hail risk. Alternatively, the "mean time between hits" may may be computed 
for a given size of hailstone. However, the meteorological data for estimating hail risk are sparse at this time, 
covering few geographic locations; much of the information available is deficient in sampling consistency and/or 
sample size. For general application of the model, more detailed data on hailfall in many geographic locations is 
needed. This model improves on previous work in including all three of the distributions needed to characterize the 
variability of large hail incidence: hailstone size, count and storm frequency, and in identifying better analytical 
expressions for these distributions: a special B function for hailstone size, a y function for hailfall count, and a 
Poisson function or a negative binomial function for annual hailday frequency. The independence of these three 
random variables is also discussed. 

I. INTRODUCTION 

One factor in the cost of collecting solar energy is the 
cost of maintaining solar collectors. A potentially 
significant component of this maintenance cost is the 
cost of repairing hail damaged collectors. It is important 
to be able to estimate the incidence of damaging hail so 
that the cost of solar power can be compared with other 
power sources on an equitable basis, and so that hail 
resistant collector designs can be optimized for different 
hail prone regions. 

Sufficiently detailed hailfall data have been collected in 
recent years with which to develop the structure of a 
viable hail risk model. With this model, reasonably ac- 

curate hail risk estimates can be made for regions where 
detailed hailfall data exist. However, until detailed hail- 
fall data are collected in many geographic locations, only 
crude risk estimates can be made in other regions. 

In this article we describe the hail phenomenon, dis- 
cuss the data available for estimating hail risk, derive a 
statistical model for estimating hail risk, and show how 
the model may be applied in assessing the risk of hail 
damage to a solar collector. 

2. TIlE HAIL PHENOMENON 

Though hail is formed in storms across the U.S., as 
shown in Fig. 1, large hail is formed almost exclusively in 
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Fig. 1. Mean annual number of haildays in the U.S. (from [2]). 
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thunderstorms lee of the Rockies, on the Great Plains, 
and in the midwest. This "hail belt" is where property 
damage (e.g. solar flat plate collector glazing breakage) is 
most likely to occur. Although hail the size of golfballs 
sometimes occurs outside the hail belt (e.g. Los 
Angeles [1]), such reports are extremely rare, qualifying for 
front page newspaper leadlines. Crop damage can result 
from storms with many small hailstones, which are often 
observed even in California, Washington, Florida and 
Maine. But this type of hail is not likely to puncture roofing 
or break collector glazing. Therefore, this study focuses on 
the occurrence of large hailstones, which have reportedly 
pierced automobile bodies and killed large farm animals. 

Thunderstorms form from atmospheric instability, 
when warm, moist air is forced to rise. Since temperature 
is colder with altitude, the rising air is even warmer with 
respect to the environment. It is, as a result, more 
bouyant, and accelerates as it rises. At the earth's sur- 
face, a low pressure zone is created and air is sucked into 
the developing thunderhead (explaining why winds 
generally blow in the direction of an approaching storm). 

In the beginning stages of thunderstorm development, 
virtually all local air movement is upward. The humidity 
of the air mass sustains its ascent because condensation 
liberates heat which counteracts the adiabatic cooling of 
the rising air. The ascent slows and eventually stops at 
some altitude where most of the humidity has been 
depleted and a "cap" forms on the thunderhead. 

At this point the developing storm can be observed 
from the ground, but precipitation has not yet begun. 
Water droplets formed in the cloud are supported by the 
updrafts and coalesce to larger sizes. Hail is formed 
when particulate matter is carried through a supercooled 
region of the thunderhead. In this region, supercooled 
water droplets (as cold as -20°C) readily adhere.to ice 
nuclei and freeze[3]. Eventually, the weight of pre- 
cipitation is too great to be supported by the updrafts, 
and torrential hail or rains fall. 

Since evaporation or sublimation of this downpour 
cools the air, it becomes heavier with respect to the 
surrounding air and strong downdrafts develop. These 
downdrafts become outrushing "squall winds" at the 
ground level. At this stage of thunderstorm evolution, up 
and downdrafts are strongest. The strongest updrafts 
generally develop on the leading side of a thundercloud 
with downdrafts immediately behind, in the core of the 
system. If a growing hailstone is. blown from an updraft 
(say, by strong horizontal gusts) and is then recaptured 
by the updraft, it can be carried through the supercooled 
region of the cloud again, accreting more and more 
layers of ice. In this way, hailstones can be "bounced" 
up and down in an thunderhead many times until they 
are heavier than can be supported by the updraft. As 
long as the fallspeed of a given stone is less than the 
updraft velocity, it will be supported and can continue to 
accrete layers of ice and grow. It is interesting to note 
that, twice in this century, hailstones over 12cm in 
diameter have been discovered, indicating updrafts of 
over 75 m/sec (corresponding to a Mach number of 
greater than 0.2). 

A number of factors affect the size of hail that will be 

formed. For example, the steeper the "lapse" rate (the 
vertical temperature gradient in the atmosphere) the faster 
will be the updrafts generated. More hailstones will 
therefore be supported longer and will reach larger sizes 
before falling. Another factor affecting hail size is the 
vertical extent of the thunderhead. A taller storm poten- 
tially allows a longer traverse for a growing hailstone. 
Thunderstorms in the "hail belt" often extend to altitudes 
above 12 km. 

Three types of thunderstorms produce hail. Possibly 
the most severe of these is the "frontal" thunderstorm, 
which comprises a line of storm cells, sometimes hun- 
dreds of miles long. At one time, these storms were quite 
hazardous to transcontinental flights because of the 
strong up and downdrafts, powerful horizontal gusts and 
hail encountered. Frontal storms result when either a 
warm, moist air mass meets colder air and rises (warm 
front), or when cold wind undercuts a warm air mass, 
forcing it aloft (cold front). A weather front need not 
appear at ground level. Air masses can meet at higher 
altitudes, and are likely to produce taller thunderheads. 

Orographic (mountain effect) storms result when 
warm, moist air blows into a mountain range and is 
forced to rise. This effect can be seen on the slopes and 
up to 300 km east of the Rockies. 

The "convectional" or "thermal" thunderstorm is a 
result of local surface heating. On warm, (generally 
summer) days, moist air close to the earth is often heated 
by thermal loss from the ground. The air naturally rises, 
encountering colder air above. 

With this brief overview of the hail phenomenon and 
the factors influencing hail formation, possible sources of 
data for evaluating the risk of hail damage may be 
considered. 

3. DATA ON HAILFALL AND HAIL DAMAGE 

The risk of hail damage may be estimated in either of 
two ways. The two approaches are based on quite 
different sets of data. 

The direct approach is to consult historical data on hail 
damage. Insurance companies collect data on crop 
damage and property damage in the form of damage 
claims. Crop damage claims are of little use because 
even the sturdiest plants can be obliterated by pea size 
hail if it falls with sufficient intensity [4]; larger hailstones 
do not necessarily cause greater crop damage. Structural 
damage, on the other hand, results almost exclusively 
from the impact of golf ball (or larger) sized hail. In- 
surance claims for hail damage to real property are 
therefore a much more likely source of data for predic- 
ting hail risk. However, most claims do not contain 
sufficient information to estimate the impact thresholds 
of damaged structures. This, and the fact that insurance 
companies do not generally file or tabulate hail damage 
claims separate from other causes of real property 
damage (e.g. fires, hurricanes and other phenomenon 
generally protected by "extended coverage") disqualifies 
this source of data from analysis at the present time. 

The indirect approach requires a determination of the 
size of hailstone needed to damage a given structure and 
an estimate o[ the probability that a hailstone of this size 
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or larger will strike the structure in a given period of time. 
The determination of damage thresholds is fairly 
straightforward. A structural surface is generally tested 
by propelling artificial hailstones against it at the velo- 
cities with which natural hailstones of like masses 
would fall. (The terminal velocities of hailstones are 
discussed in Section 8.) The risk of large hail incidence, 
on the other hand, has eluded analysis. There are, never- 
the less, several sources of meteorological data which 
can form the basis for a hail incidence model [5]. 

The distribution of hailstorm durations is potentially 
useful. However, a large number of storms in which both 
hailstorm duration and hailstone size frequencies are 
observed is needed to quantify the hail threat. At 
present, such joint observations have not been recorded. 

Another set of joint observations, which is sufficiently 
complete to be useful in quantifying hail risk, consists of 
hailstone size observations and observations of hail[all 
count (hailstones per unit area per storm). From the data 
on hailstone sizes it is possible to identify an analytical 
function representing the size distribution for a local 
parent population of hailstones. From the data on hailfall 
count it is possible to identify an analytical function 
representing the hailfall count distribution for a local 
hailstorm population. These characterizations, together 
with the familiar and accessible National Weather Service 
data on annual hailday frequencies, form a complete basis 
for hail risk prediction. A model based on such charac- 
terizations is derived in the next section followed by a 
discussion of the three distributions used in the model. 

4. HAIL RISK MODEL 

The hail risk model is based on the distributions of 
three random variables associated with hailfall: hailstone 
size, hailfall count (per unit area per ~ torm), and annual 
hailday frequency. The risk of encountering a hailstone 
above some threshold diameter, D, is also a function of 
the surface area exposed to hail and of the duration of 
exposure. The parameters of the three hailfall dis- 
tributions are location specific; the area and duration of 
exposure are installation specific; the hailstone threshold 
diameter, D, is the independent variable. 

A rather confusing but unavoidable feature of the 
proposed model should be noted at the outset. Hail risk 
is first derived in terms of the probability that all stones 
encountered are smaller than diameter/9. The alternate 
probability, that of encountering one hailstone of size D 
or larger, is "one minus the probability of encountering 
only stones smaller than D". 

The term "trial" may also cause some confusion since 
it can refer to the random selection of a single hailstone, 
a single storm, or a year of storms. Forewarned of this, 
the reader can deduce the proper meaning of "trial" from 
the context in which it is used. 

Now, the cumulative probability that a randomly 
selected stone will be smaller than D can be expressed as 

P,( < D) 

and the probability that the hailfall count in one trial 

storm will be n hailstones/m 2 can be expressed as 

99 

Pz(n). 

If PI is independent of n, the probability that, in the 
course of a hailstorm, the hailfall count is n and all of 
the n stones are smaller than D is 

P2(n) " P1( < D)". 

For an arbitrary exposure area, A, the probability that 
n • A stones will be intercepted during a storm, and that 
all stones will be smaller than D is 

P2(n)" PI(< D)" ' A  

The composite probability, F, of encountering only 
stones smaller than D on area A in a trial storm (regard- 
less of the number of hailstones that fall) is 

F( < D) = Pz(l) • P,( < D)' .a + P2(2) ' P,( < D) 2 A 

+ P2(3)' P j ( < D )  3"a 

+ . . . .  ~ P2(n)' P~(<D) "A.  (4.1) 
n=l  

In other words, F( < D) is the probability of an exposed 
area, A, not encountering a damaging hailstone in one 
hailstorm. The probability of experiencing m storms in a 
year and of encountering only stones smaller than D is 
simply the probability of encountering m hailstorms in 
1 yr, P3(m), multiplied by the probability of encountering 
only stones < D in m trials (each storm is a trial). That is 

P3(m) . F( < D) m. 

The probability of encountering only stones < D in a 
trial year, regardless of the number of storms (any m) is 
thus 

G( < D) = ~ P3(m) " F( < D)". (4.2) 
m=O 

In other words, G(< D) is the probability of an exposed 
area, A, not encountering a damaging hailstone in I yr. 

The probability, therefore, of encountering only hail- 
stones < D on area A in K years is 

G( < D) K. 

The alternate probability, that of encountering at least 
one stone of diameter D or greater in K years on area A 
is simply 

P( t> D, A, K) = l - G( < D) K. (4.3) 

For convenience, we will refer to this result as the 
"ultimate risk". Expressed in terms of the three hailfall 
distributions, P,(< D) (distribution of hailstone size), 
P2(n) (distribution of hailfall count) and P3(m) (dis- 
tribution of annual number of haildays) and the in- 
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stallation parameters, A (exposure area) and K 
(exposure duration), the ultimate risk is 

(4.4) 

P(>~ D,A,K)= I - [ ~  P3(m)" ( ~  P2(n) 

×PI(<  D)" " A)m] K, 

TO evaluate (4.4), PI, P2 and P3 must be defined. 

S. HAILFALL DISTRIBUTIONS 

Hailstone size distribution, Pj 
To determine the incidence of large hail across the 

country, one would ideally have a distribution of hail- 
stone size for each geographic location under con- 
sideration. Since such detailed records do not exist, it is 
necessary to assume that the hailstone size distribution 
does not vary excessively between hailprone locations. 

Large samples of hailfall data are available for only 
three locations in North America: Illinois[6-9], north- 
eastern Colorado [10] and Alberta[11-13], Canada. 

Alberta data 
Alberta farmers with wire-mesh baskets collected a 

total of 67 useful stone samples from 1957 to 1963; these 
samples have been tabulated in histograms and fit to an 
exponential of the form: 

Ni = Noexp ( -  mDi) (5.1) 

where Ni is the number of stones in diameter category 
D, and No and m are the estimated distribution 
parameters. This is the functional form most commonly 
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Fig. 2. 1972 National Hail Research Experiment hailstone size 
distribution showing best fitting exponential distribution. 

fit to hailstone size distributions [10-13]. The exponential 
appears as a straight line on logarithmic plots such as 
Figs. 3 and 4. 

Note that the exponential does not correspond well 
with observed frequencies of hailstones greater than 
about 1.5 cm in diameter. The National Hail Research 
Experiment (NHRE, conducted in Colorado) in- 
vestigators, who have not been particularly concerned 
with the incidence of large stones, acknowledge this. 
They chose the simplest analytical function which 

[] Illinois data 
o Colorado data (1972 NHRE) 

Six 9's ~- 
a. Colorado data (1973 NHRE) / 

/ .  
- -  Beta distribution fit to Colorado data/" i 

/ 
Five 9's --- Exponential fit by Duglos / 

to Alberta data / :; 

09999 ® & / / / :  
>, A / /  

e Y  
~o 0999 ~t,,,, ,ik," ..G 

.~ 0.99 

" / ~ ,  1 , , , I , J ~ 
I 2 3 

Hailstone size, cm 
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Fig. 4. Extrapolation of hailstone size distributions. Here the 
fitted curves of Fig. 3 are extended to larger hailstones sizes 

where their divergence is significant. 
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adequately describes the bulk of the data, i.e. the smaller 
diameters. In this study, we are interested in the in- 
cidence of unusually large hailstones. That (in the four 
samples) an exponential always overestimates the 
occurrence of large stones casts doubt on its use to 
characterize the high tail of the size distribution. 

The inadequacy of the exponential distribution can be 
attributed to the fact that it has no upper bound. Using 
this function, there is a finite, albeit small, probability of 
encountering hailstones the size of basketballs. (Need- 
less to say, hail this size has been neither observed nor 
theoretically postulated.) The knowledge of a maximum 
possible stone size is potentially valuable information in 
fitting an analytical distribution to the data, adding, in 
essence, an additional constraint to the curve. This con- 
straint causes the cumulative probability of hailstone 
diameter to intersect the point (Dmax, 1). The maximum 
theoretical size[14] fortunately agrees quite well with 
literature reports of the largest observed hailstones[15]. 
If these two pieces of evidence are borne out by statisti- 
cal analysis of the data, then an upper bounded function 
should be used to represent the hailstone size dis- 
tribution. 

The/~ distribution is often used to represent naturally 
occurring distributions which have finite upper and lower 
bounds. The general B function has two more parameters 
than the exponential (three rather than one) and can 
resemble an exponential quite closely except at its upper 
extreme. The // function was therefore considered a 
likely candidate distribution to represent the hailstone 
size distribution. 

We have selected the NHRE data for statistical 
analysis because it is the only large sampling to have 
been published in usable form. 

NHRE data 
From 1972 to 1974, a total of 1250 hailpads in a total of 

37 storms were struck with hail, registering about 150,000 
hailstone indentations. Because a new sampling tech- 
nique was instituted in 1974 (and subsequently deemed 
unreliable), 1974 data have been disregarded (losing only 
about 10,000 of 150,000 total hailstones from the sample). 

We have fit a special case of the//distribution to the 
remaining NHRE data (1972 and 1973). This distribution 
has a probability density of the form 

p(x) = (a + 1)(a + 2)(1 - x)ax (5.2) 

where 

0 < x < l .  

In fitting a continuous probability function to discrete 
data (particularly data which have been classified into 
histogram cells), the integral of the chosen function must 
be fitted to the cumulative frequency of the data. In- 
tegrating (5.2), we have 

p(<x)=(a+l)(l-x)"+2-(a+2)(l-x)"+~+C (5.3) 

The constant of integration must be C = 1 to give P(0) = 
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0 and P(1) = 1 as required of all cumulative distributions. 
The lower and upper bounds of hailstone size are 0 and 
D,,ax, corresponding with x = 0 and x = 1 respectively, 
as required by the//distribution. Therefore, 

D 
x - x'-'m~-- (5.4) 

where D =  stone diameter and Dm,x = maximum hail- 
stone diameter (estimated statistically or otherwise). 
P(x) was fitted to the classified cumulative data by 
varying the parameters a and Omax in (5.3) and minimiz- 
ing the root mean square (RMS) error. Ideally, the best 
fit would be found when Dmax ~ 12.5 cm. That the mini- 
mum RMS error was obtained with /)max = 10cm is 
rather reassuring. With /?max= 10cm and a =41.1, the 
RMS error was, for 1972 data, <0.2 per cent and for 
1973 data, < !.0 per cent. 

The best fitting cumulative special B function, then, is 

P( < D) = 42.1(1 - D / O m a x )  4 3 " 1  - 43.1(1 - O/Dmax) 42"1 + I 
(5.5) 

where D,n~x = 10cm. Figure 4 shows how the /~ dis- 
tribution diverges from the exponential at large hailstone 
diameters. 

Hail[all count distribution, P2 
Of the three large hailfall samples gathered in North 

America, only the Colorado data (NHR Experiment) 
were used to quantify the distribution of hailfall count 
(stones per m 2 per storm). The data from Alberta and 
Illinois are not published in a useable form. 

The NHRE hailfall count data are plotted in Fig. 5. 
Although a large number of isolated hailpads (1250) were 
struck by hail, the number of storms involved was much 
smaller--only 37. This small sample of storms is prob- 
ably responsible for bumpiness of the observed hailfall 
count distribution. 

In fitting an analytical function to these data, two 
constraints are immediately apparent: the function 
should be lower-bounded (in this case, zero), and the 
function should have no upper bound, since no evidence 
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Fig. 5. National Hail Research Experiment hailfall count dis- 
tribution showing best fitting ~/distribution. 
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exists for a natural upper bound. Schleusener et al.[16] 
have fit a 3' distribution to data on the total number of 
stones per storm with reasonable results. Since a 3' 
distribution satisfies the above requirements, it was 
chosen for this study. An unnormalized 3' function has 
the form 

[(x) = e a~. x ~2. e ~a3x~ (5.6) 

For the purpose of estimating the distribution parameters 
(a~, a2 and a3) the data and the estimating function (5.6) 
were transformed by taking the natural log. The 
parameters were then determined by minimizing the sum 
of the squares of the deviations between the estimating 
function and the transformed data, giving: 

al =6.6512 
a2 = -0.3123 
a3 = -0.0005012 

with an RMS error of 0.32. 

Annual hailday [requency distribution P3 

Two distributions which have been used to describe 
yearly hailstorm frequencies are the Poisson and the 
negative binomial. 

With the Poisson, the mean, ~, is equal to the vari- 
ance, tr 2. The Poisson has a discrete probability function 
given by: 

A" 
/ (m)  = e -~ m-~." (5.7) 

The parameter, ,L is the distribution's mean, it, which 
may be estimated by the sample mean. The mean of an 
annual hailday sample is 

1 N 
th =-N ~=l'= m, 

which N = the number of years of hailday observations 
and m, = the number of haildays observed in the ith 
year. 

Thorn[17] has found that when ra<2 the Poisson 
distribution generally represents the observed hailday 
distribution better than the negative binomial dis- 
tribution. 

The negative binomial allows another degree of 
freedom, not requiring/z = ,r 2. The probability function 
for the negative binomial distribution is given by 

(k + x) pX 
[(x) = (x + 1)(k) (1 + p)k÷x. (5.8) 

The two dimensionless parameters, p and k, of the 
negative binomial are related to the mean and variance of 
the distribution and, given a sample mean, rh, and sample 
variance, s 2, can be estimated by the method of 
moments. However, the sample mean and variance do 
not always give a satisfactory estimate of the 
parameters, p and k. In this case, the method of maxi- 
mum likelihood must be employed. Calculations for both 

moments and maximum likelihood are detailed in 
Refs. [17, 35]. 

The calculations required to fit a Poisson distribution 
to the hailday data are much simpler than the cal- 
culations for fitting a negative binomial distribution. The 
Poisson is defined by just one parameter, ~, the mean of 
the distribution. Thus, one needs only a map or tables of 
the mean annual number of haildays (available, for 
example, in Refs.[18, 19]) to calculate this probability 
function for any location. 

Because the Poisson fit is so simple, it has been used 
almost exclusively to characterize hailday frequencies. 
However, the Poisson does not represent the stochastic 
processes o[ hail in all cases. As we shall see, when 
n~ ~ s 2, misuse of the Poisson can lead to large errors in 
ultimate risk estimates. 

Independence of the three hail[all distributions 
The derivation of eqn (4.4), giving the probability of 

large hail incidence, was based on the assumption that 
the distribution of hailstone size is independent of hail- 
fall count and that hailstone size and hailfall count are 
both independent of hailstorm frequency at a given loca- 
tion. Hailfall data analyzed to date have been inadequate 
either in sample size or quality to unequivocally establish 
the independence of these distributions. The prospects 
for obtaining adequate data, and the conclusions sug- 
gested by existing evidence are therefore quite important 
at present. 

It is conceivable that severity of hailstorms (in terms 
of either hailfall count or relative frequency of large 
stones) is correlated with hailstorm frequency. For 
example, in years when more than the average number of 
storms occur, the storms may tend to be more severe. 
Because the magnitude of a hail monitoring program to 
adequately test such a hypothesis is huge, no such pro- 
gram has ever been completed. 

One might also hypothesize--and perhaps more 
plausibly--a correlation between hailfall count and the 
distribution of hail size. This hypothesis has been 
examined by several researchers with various degrees of 
rigor. 

One approach has been to seek a correlation between 
hailstone size distribution and the duration of hailfall. 
Gokhale[15] describes the results of two such efforts: 
"No correlation was found between the size pattern and 
the duration of hailfall" by Beckwith[20] in a study of 
450 hail reports from Denver, Colorado and vicinity. 
Likewise, "no relationship was apparent between the 
duration and size of hailstones" according to 
Sulakvelidze [21]. 

Only Carte and Basson[22] have reported any cor- 
relation between duration of continuous hailfall and 
maximum reported hail size. Their investigations were 
confined to Transvaal, and they observed only a weak 
dependence. 

A second approach is to seek a correlation between 
size distribution and precipitation rate. Size distributions 
from several data sources have been compiled by Atlas 
and Ludlam[23]. Varying degrees of bias are present in 
the relative frequencies of small diameter stones due to 
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melting on the ground and other biases peculiar to the 
various sampling techniques used. However, the dis- 
tributions are all quite similar for diameters greater than 
about 1.5 cm in spite of a hundred-fold variation in 
precipitation rate among the storms sampled. 

The most direct approach, of course, is to seek a 
correlation between size distribution and hailfall count. 
Douglas [1 I] found the correlation between hailfall count 
and size distribution to be insignificant in his analysis of 
25,589 hailstones collected in 57 point occurrences of 
hailfali in Alberta. He therefore postulated "the exis- 
tence of a simple and unique parent population". 

The independence of hailfall count and hailfall size 
distribution in storms sampled by the Colorado and 
Illinois hailpad networks has apparently never been tes- 
ted. Such an analysis is currently underway at Altas. At 
the present time, however, it can only be assumed that 
hail size distribution is uncorrelated with hailfall count 
since the evidence indicates that they are, at best, poorly 
correlated. 

Likewise, there is no evidence that either hailfall count 
or size distribution is correlated with annual number of 
haildays. Again, analysis of the Colorado and Illinois 
hailpad data should provide a more definite answer to 
this question. Until such data are analyzed it must be 
assumed that the distributions are independent. 

Equation (4.4) can, nevertheless, be made valid for a 
climate where P~ is dependent on P2 by replacing P , (<  
D) with Pt(< D, n). However, the reduction of eqn (4.4) 
to probability charts such as Figs. 6-10 is not possible if 
P~ is correlated with n. The variation of size distribution 
with location alone, on the other hand, would not reduce 
the applicability of probability charts since these are 
location dependent anyway. 

6. PROBABILITY CHARTS FOR ESTIMATING 
BAIL INCIDENCE 

Having identified the probability functions for the 
three hailfall variables, the expression for ultimate risk 
may be evaluated for various values of A, K, and D. 
Figures 6-10 show the results of many evaluations of the 
risk model. The ultimate risk--i.e, the probability that 
one stone of diameter D or larger will strike the exposed 
surface, A, in K years--is plotted on the abscissa in 
Figs. 6-9. 

It will be noted that the ordinate axis in these figures 
does not represent hailstone size, D. This means that the 
figures cannot be read directly to determine the ultimate 
risk of encountering larger than a D-cm hailstone. The 
ordinate value, P , (< D) A must first be evaluated using 
one of the hail size distributions of Figs. 3 and 4. 

In Figs. 6-10, either coordinate may be viewed as the 
independent variable. If a value of D is specified, P , (< 
D) A is the implied independent variable and the ultimate 
risk of encountering a hailstone t> D is read from the 
graph. Alternatively, a level of risk can be specified; 
reading the corresponding value of P~(< D) A from the 
graph, the largest size hailstone, D, likely to be encoun- 
tered at that level of risk may be calculated. These two 
views are illustrated below. 

Ultimate risk as the dependent variable 
Suppose we wish to know the ultimate risk of encoun- 

tering a hailstone /> D on an exposed surface area, A, in 
K years at a particular location. 

Recall from eqn (4.1) that A enters the risk model as 
follows: 

P2(n)" P1( < D)"  A. 
n 

0.999999 [ t , , w , , ~ i 

0 .99999  

K = 2  

0 .9999  

0.999 
A l b u q u e r q u e , N M  ho i lday d is t r ibut ion "%, 

Negat ive  binomial  used ~" 
- -  for  P3(m)  \ x .  

= Poisson d i s t r i bu t i on  used \ 
. . . . . .  for  P3 (m) \~ 

0.99 I I I I I I I I t 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

U l t i m a t e  r i s k ,  P(aD,,4, K) 

I.O 

Fig. 6. Relation between hailstone size distribution, Pj( < D), and ultimate risk of large hail impact. P( -> D, K, A), 
for Alburquerque, NM. K is in years and A is in m:. 
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Abilene,  TX hailday distribution 
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for P3 (m) 
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U l t imate  risk1 P ( ~ D I A t K )  

Fig. 7. Relation between hailstone size distribution, PI( < D), and ultimate risk of large hail impact, P( -> D, K, A), 
for Abilene, TX. K is in years and A is in m 2. 
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. . . . . .  Poisson distribution used 
for P3 (m) 

0 9 9 9  E , i , ~ [ i I t I 
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Ult imate risk, PP-D,A,K) 
LO 

Fig. 8. Relation between hailstone size distribution, PI( < D), and ultimate risk~ of large hail impact, P( _> D, K, A), 
for Kansas City, Mo. K is in years and A is in m 2. 

Note, however, that this is equivalent to 

P 2 ( n )  " [PI( < D)A)] n. 
n 

So the entire term, P~(<D) A, may be taken as the 
independent variable. The results in Figs. 6--10 were 
obtained, not for specific values of D and of A, but for a 
plausible range of the term PI(< D) A. Thus Figs. 6-10 
are independent of the distribution used to represent hail 
size. 

For example, suppose we are interested in the risk of 
encountering a 3 cm hailstone on either of two flat plate 
collector installations, one 10 m 2 and one 100 m 2. From 
Fig. 4, P , ( < 3  cm)=0.999994 (using the Colorado size 
distribution). 

For the smaller of the two installations, A = 10m 2, 
P1(<3)~°=0.99994. For the larger installation, A =  
100 m 2, PI( < 3) 1°as 0.9994. The ultimate risk of encoun- 
tering a 3-cm stone in both cases can now be read from 
one of Figs. 6--9. Suppose we are interested in the risk of 
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0.999  999 
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Cheyenne, WY holiday d i s t r i b u t i o n  
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0.0 0.1 0.2 0.3 0.4 O5 0.6 0 7  0.8 0.9 1.0 

U l t i m a t e  r l s k t  P(.~D,,4tK) 

Fig. 9. Relation between hailstone size distribution, P~( < D), and ultimate risk of large hail impact, P( >- D, K, A), 
for Cheyenne, WY. K is in years and A is in m 2. 
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0 .999 )  , , t r J J i J I t i t ~ ] 
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Years af exposure, K 

Fig. 10. Relation between hailstone size distribution, Pl( < D), and exposure period, K, at an ultimate risk of 0.50. This 
chart is used to estimate the largest hailstone likely to be encountered in K years, or to estimate the mean time between 

impacts of hailstones with diameter D or larger. 

encountering such a hailstone in Kansas City, MO; sup- 
pose also that both collector installations will be operat- 
ing for 5 years (K = 5). 

For smaller installation, P , ( <  3) l° = 0.99994, so 
ultimate risk=0.82. For the larger installation, P , (<  
3)'°°= 0.9994, so the ultimate risk is greater than 0.99 
(very nearly 1.00). 

Following this procedure, one can determine the risk 
of encountering a hailstone /> D on area A in K years 
for many combinations of parameters, with one excep- 
tion. The parameter K in Figs. 6-9 has been calculated 

only to K = 10. For utilizing the model for longer time 
periods, Fig. 10 has been plotted to show the hailstone 
size predicted at an ultimate risk = 0.50 for values of K 
as large as 210 yr. 

Ultimate risk as the independent variable 
Suppose that we do not know the hailstone size that 

will cause damage to our ground installation, or we are 
interested in determining "hail-proof" design 
specifications. We might be interested in the size we can 
expect to encounter at a given level of risk. 
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In this case, we would go from the abscissa value in 
Figs. 6.-9 to the corresponding ordinate value of P,( < 
D) A (for a given value of K). Before this can be cor- 
related with hailstone size via Fig. 4, we must take the 
Ath root. That is, 

P,( < D)  I°° = 0.999 992 

[P~( < D)A] 'IA = P,( < D). 

For example, suppose we want to know the hailstone 
size that is likely to be encountered with an ultimate risk 
of 0.30 in Kansas City in 10 yr. Using curve "K = 10" 
from Fig. 10, we find that P~(< D) A =  0.999992. Sup- 
pose, again, that we have two collector installations, one 
10 m 2 and one 100 m 2. Where A = 10 m 2, 

PI( < D) '° = 0.999 992 
P,( < D) = 0.999 999 2. 

From Fig. 4, D = 3.3 cm. Where A = 100 m 2, 

P,( < D) = 0.999 999 92. 

From Fig. 4, D = 3 . 7 5 c m .  Following this procedure, 
values of P1( < D) a at an ultimate risk of 0.50 have been 
plotted against the number of years of exposure, K, in 
Fig. 10. The hailstone, size that is predicted by the risk 
model at an ultimate risk = 0.50 may be interpreted as 
the "probable maximum hailstone size" that will be 
encountered at a particular location on area A in K 
years, and as such, is perhaps of most general interest. 

Alternatively, the value of K corresponding to ulti- 
mate risk = 0.50 for a given D may be read from Fig. 10. 
This value is the mean time between impacts by 
hailstones >I D. 

Table 1 shows the probable maximum hailstone size 
that is predicted in the four locations analyzed (see Table 
2) for various values of A and K. 

Table 1. Probable maximum hailstone sizes (ultimate risk = 0.50) predicted by the hail risk model 

:,._o 

_~® 
"<Z 

L).:-  

c . _  c 

,".E 
w o 

:,7 0 • 

u ~ Number of years of exposure (K) 

~, ~3 ~ ~ x 5 I0 20 50 

COLORADO 

ALBERTA 

ILLINOIS 

COLORADO 

ALBERTA 

ILLINOIS 

COLORADO 

ALBERTA 

ILLINOIS 

COLORADO 

ALBERTA 

ILLINOIS 

10 
50 

100 

10 
50 

I00 

I0 
50 

100 

lO 
50 

lO0 

lO 
50 

lO0 

I0 
50 

I00 

lO 
50 

lO0 

lO 
50 

I00 

I0 
50 

I00 

I0 
50 

100 

I0 
50 

100 

I0 
50 

100 

100 

4.05 4.25 4.35 4.75 4.95 
4.4 4.8 5.0 5.15 5.47 
4.8 5.0 5.15 5.5 5.7 

4.45 4.6 4.7 5.05 5.25 
4.75 5.15 5.35 5.45 5.7 
5.15 5.35 5.4 5.75 5.95 

3.1 3.14 3.25 3.4 3.5 
3.35 3.47 3.55 3.63 3.75 
3.48 3.54 3.63 3.78 3.83 

4.23 4.34 4.46 4.83 5.0 
4.72 4.95 5.06 5.2 5.5 
4.96 5.10 5.2 5.6 5.75 

4.58 4.7 4.8 5.15 5.3 
5.05 5.3 5.4 5.5 5.8 
5.3 5.4 5.5 5.83 6.0 

3.15 3.17 3.3 3.45 3.55 
3.4 3.5 3.6 3.7 3.8 
3.5 3.57 3.66 3.81 3.85 

4.28 4.37 4.6 4.9 5.05 
4.83 5.0 5.12 5.33 5.6 
5.05 5.15 5.3 5.7 5.77 

5.63 4.72 4.92 5.21 5.32 
5.15 5.35 5 5 5.6 5.85 
5.35 5.45 5.6 5.9 6.05 

3.25 3.5 3.82 3.92 4.2 
3.55 3.73 4.08 4.2 4.45 
3.63 3.82 4.2 4.25 4.53 

4.45 4.95 5.7 5.8 6.45 
5.05 5.5 6.25 6.45 6.97 
5.2 5.7 6.45 6.57 7.15 

4.8 5.27 5.95 6.08 6.95 
5.4 5.7 6.45 6.6 7.15 
5.5 5.95 6.63 6.75 7.3 

2.95 3.12 3.17 3.35 3.48 
3.2 3.4 3.5 3.58 3.7 
3.4 3.5 3.55 3.75 3.8 



Location 

Albuquerque ,  
New Mexico 

Abilene, 
Texas 

Kansas City, 
Missouri 

Cheyenne, 
Wyoming 

Theincidenceoflargehailstonesonsolarcollectors 

Table 2. Hailday statistics for four weather stations 

Mean 
annual Variance Sample size Goodness of Fit: 

number of years of 
haildays (s 2) record Pois. neg. binom. 

2.33 4.5057 30 <.005 >.4 

3.58 5.2466 64 <.02 >.5 

4.72 4.8865 55 .65 .5 

8.68 20.7752 54 <.001 .4 
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7. SENSITIVITY ANALYSIS 

It is of interest to learn how estimated hail risk varies 
with parameters of the three hailfall distributions. This 
exercise indicates which deficiencies in hailfall data are 
most crucial. 

Sensitivity to hailday distribution parameters 
The principal hailday statistics of four locations 

chosen to test the model's sensitivity are listed in Table 
2. These locations represent the range of haiiday statis- 
tics encountered in the U.S. The number of hailstorms in 
Cheyenne, WY, can be considered a "worst case", with 
the highest value of mean number of haildays found in 
the literature, and probably one of the most dispersed 
distributions of annual hailday frequency, with a sample 
variance of s 2= 2.5 n~. The dispersion of hailday dis- 
tributions has not been given adequate attention and, as 
will be seen, is a significant factor in the incidence of 
large hail. 

Only one of the four data sets appearing in Table 2 
was better fit by a Poisson probability density function 
than by a negative binomial. This is typical of the 25 
hailday data samples. 

Among the 25 locations analyzed, there were no dis- 
tributions with a mean annual number of haildays of 
between 5 and 8. From Fig. 1, it can be seen that only a 
few, very localized regions have a mean annual number 
of haiidays of greater than 5. 

In Figs. 6-10, ultimate risk is plotted for four values of 
exposure period, K. The solid line represents the results 
when the negative binomial was used to describe hailday 
frequencies, the dashed line when the Poisson was used. 
It can be seen in Figs. 6-8 (not in Fig. 9) that in the 
"mid-range" of ultimate risk, (with values between 0.2 
and 0.8) there is not much difference between the results 
when either distribution is used. However, as the number 
of years of exposure increases, the negative binomial 
becomes increasingly divergent from the Poisson dis- 
tribution. (Nevertheless, the simple criterion suggested 
by Thorn [17] for deciding when a Poisson distribution is 
acceptable--the tfi < 2 criterion--is not unequivocally 
borne out by these examples.) It is interesting to note the 
great difference between the Poisson and negative 
binomial distributions found for Cheyenne, WY (Fig. 9). 
For K = 10, the two distributions give results that hardly 
seem to apply to the same geographic location. This is 

best explained by pointing out that the s 2 = th property 
of the Poisson distribution is violated most seriously by 
the Cheyenne hailday distribution where s 2 = 2.5 ~. 

It is clear that proper choice of the analytical function 
for P3(m) is crucial in certain locations. This is especially 
important when K is large, as it must be for most solar 
collector installations to be economically viable. The 
foregoing analysis also demonstrates the importance of 
hailday dispersion. In the case of Cheyenne, use of the 
Poisson distribution is tantamount to assuming a hailday 
frequency variance of only 40 per cent of the true 
variance, causing order-of-magnitude errors in ultimate 
risk estimates. 

Sensitivity to exposure period 
Next, the model was tested for sensitivity to increases 

in the number of years of collector exposure, K. It has 
already been noted that for each location shown in Table 
2, the Poisson and negative binomial distributions led to 
increasingly different values of ultimate risk as K in- 
creased from 1 to I0. However, for a common base of 
comparison between locations, only one distribution was 
chosen to describe P3(m) as the model was tested for 
sensitivity to increasing K; the negative binomial was 
used because it provided an adequate fit of the raw 
hailday data in all four locations whereas the Poisson 
provided a marginally better fit in only one case. In Fig. 
10, P,(< D) a is plotted against K for four locations 
(four different hailday distributions). For each curve, the 
ultimate risk is 0.50. That is, each curve represents the 
largest size hailstone (via P,(<D) A) likely to be 
encountered in K years. 

One might expect the probable maximum hailstone 
size to be roughly proportional to the mean annual 
number of haildays. But note in Fig. 10 that there is little 
difference between values of P,(<D) a predicted for 
Albuquerque, Abilene and Kansas City. This means that 
if the same P,(< D) distribution is used, the hailstone 
size predicted by the model is nearly the same in these 
locations. Table 1 shows actual sizes predicted. 

In contrast, the results for Cheyenne, WY seem to 
depart radically from those of the other three locations. 
This can be seen in Figs. 9 and 10. Recall tliat the most 
significant departure of the Poisson from the negative 
binomial is found for this hailday distribution. And 
clearly, the results for large values of K are quite deviant 
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from those of the other locations tested. In Fig. 10, the 
results for Cheyenne extend beyond the range of the 
graph at a value of K = 35 yr. 

These observations indicate that hailday dispersion is 
more important than has been generally appreciated. The 
sensitivity of large hail incidence to s 2 is comparable to 
its sensitivity to r~. 
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differ by a factor of more than 3 as is shown in the next 
section. 

Sens#ivity to size distribution parameters 
The semi-log plots of Figs. 3 and 4 and Figs. 6-10 

emphasize the importance of how the size distribution is 
extrapolated. The extrapolated tails of these distributions 
are a major uncertainty in the model because of the lack 
of data on large hailstone frequencies. We are now in a 
position to quantitatively assess the importance of 
assuming a particular extrapolation. 

It will be seen in Table 1 that hailstone sizes predicted 
using three size extrapolations of Figs. 3 and 4 differ in a 
systematic manner. As A and K increase, each dis- 
tribution for P , (<D)  leads to increasingly divergent 
results. The Alberta and Colorado size distributions are 
both analytically fitted functions (an exponential for Al- 
berta, a//distribution for Colorado). As was discussed 
previously, use of an exponential for extrapolating a size 
distribution is questionable, since it has no upper bound. 
The use of an unbounded function will, at some large 
value of A and K, result in the prediction of a super- 
natural hailstone. At what value of exposure an 
exponentially fitted size distribution becomes unaccept- 
able is unknown. However, over the range of A and K 
represented in Table 3, neither the exponential fit nor the 
/3 fit predicts implausible hailstone sizes. Perhaps the 
best value for hailstone size can be taken as somewhere 
between the /3 and exponential predictions. (Without 
further analysis of the Illinois raw data, we recommend 
against the use of the extrapolation of Illinois size data 
appearing in Figs. 3 and 4.) The maximum probable 
hailstone diameter estimates resulting from /3 and Al- 
berta exponential size distributions don't seem to dis- 
agree excessively in many cases. For example, the hail- 
stone predicted in Kansas City in 20yr on 100m 2 is 
between 3.3 and 4.6 cm. However, the terminal kinetic 
energies of falling hailstones of these two diameters 

8. HAILSTONE TERMINAL VELOCITY AND 
KINETIC ENERGY 

The kinetic energy of a falling hailstone is a good 
measure of its destructive potential. The stone's kinetic 
energy is related to its mass and velocity. 

A fully formed hailstone falling from a thunderhead 
will accelerate until its weight is just balanced by the 
aerodynamic drag acting on its surface. At this point, the 
hailstone's velocity is, by definition, its "terminal velo- 
city". 

A more complete discussion, and derivation of an 
expression for hailstone terminal velocity can be formed 
in Refs.[14, 15, 24, 28, 29, 35]. However, equating drag 
with weight, we obtain an expression for the terminal 
velocity of a hailstone, V,: 

v ,_  (4 
- \ 3Capa ] " (8.1) 

The drag coefficient, Cd, for a sphere is a weak function 
of Reynolds number only. The dimensionless Reynolds 
number is defined as 

Re = VD/v 

where ~, =the kinematic viscosity of the fluid, air, 
cm2/sec. 

A plot (from Ref.[26]) of drag coefficient vs Reynolds 
number for smooth spheres is shown in Fig. 11. Because 
hailstone shape and surface roughness are extremely 
difficult to characterize [20, 27-29], we shall assume that 
hailstone drag coefficients are the same as the smooth 
sphere drag coefficient. Since smooth spheres generally 
have somewhat lower drag coefficients than rough or 
irregular objects that are "almost spherical" this 
represents a slightly conservative approach. Note that 
there is a sudden drop in Ca at Re - 2 x 105. This is due 
to a transition in the boundary layer from laminar to 
turbulent flow. (The "wake" begins to separate from the 
hailstone further toward the rear end because of the 
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Fig. 11. Drag coefficient, Ca, of a sphere as a function Reynolds number, Re (from[27]). 
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turbulence, reducing the drag.) The drop in Cd corresponds ,ooo 
to the "critical Reynolds number".t 

It will be noted in Fig. 12 that there are two values of 
terminal velocity for hailstones between 6 and 8.5 cm 
dia., the "double valued" region of terminal velocity. For 
hailstones this size, the terminal Reynolds number is 
near the critical value of about 2x 105. For a slight 
increase in Reynolds number, there is about a factor of 

t o o  two decrease in Ca. At just under Re = 2 × 105, a stone 
falling through still air would normally have a laminar 
boundary layer, hence the lower of the two terminal -" 
velocities. However, some investigators have proposed 
that a real hailstone might actually attain the faster of .g 
these fall speeds by exceeding the critical Reynolds g 
number (Re> 2 × 105) as it falls through atmospheric 
turbulence[l@ Various other mechanisms have also | ~o 
been suggested by which a hailstone in the double valued o 
region could attain the higher velocity[28]. There is a 
general consensus that a stone of a diameter such that its 
terminal velocity is in the double valued region will tend 
to remain at the faster velocity once a disturbance has 
caused the initial transition to a turbulent boundary 
layer. 

The "terminal kinetic energy", Ek, of a falling hailstone 
is given by the simple relation 

Ek = 1/2' m. V/ (8.2) 
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Fig. 13. Terminal kinetic energy as a function of hailstone 
diameter. 
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where m = pHTrD3/6 is the mass of the hailstone. 
The terminal kinetic energies of hailstones have been 

calculated and plotted in Fig. 13. It can be seen by 

combining (8.1) (8.2) that the kinetic energy of a 
falling hailstone varies approximately as the 4th power 
of the diameter. That is, 

tWillis et al. [28] have noted that large dry hailstones behave as 
if rough, resulting in a boundary layer transition to turbulence at 
lower Reynolds numbers than for smooth stones. (That is, critical 
Reynolds number is observed for smaller hailstones.) However, 
it is difficult to envision natural hailstones with surfaces 
sufficiently dry (and therefore rough) to observe this 
phenomenon in nature. 

ER -~ k ' D 4. (8.3) 

With small increases in stone size, one finds large in- 
creases in the terminal kinetic energy. The accuracy with 
which a hail risk model predicts the maximum probable 
hailstone size, D, is thus quite important. 

The kinetic energies of impact sufficient to damage 
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various collector glazings and reflector materials have 
been determined under a number of testing programs [30- 
33]. At present there are also some testing programs in 
progress including one at Altas Corporation. In some 
cases materials are tested by dropping steel balls on the 
surface. Bags of steel shot are also dropped, producing 
impacts with the same kinetic energy but much lower 
maximum local stress. Natural hailstone impacts of the 
same kinetic energy can be expected to cause an inter- 
mediate level of damage. To determine damage 
thresholds more precisely, investigators have propelled 
ice balls at their test surfaces to simulate hailstone 
impacts. In these tests, 4.8 mm (3/16 in.) tempered lights 
have broken with impact energies ranging from 10 to 
40 Nm. For comparison, 6.4 mm (1/4 in.) tempered lights 
are broken by the impact of a steel ball with about 10 Nm 
kinetic energy and by the impact of a shot bag with over 
100 Nm kinetic energy. Even the validity of ice ball tests is 
debatable since natural hailstones, having some air and 
liquid water content, are softer. The properties of dried 
clay balls or refrozen crushed ice balls may better duplicate 
the properties of large natural hailstones. With further 
progress in ongoing investigations it should be possible to 
answer some of these questions and to compile and present 
comprehensive data on damage thresholds for collector 
materials. 

9. CONCLUSION 

We have shown that the probability of a solar collector 
being struck by a given or larger hailstone is related to 
the distributions of three random variables: hailstone size, 
hailfall count per storm, and hailstorm frequency. Evi- 
dence for the independence of these distributions has been 
presented. The independence assumption leads to the 
expression for ultimate risk (eqn 4.4). 

To evaluate (4.4), analytical functions for the three 
hailfall distributions must be identified. Of the three 
distributions, hailday frequency, P3, is probably the most 
geographically variable. Fortunately, the data needed to 
identify this distribution are readily available for many 
locations[34] and the distribution parameters can be 
evaluated using moments and maximum likelihood esti- 
mates presented in Ref.[35]. 

In contrast to hailday observations, the sampling pro- 
grams needed to collect sufficient data for characterizing 
hail size and hailfall count distributions are vast and 
complex. Useful data have been collected in only three 
areas of North America. Hailfall count per storm is 
probably less geographically variable than hailstone size. 
Therefore, the ~/distribution, fitted to Colorado hailfall 
count data in Section 5, can probably be used with 
confidence for all of North America. The curves of Fig. 
10 use this hailfall count distribution, and the hailday 
frequency distribution parameters of the four locations 
represented in Fig. 10 span the range of local conditions 
found in hail prone areas. Furthermore, these curves are 
independent of which hailstone size distribution is used. 
Figure 10 may therefore be used in assessing hail risk for 
many applications to avoid detailed analysis of hailfall 
count and haitday frequency data. 

Hailstone size distributions probably vary somewhat 

more with location than haiifall count. Of the three 
distributions, moreover, hailstone size requires the lar- 
gest sample size because variation of mean size between 
storms is great. The problem is compounded by the fact 
that the large stones, whose relative frequency is of 
greatest concern, ar so rare that it is necessary to 
extrapolate the upper tail of the size distribution. Thus 
the form of analytical function chosen to represent the 
distribution is quite crucial. The special /3 distribution, 
fitted to Colorado size data in Section 5, is the simplest 
analytical form that is reasonable for this extra- 
polation. The evidence that size distributions in all 
hailprone areas are fairly similar is sufficient to justify 
the use of this /3 distribution for all North American 
locations for the present. Analysis of the Illinois and 
Alberta hailsize and count observations may alter this 
view. However, what is really needed are extensive 
hailstone size and count monitoring programs in many 
more locations. With better characterization of hailstone 
size distribution the hail risk model presented herein can 
be used to accurately optimize the design of solar col- 
lectors susceptible to hail damage. 
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Resumen--Se presenta un modelo estadistico para la estimaci6n del riesgo de impacto de piedras de granizo de 
tamafio apreciable sobre cualquier instalaci6n terrestre (como una instalaci6n de colectores solares). El modelo est;i 
basado en datos sobre tres distribuciones de frequencia: tamafio de piedra de granizo, nfimero de piedras (nfimero 
de piedras por m 2 por tormenta), y nfimero de dias con granizo por afio. Aparte de los parfimetros derivados de 
datos meteorol6gicos, los parfimetros requiridos para describir una instalaci6n especifica con el modelo son los 
afios de operaci6n de la instalaci6n y el area de las superficies expuestas. La variable independiente es el difimetro 
de la piedra crftica, D. El resultado del modelo es la probabilidad de impacto de la superficie por una piedra de 
diametro D o mas grande durante el perlodo determinado. Por otra parte, se puede computar el "tiempo medio" 
entre impactos para un dado tamafio de piedra. Sin embargo, los datos meteor61ogicos necesarios para estimar los 
riesgos son muy escasos en la actualidad, y son para muy pocos lugares. Mucho de los datos son deficientes en 
cuanto se refiere a consistencia de muestras y tamafio de muestras. Para aplicaci6n general del modelo, se 
necesitan m~is datos sobre caidas de piedras en muchas areas geograficas. Este modelo ha mejorado los trabajos 
previous por el hecho de incluir las tres distribuciones necesarias para describir la incidencia de piedras grandes: el 
tamafio de piedra, el ntimero de peidras, y el ntimero de tormentas, y por el hecho de identificar mejores expresiones 
analfticas para estas distribuciones: una funci6n especial de tipo "beta" para el tamafio de la piedra, una funci6n 
gamma para el mimero de pie&as, y una funci6n Poisson o una funci6n de binomio negativa para el mimero de dias 
de tormenta. Hay una discusi6n de la independencia de estas tres variables estadfsticas. 


