
Wormlike Micellar Solutions: III. VCM Model

Predictions in Steady and Transient Shearing

Flows

Lin Zhou, a Gareth H. McKinley, b L.Pamela Cook c

aDepartment of Mathematics, New York City College of Technology, Brooklyn, NY,

11201

bDepartment of Mechanical Engineering, Massachusetts Institute of Technology,

Cambridge, MA. 02139

cDepartment of Mathematical Sciences, University of Delaware, Newark, DE.

19716

Abstract

The two species, scission/reforming Vasquez-Cook-McKinley (VCM) model was for-

mulated to describe the coupling between the viscoelastic fluid rheology and the

kinetics of wormlike micellar assembly and deformation-induced rupture. The model

self-consistently captures the nonlocal effects of stress-induced diffusion and has been

studied in various limits for a number of canonical flow fields including Large Am-

plitude Oscillatory Shear (LAOS), steady and transient extensional flow as well as

steady pressure-driven channel flow. However, a complete study of the spatiotempo-

ral model predictions, both with (and without) inertia, and with (or without) the

stress-concentration diffusive coupling, has not yet been reported. In this paper we

present a comprehensive investigation of the full VCM model in steady and transient

shearing flow including inertial and diffusive (non-local) effects. The consequences
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of varying the model parameters, the effect of the start-up ramp rate, and the role

of geometry on the steady state flow curve are each investigated. As a result of the

onset of shear-banding and nonlocal effects in the velocity, stress and concentration

profiles, we show that the measured rheological properties in a wormlike micellar

solution described by the VCM model can depend on the initial ramp rate as well

as specific details of the geometry such as the length scale of the rheometric fixture

chosen and its curvature. The complete time evolution of the rheological response

at high Deborah numbers is examined, from the initial formation of inertial waves

through nonlinear overshoots in the viscoelastic stresses, shear band formation (and

elastic recoil in the local velocity), to the long time diffusion-mediated approach to

a final steady state.
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1 Introduction

Wormlike micellar mixtures exhibit properties making them valuable for com-

mercial uses, for example in detergents, shampoos and as oil recovery en-

hancers. These mixtures show high and constant viscosities at low shear rates

with strong shear thinning occurring at larger shear rates. Wormlike micelles

are composed of amphiphilic surfactant amphiphilic molecules which, in an

aqueous solvent, self assemble into long flexible cylindrical (wormy) structures

protecting their hydrophobic tails in the interior of the worm. The length of

the worms can be on the order of microns with radii on the order of tens

of nanometers. These long flexible worms entangle in solution at moderate
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surfactant concentrations and, as a result of these entanglements, wormlike

surfactant mixtures exhibit visco-elastic properties similar to those exhibited

by concentrated polymer solutions. By contrast with covalently-connected flex-

ible polymer chains, the wormlike micelles continuously break and reform thus

earning the name ‘living polymers’. The rheology of these mixtures is domi-

nated by two distinct relaxation processes; firstly a disentanglement process in

which the worms dissociate from the network, similar to reptation of entangled

polymers, the second due to the breakage and reformation of the worms.

Wormlike micellar solutions of various chemistries (CPyCl, CTAB, EHAC)

in a range of solvents have been the subject of many experimental investi-

gations, for example [1, 2, 3, 4, 5, 6, 7]. A good overview of experimental

findings and the surfactants used in each is given in [8]. These experiments

show a commonality in the rheological response of these mixtures in that they

can exhibit kinematic inhomogeneities even in simple shearing flow, developing

shear-bands and strong shear-thinning. In a narrow gap Taylor-Couette device,

with inner cylinder rotating at a fixed velocity and outer cylinder fixed, the

steady state velocity profile across the gap is nearly linear at low shear rates.

When the velocity of the inner cylinder is increased such that the velocity gra-

dient across the gap exceeds a critical shear rate, γ̇1, the velocity profile splits

into (at least) two regions; with a high shear rate (i.e. large velocity gradient)

near the inner wall and a slower moving region with low shear rate closer to

the outer wall. The transition region between the two shear bands shifts out-

wards toward the stationary outer cylinder as the shear rate is increased until,

at a certain shear rate, γ̇2, the high shear rate band spans the gap. At shear

rates larger than γ̇2, the velocity profile is again close to linear. The steady

state flow curve of shear stress as a function of shear rate rises monotonically
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(almost linear) for small shear rates, then begins to level off until, at the shear

rate of γ̇1 the flow curve plateaus. The plateau continues until the shear rate

reaches γ̇2, thereafter the flow curve is again a monotonic increasing function

of shear rate. Experiments also show [7] that under shear rate control the first

normal stress difference initially increases quadratically with shear rate until

γ̇1, at which point the increase becomes linear, up to a shear rate of γ̇2, at

which point the rate of increase in N1 becomes approximately quadratic again.

Small Amplitude Oscillatory Shear (SAOS) experiments show two highly sep-

arated time scales suggesting a superposition of two Maxwell modes [7]. The

shear-banding, and the correlated flow curve plateau, are generally attributed

to a multi-valued underlying rheological constitutive relation between shear

stress and shear rate if one assumes viscometric (homogeneous) kinematics

[8, 9, 10]. Flows along the locally decreasing portion of this rheological con-

stitutive curve have been shown to be unstable [11] so that, under shear-rate

controlled conditions (with velocity imposed at the walls) the flow bifurcates

into two branches with one flow domain located on the stable low shear rate

branch of the rheological flow curve and the other on the stable high shear rate

branch. The portion of the gap which each shear rate occupies is determined

by a lever rule in order that the appropriate total velocity change across the

gap is obtained. A number of comprehensive review papers describing the flow

structure and dynamics have appeared [8, 9, 10].

Several single species (plus solvent) models which exhibit non-monotone rhe-

ological constitutive curves have been examined in the literature as a basis for

understanding flows of wormlike micellar solutions; for example, the Johnson-

Segalman model [12, 13, 14, 15], the reptation-reaction model [10, 16], a "Toy"

model based on reptation theory [17], a more complete reptation model (known
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as the "Rolie-Poly" model) [18], the Giesekus model [19, 20, 21] and the PEC

(Partially Extended Convection) model [22]. These models can, under appro-

priate parameter conditions, all exhibit a non-monotone rheological constitu-

tive curve and thus can each capture key aspects of the linear and nonlinear

rheology observed experimentally. Some of these single-species models are phe-

nomenological in basis (e.g. the Johnson-Segalman and Giesekus model) and

may respond unphysically in step-strain and/or extensional flow response (e.g.

the Johnson-Segalman model [23]), or may be difficult to manipulate and fit to

actual experimental data (the reptation-reaction model). These single species

models generally coarse-grain the solvent and low molecular weight species

into a single Newtonian mode and thus do not exhibit fluid elasticity at high

frequencies or shear rates.

One model that takes into account (in an approximate way) the breakage and

reforming of the worms is the Vasquez-Cook-McKinley (VCM) model [24].

This model is a two species (plus solvent) model in which worms of length

L can break into two worms of length L/2, and two worms of length L/2

can reform to a single worm of length L. The VCM model thus incorporates

a physical breakage-reforming processes and is appropriately frame-invariant.

The model allows for a realistic (aqueous) solvent viscosity and also captures

the presence of a second, short species which gives rise to a weak viscoelastic

contribution at high shear rates. The VCM model reduces to a single species

PEC model (with additional diffusive terms) [23] in a Newtonian solvent, in

the limit that the relaxation time of the second species goes to zero and that

the number densities of each wormy species are constant. The PEC model

was extensively examined in [22]. The Rolie-Poly model, in the limit that the

convective constraint parameter β is zero and chain stretching is ignored, can
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also be reduced to the reptation-reaction model [25]. In shearing flow, in that

same limit, the Rolie-Poly model is similar to the PEC model but without

the free nonlinear parameter. More recently, a thermodynamically consistent

two-species model has been derived from non-equilibrium thermodynamics

considerations and its predictions have been compared with those of the two-

species VCM model [26].

Analysis of the rheological predictions of the VCM model has been carried out

in several geometries and for a range of boundary conditions including steady

shearing-flow in a Taylor-Couette geometry under Large Amplitude Oscil-

latory Shear (LAOS) [27]; fast and slow stepped-ramps up to steady state

shearing in a Taylor-Couette geometry (during which localized shear waves

may develop) [28]; steady pressure-driven channel flows [29], and extensional

flows [30]. Predictions of those studies compare well with many of the princi-

pal features of wormlike micellar rheology observed in experiments. In these

previous studies, theoretical predictions are contrasted with those of simpler

single species models and shown to be an improvement in several cases, for

example the capability of predicting the highly localized rupture event in an

elongating filament of a wormlike micellar solution in extensional flow [30].

The predictions of a non-interacting version of the two species VCM model,

namely the PEC+M model (as well as the PEC model plus solvent) have been

analyzed extensively for the case of step strains and ramps up to steady state

shearing flows [22].

While the VCM model has been demonstrated to successfully model wormlike

micellar mixtures in various shearing and elongational deformations, it does

have its own limitations including: (i) the second normal stress difference N2

is identically zero; (ii) numerical simulations of steady state values of N1 , the
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first normal stress difference, as a function of shear rate in Taylor-Couette flow

do not agree with results obtained in cone-plate experiments for shear rates

in the shear banding region [7]. This latter discrepancy may be due to the

geometrical differences, but may also be due to the simplicity of the kinetics

describing the reforming rate of the VCM model, a simplification made in part

to highlight the controlling role of micellar breakage in the observed dynamics.

In [31], the VCM model was modified, allowing temporal and configuration

dependent changes of the equilibrium breakage rate and of the relaxation rate

of the long species in order to account for gel-like structure formation that can

be observed in some micellar solutions at very high deformation rates [32, 33].

As noted above, building on the VCM model success, a thermodynamically

consistent two species model has recently been derived [26]. In this new model

the nonlinear breakage and reforming rates have different functional forms

than those of the VCM model. Preliminary simulations of the modified model

in a homogeneous viscometric flow showed a multi-valued underlying rheo-

logical constitutive relation (flow curve), and a homogenous extensional flow

curve similar to those of the VCM model. Results for inhomogeneous flows of

this new model have not yet been reported. One advantage of the new model

is that there is no free nonlinear parameter, on the other hand this distinction

may well restrict the ability of the model to be fitted to experimental data for

different micellar concentration.

In the present paper we carry out a comprehensive investigation of the full

VCM model in shearing deformations including transient analysis from initial

start up to steady state for a Taylor-Couette flow geometry. We compile a

number of disparate existing results describing the VCM model predictions,

and also provide new computational results; for example the effect of chang-
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ing flow geometry on the steady state curve together with an experimental

comparison. The full VCM model includes the effect of fluid inertia and the

role of diffusive (nonlocal) terms which couple the local distribution in num-

ber density of each species, local stress gradients and the sharp variations in

the local velocity within the shear bands. We also examine the full temporal

responses of the system of the equation from short time (elastic waves) to long

time (slow diffusive relaxation).

2 The Model Formulation

The detailed derivation of the VCM model can be found in [24]. In summary,

the (non-dimensional) number density and stress equations are given by:

µ
DnA

Dt
=2δA∇2nA − δA∇∇ : A+

1

2
cBn

2
B − cAnA, (1a)

µ
DnB

Dt
=2δB∇2nB − 2δB ∇∇ : B− cBn

2
B + 2cAnA, (1b)

µA(1) +A− nA I− δA∇2
A= cB nB B− cAA, (2a)

ǫµB(1) +B− nB

2
I− ǫδB∇2

B=−2ǫ cB nB B+ 2ǫ cAA, (2b)

where the breakage rate varies with the local shear rate according to cA =

cAeq +
ξµ

3
(γ̇ : A/nA), and for simplicity the reforming rate is taken to be

constant, cB = cBeq. Here cAeq and cBeq are the equilibrium breakage and

reforming rates, respectively. The parameter µ = λA/λeff = 1+cAeq measures

the ratio of the stress relaxation time of the long species (denoted A) to the

effective relaxation time of the total network. Since micellar breakage results

in a second (faster) relaxation mechanism in addition to the disentanglement
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dynamics, µ > 1. The parameter ǫ = λB/λA is the ratio of the relaxation

time of the short species B to that of the long species A, for entangled long

chains ǫ ≪ 1. The number densities have been scaled by the equilibrium

number density of species A so that the equilibrium values are n0
A = 1, n0

B =
√

2cAeq/cBeq where, as noted above, cAeq = µ− 1.

The nondimensionalization of the governing equation set is given by the follow-

ing: total stress τ = τ
′/Go, where G0 is the plateau modulus, time t = t′/λeff ,

the scaled spatial variable r = (R−Ri)/(Ro −Ri) = (R−Ri)/H , where H is

the gap width calculated as the difference of the radius of the outer cylinder

Ro and inner cylinder Ri and velocity v = v′λeff/H . With the dimensional

velocity of the inner wall being denoted as V ′, the dimensionless velocity at

the moving wall is v(0) = V ′λeff/H = De, i.e. the Deborah number or di-

mensionless measure of the ‘flow strength’. In the rest of this paper, De is

also referred as the dimensionless apparent shear rate. This nomenclature is

chosen to agree with that used in the previous papers [22, 27, 28, 29, 30].

Contemporary approved terminology for steady shearing flow would be to call

this parameter the Weissenberg number, Wi [34]. We define p = H/Ri as

a measure of the curvature of the device. As p → 0 the flow approaches a

rectilinear plane Couette flow. The tensors A,B are the (scaled) second mo-

ments of the configuration distribution function for each species and the total

micellar stress is τ p = −A − 2B + (nA + nB)I. The dimensionless diffusivity

of each species is defined as δA = λADA/H
2 and δB = λADB/H

2 respectively,

in which DA and DB are the dimensional diffusivity.

These equations for the number densities and the stresses of each species are
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coupled to the equations of conservation of mass:

∇ · v = 0 (3)

and conservation of momentum:

E−1∂v

∂t
= −∇ · (P I− βγ̇ + τp) (4)

where τ = τp−βγ̇ is the total stress, that is the stress from the wormlike micel-

lar species and the stress from the solvent. The momentum equation introduces

two new dimensionless parameters, the elasticity number E = λeffηp/ρH
2,

which is a ratio of the effective relaxation time of the fluid λeff to the inertial

diffusion time t′diff = ρH2/ηp, and β = ηs/ηp which is a ratio of the solvent

viscosity to the zero shear rate viscosity of the mixture.

3 Results of the VCM Model in Shear Deformation

We consider unidirectional shear flow in a Taylor-Couette geometry with flow

in the θ direction and variations only in the radial direction r. Conservation

of mass is automatically satisfied by this unidirectional formulation. The con-

stitutive equations and the momentum equation are solved numerically using

a spectral method. The spatial variable is discretized with Chebyshev poly-

nomials and the resulting system of differential-algebraic equations is solved

using a multistep backward differentiation formula [35]. The number density

of each species, nA, nB, satisfies a no flux boundary condition at both the

inner and outer cylinders [22, 29] . The stress of each species, A, B, also sat-

isfy a no flux boundary condition. As in [22, 27, 28], the velocity at the inner

cylinder is written in dimensionless form as vinner = De tanh(at) mimicking
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the motion of the inner cylinder during a start-up experiment. The parameter

a measures how rapidly the inner cylinder reaches its desired speed. In most of

our computations we use a = 10 which is of the same order as the experiments

[7]. In Section 3.3 the effect of varying a on the velocity profile and stress field

at steady state is briefly discussed.

For a range of shear rates γ̇1 < γ̇ < γ̇2 the velocity profile exhibits a kink at

the spatial position where the shear-rate bands meet. To better resolve the

kink region, an adaptive spectral method with transformed Chebyshev points

is used. The following conformal mapping [36] redistributes the Chebyshev

grid points so that the points are clustered towards the position of the kink:

g(r) = d+κ sinh

[(

sinh−1

(

1− d

κ

)

+ sinh−1

(

1 + d

κ

))

r − 1

2
+ sinh−1

(

1− d

κ

)]

.

(5)

In Equation (5) κ is a parameter that determines the density of the points

centered around d. The position of the kink and the sharpness of the kink (as

it develops) are functions of the time t, spatial position across the gap r and

apparent shear rate De, hence d and κ are functions of these variables. The

details of the implementation of the method can be found in [36].

The values of the parameters in the model are chosen by reference to exper-

imental data. A detailed rheological fitting can be found in [7, 24]. Parame-

ters were determined by Small Amplitude Oscillatory Shear (SAOS) and step

strain experiments [7, 24] on a mixture of CPyCl/NaSal added to water. The

constitutive parameters can vary slightly with each preparation batch due

to small variations in purity [37]. We have chosen representative parameters

within the experimental ranges, namely µ = 5.6, where µ = λA/λeff is the

ratio of the relaxation time of species A to the effective relaxation time of
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the system (including breakage), and the contribution to the total shear stress

from the second short species is µǫn0
B which is of order 10−3. We consider ξ

=0.7, but also study how changing the value of this single nonlinear parame-

ter, which governs the magnitude of the nonlinear breakage terms, affects the

steady state results. The curvature parameter p is determined by the specific

experimental test apparatus. In general 0.04 ≤ p ≤ 0.08 [6, 38, 1]. We ini-

tially compute with p = 0.1, but we also investigate the effect of varying p.

We choose the effective diffusion parameters for each species to be identical

δA = δB = δ and typical values are taken in the range 10−5 < δ < 10−1 [29].

Numerical computation shows that the contributions from the ∇∇ : A and

∇∇ : B terms in the number density equations are negligible for this range of

δ. With these choices, D(2nA+nB)
Dt

= 2δ∆2(2nA + nB). Given equilibrium initial

conditions and no flux boundary conditions at the walls, the total number of

short segments whether joined or not, remains a constant in space and time.

3.1 Model predictions in steady state shear flow

Fig. 1 shows a typical inhomogeneous flow curve predicted by the VCM model

under shear rate controlled conditions (blue asterisks joined by broken line).

The green solid curve is the corresponding rheometric (homogeneous) flow

curve calculated with the assumption that there is no spatial variation in

the kinematics. The decreasing portion of this flow curve, between the local

maximum at γ̇M and the local minimum at γ̇m, is unstable. This conclusion

has been shown for the single species, PEC, model in [22]. In the VCM two

species model with concentration coupling, we have checked the stability of the

homogeneous base flow subject to inhomogeneous perturbations in a circular
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Couette geometry. The region of instability is still the decreasing portion of the

steady state flow curve even with inclusion of normal stresses τrr and τθθ, which

is in contrast with the d-JS-φ model [14]. Therefore, when a nominal shear-rate

is prescribed corresponding to this decreasing portion of the flow curve, the

velocity profile splits into two regions of distinct shear rates, each located along

a locally increasing (stable) portion of the curve, thus forming a stress/strain-

rate plateau as shown by the asterisks. The plateau starts at a shear rate γ̇1

and ends at the higher shear rate γ̇2 denoted in Fig. 1. For apparent shear rates

in the range γ̇1 < De < γ̇2, the total dimensionless shear stress is roughly a

constant τrθ ≈ 0.7 for this choice of parameters. When the apparent shear

rate is below γ̇1 or above γ̇2, the shear stress increases linearly with shear

rate. We note that there is a small variation (or vertical offset) between the

values of the stress at a given shear rate for linearly increasing portion of the

inhomogeneous and homogeneous flow curves, we will show later in Section

3.2 that this variation is due to curvature effects and this variation decreases

as the curvature p decreases. The dashed black line is the contribution to

the stress from species B, that is 2Brθ = 2(n0
A + n0

B/2)µǫγ̇rθ, which is the

primary contribution to the shear stress in the high shear rate region. Unlike

single species models, such as the PEC model [22], or the Johnson-Segalman

model [39], the additional solvent contribution in the VCM model, given by

ηsγ̇
′

rθ in the dimensional form, is chosen to be water as opposed to a coarse-

grained more viscous Newtonian solvent. The weakly viscoelastic B species also

contributes to the linear viscoelastic response of the system. For a comparison

of the prediction for G′ and G′′ and experiments see [7].

The velocity profiles across the gap for selected values of the apparent shear

rates in the plateau region of Fig. 1 are shown in Fig. 2(a). For apparent

13



10
−1

10
0

10
1

10
2

10
−1

10
0

Apparent Shear Rate De, [-]

S
he

ar
 S

tr
es

s 
at

 th
e 

In
ne

r 
W

al
l, 

[−
]

 

 

inhomogeous flow curve
homogeneous flow curve
shear stress from species B

Fig. 1. The dimensionless steady state flow curve of the VCM model for: ξ = 0.7,

µ = 5.7, ǫ = 4.5× 10−4, n0
B = 1.13, β = 6.8× 10−5, δA = δB = δ = 10−3, p = 0.1.

shear rates in this region, a two-banded structure is observed with a high

shear rate towards the inner (moving) wall and a low shear rate towards the

outer (stationary) wall. The location at which the velocity profiles with the two

different shear rates meet represents a "kink" or shear localization between the

two bands. Mathematically, the location of the kink can be determined either

by finding the local maximum in the second derivative of the velocity profile,

or by locating the maximum of the first derivative of the shear stress Arθ [29].

Here we use the local maximum of the second derivative of the velocity profile

as the kink location, rk. As the value of the apparent shear rate imposed on the

flow increases, the kink moves outwards towards the outer cylinder until the

high shear rate region spans the entire gap. The inset of Fig. 2(a) shows that

the location of the kink varies almost linearly with the value of the apparent

shear rate De which is consistent with experimental observations [2, 40]. Fig.

2(b) shows the number density profile of the long species A across the gap at

the same selected apparent shear rates. In the high shear rate region the long

14



(a)
0 0.2 0.4 0.6 0.8 1

0

5

10

15

20

25

30

35

r, [−]

V
el

oc
ity

, [
−

]

 

 

De=10
De=15
De=20
De=25
De=30
De=35

0 20 40 60
0

0.2

0.4

0.6

0.8

1

De, [−]

K
in

k 
po

si
tio

n 
r k, [

−
]

(b)
0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r,  [−]

n A
, [

−
]

 

 

De=10
De=15
De=20
De=25
De=30
De=35

Fig. 2. (a) Inhomogeneous velocity profile across the gap as the imposed shear rate

De = V ′λeff/H is increased. (b) Number density distribution of the species A across

the gap. The model parameters are the same as those in Fig. 1.

species A has broken to form two shorter segments of species B, therefore the

number density of species A stays at a low level (nA ≈ 0.12). By contrast, in

the low shear rate region the (scaled) density nA is close to unity, its initial

equilibrium level. The total number density 2nA+nB remains constant across

the gap (determined by the initial conditions).

The time evolution of the shear stress and the first normal stress difference
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Fig. 3. (a) Shear stress and the first normal stress difference at the inner cylinder

after start up of the flow. (b) Velocity profiles across the gap for selected times in

(a). De = 6, a = 10. The model parameters are the same as those in Fig. 1.

N1 at the inner cylinder, after start up of the flow, and the corresponding

velocity profiles at selected times are shown in Fig. 3(a). For this value of

the Deborah number (De = 6), both the shear stress and the normal stress

difference exhibit an overshoot and a subsequent undershoot before they reach

their steady state values. The overshoot in the shear stress occurs before the

overshoot of the first normal stress difference. When the viscoelastic stresses

pass through their maximum values, the fluid elastically “unloads" and this
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results in a transient elastic recoil during which a velocity profile with local

negative values is observed (see for example Profile C in Fig. 3(b)). This result

is very similar to experimental PIV observations in micellar fluids and to what

the simpler PEC model predicts [22]. The difference between the PEC and the

VCM models is that in the VCM model, the elastic recoil is more pronounced

due to an enhanced breakage of the long species A.

Close inspection of Fig. 3(a) shows that the initial growth in the shear stress

is not linear in time. This short time response is due to the prescribed time

dependent start up of the wall velocity given by vinner = De tanh(at). The

wall velocity takes a time on the order of 1/a to reach its final steady state

value. For a value of a = 10, it takes a time t ≈ 0.15 for the velocity to reach

90% of its final value. If we let a become very large, for example a = 100,

then the initial expected linear response of the fluid shear stress with time is

recovered.

The shape of the steady state flow curve varies when the parameters in the

constitutive equations, specifically ξ (the single nonlinear model parameter

which governs the strength of the nonlinear breakage rate of species A), and

the ratios of the time constants µ = λA/λeff and ǫ = λB/λA, change their

magnitude. A discussion of the effects of varying these parameters in a homo-

geneous/rheometric flow can be found in [24]. Here we concisely assemble the

effect of variations of these parameters for fully inhomogeneous flow conditions

in Fig. 4 and 5.

In Fig. 4(a) we show the flow curves for several values of ξ = 0.3, 0.5 and

0.7. It is clear that this parameter changes the steady state flow curves only

by raising or lowering the position of the plateau. Larger values of ξ lower
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Fig. 4. The steady state shear stress (a) and the first normal stress difference (b) as

a function of the apparent shear rate for the inertialess VCM model with variation

the nonlinear breakage parameter ξ. All other parameters remain the same as in

Fig. 1. The insets of each figure show the scaled flow curves to be independent of

the nonlinear parameter ξ.

the plateau, thus causing the plateau region to start and end at lower values

of the apparent shear rates as compared to the values obtained for a smaller

value of ξ. However, the plateaus have the same length and are parallel to each

other. Fig. 4 (b) shows the first normal stress difference, N1, as a function of

apparent shear rate De for the same three values of ξ. For the VCM model, N1
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increases quadratically with respect to the shear rate in the two linear regions

of the flow curve. In the plateau region of the flow curve, N1 at the inner wall

also shows a plateau in Taylor-Couette flow. This result is not consistent with

what is found in experiment in a cone-plate device [7].

Closer inspection of the individual components of the constitutive equations of

the VCM model in steady shear flow shows that if the shear stresses from each

species and the shear rate are rescaled by
√
ξ and N1 is rescaled by ξ (so that

Arθ,new = Arθ

√
ξ, Brθ,new = Brθ

√
ξ, γ̇rθ,new = γ̇rθ

√
ξ and N1,new = N1ξ) then

the rescaled equations are independent of ξ in the inertialess case (ξ will be

present in the rescaled elasticity number E in the momentum equation). The

insets of Fig. 4(a) and Fig. 4 (b) show the consequence of this independence,

the flow curves for different values of ξ superpose when rescaled as described

above. This change of variable is very similar to the simplification that have

been noted for the diffusive Johson-Segalman (dJS) model [42, 43], for which

the constitutive parameter a can be scaled out of the equation set using a

suitable rescaling.

The effect of varying the parameter µ is shown in Fig. 5(a). In the VCM

model, µ is the ratio of the stress relaxation time of the species A to the

effective relaxation time of the mixture (µ = λA/λeff = 1 + cAeq) and thus

specifically provides a measure of the rate of breaking in the long species A

close to equilibrium conditions. The curves show that for smaller values of µ,

the plateau is lower and ends later than for a larger µ. The three parts of

the flow curve, i.e. the first linear regime, the plateau, and the second linear

(high shear rate) portion are determined primarily by, respectively, Arθ, a

combination of Arθ and Brθ, and Brθ. Therefore a lower and longer plateau

means the contribution to the total shear stress from the short species B is
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Fig. 5. The steady state flow curve for the inertialess VCM model with variation of

the parameters (a) µ = λA/λeff and (b) ǫ = λB/λA for a fixed value of a = 10. All

other parameters remain the same as in Fig. 1.

smaller and less significant until higher shear rates. This is consistent with a

smaller breakage rate of the long species. The effect of ǫ = λB/λA, i.e. the

ratio of the relaxation time of the short species B to that of the long species

A, on the steady state flow curve is similar to that of µ as expected, since for a

fixed value of λB the magnitude of ǫ varies with λA and hence with λeff . The

curves for varying ǫ are shown in Fig. 5(b). For larger ǫ the plateau is higher

and ends earlier corresponding to larger viscoelastic contribution to the total
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stress from the short chain ‘B’ species.

3.2 Curvature Effects

Although the Taylor Couette geometry provides a good approximation to a

planar shearing flow in the narrow gap limit, the curvature p of the geometry

still has important effects on the shape of the flow curve and the width of

the shear banding plateau between γ̇1 and γ̇2. Fig. 6(a) shows steady state

solutions for the VCM model equations for different values of the curvature

parameter p = 0.01, 0.05 and 0.1. The dotted line (green) represents the ho-

mogeneous flow solution, that is the viscometric flow curve. In the two linear

regimes, as p decreases, the flow approaches the viscometric limit; variations

in the velocity field resulting from curvature decrease monotonically and the

velocity profile becomes closer to linear across the gap. The small deviation

from linearity in the velocity field results in small O(p) variations in the flow

curve so that the difference between the full (inhomogeneous) flow curve and

the limiting homogeneous solution decrease as p → 0 (see inset for better

view).

The effect of the curvature on the width and the shape of the plateau has

been noted previously by Olmsted et.al. [39]. From Fig. 6(a) it is clear that

larger values of the curvature p result in longer plateaus, that is, the plateau

starts at lower values of the apparent shear rate and ends later, while smaller

values of p lead to shorter plateaus. On the homogeneous flow curve, the

locally decreasing part of the curve with ∂τrθ/∂De < 0 is linearly unstable

(see the dashed line of the nonmonotonic flow curve in Fig 6(b)). Ideally, in a

homogeneous planar shearing flow, when the apparent shear rate De is between
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Fig. 6. (a) The steady state flow curve for the inertialess VCM model for different

values of the curvature p = Ro−Ri

Ri
. We keep a = 10, δ = 0.001 and all other

parameters remain the same as in Fig. 1. (b) Local spatial variations in the shear

rate across the gap for selected values of the imposed dimensionless shear rate De.

The insets show local velocity profiles in which the hollow and filled squares show

the corresponding maximum and minimum values of the shear rate (γ̇i, γ̇o) of the

profile respectively.
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the local maximum γ̇M and local minimum γ̇m of the homogeneous flow curve,

a plateau occurs. However, this is not the case in the Taylor Couette geometry.

In a planar geometry, the local shear rate is a constant value across the gap,

γ̇local = λeffV
′/H = De. However, when there is curvature present, even in

the linear regimes, the local shear rate across the gap is a function of space

[22]. The local shear rate γ̇rθ(r) varies between γ̇o, γ̇i with the maximum shear

rate occurring at the inner moving wall (γ̇i ≡ γ̇rθ(r = 0)) and the minimum

shear rate at the fixed outer wall (γ̇o ≡ γ̇rθ(r = 1)) as shown in Fig. 6(b) by

the hollow and filled symbols respectively. Obviously, the span ∆γ̇ = (γ̇i− γ̇o)

of the local shear rates encountered across the gap increases for larger p. The

velocity profile starts to shearband to form a ’kinked’ or banded structure not

when the nominal or average value De lies in the unstable region, but when

the maximum shear rate γ̇i enters the unstable region, that is when γ̇i > γ̇M .

Since ∆γ̇ > 0 for the Taylor Couette geometry, this means the plateau begins

before the apparent shear rate De itself reaches the unstable region at γ̇M , as

indicated by the inset velocity profile in Fig. 6(b). For the same reason, shear

banding persists till the minimum local shear rate in the gap no longer lies in

the unstable region, i.e., γ̇o > γ̇m. Since ∆γ̇ increases for larger values of the

curvature p, it is clear that the extent of the shear banding plateau must grow

with increasing p.

The effect of the geometry on the steady state flow curve measured in worm-

like micellar fluids can also be investigated though experimental results carried

out in different flow configurations. To circumvent problems associated with

motor response times, fluid inertia and edge fracture in torsional flow devices,

it is often convenient to use a Poiseuille channel flow for high shear rate experi-

ments [44, 45, 46]. In a slit geometry the flow is controlled through the pressure
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drop imposed along the channel, as opposed to an imposed wall driven veloc-

ity or apparent shear rate as in at a Taylor-Couette or cone-plate geometry.

Although the curvature p in a rectangular channel (slit geometry) is now zero,

it was shown in [29] that a new dimensionless geometric measure, namely the

characteristic length of the channel lp = G0L/∆p′, takes its place. This param-

eter appears in the momentum equation in the form P= ∆p′H/(G0L) = H/lp.

A channel flow experiment is carried out at a prescribed P. Using PIV mea-

surements, the local shear rate and stress are determined at locations across

the gap and graphed to reconstruct the local flow curve at that value of P. It

has been shown in [29] that the interplay between P and the diffusivity pa-

rameter δ affects the form of the flow curve reconstructed from a channel flow

experiment. In particular, for a fixed value of δ, as P increases the ‘plateau’

in the flow curve develops an increasingly positive slope.

Both parameters P and δ depend on the height of the channel (P= ∆p′H/(G0L)

and δ = λADA/H
2) so that experiments carried out using channels of different

heights, or in the same channel but for different values of the applied pressure

drop along the channel, will exhibit different flow curves. In [29], it was shown

that the flow curves collapse onto a single master curve only if the parameter

combination Pδ1/2 is held constant between geometries and experiments. In

Fig. 7 we show experimental data collected in a torsional rheometer (open

squares, AR-G2) using a cone and plate fixture at low shear rates, and in a

rectilinear microchannel (mVROC, filled squares) at higher shear rates using

the same fluid, a CPyCl-NaSal mixture with concentrations of [100:60] mM

[47]. The microchannel experiments were carried out by varying the imposed

pressure gradient P to obtain the desired flow rate. It is clear that the loca-

tions of the shear banding plateaus do not agree; instead the plateau value
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Fig. 7. The steady state flow curves for a single wormlike micellar fluid obtained from

two different experiments [47]: using an AR-G2 torsional rheometer and mVROC

microfluidic device, respectively, plus corresponding simulation for Taylor-Couette

flow and pressure driven flow. In the simulation: β = 2.2×10−5, n0
B = 1.13, µ = 1.8,

ǫ = 7× 10−5, ξ = 0.1, p = 0.15, δ = 0.001. The value of the dimensionless pressure

difference is P= 30.9 for the pressure driven flow [48].

in the microchannel is lower than the value observed using the cone-plate fix-

ture. By contrast, in non shear banding fluids excellent overlap between the

two flow curves obtained with the two devices are obtained [44]. Flow curves

for the VCM model were simulated with the same parameter values as in the

experiments using the known material parameters (G0 = 27.2 Pa, λeff = 1.67

s), the additional constitutive parameters in the model were fit so that the

monotone increasing portions of the simulation and the experiment agreed.

The simulations were carried out for a Taylor-Couette geometry at low shear

rates, and for a rectangular channel at fixed P at higher shear rates [48]. For

the particular values of p (for the Taylor-Couette flow), and P (for the mi-

crochannel flow), the model predictions agree with the experimental results

along much of the plateau. The VCM model simulation shows a larger over-
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shoot at the low shear rate end of the plateau than is observed experimentally

in the cone-plate geometry possibly because of the more complex transition

to shear banding expected in a cone-plate device [7, 49].

3.3 Long Time Memory of Short Time Start-Up Conditions

A plot of the steady state flow curve obtained after a transient ramp up from

initial rest conditions shows that the total shear stress in the fluid "overshoots"

or exceeds the plateau value at the low shear rate end of the plateau near γ̇M .

This is particularly clear when the curvature p is small (see the flow curve

for p = 0.01 in Fig. 6). This local maximum in the steady state flow curve

has been documented in a number of experiments for different micellar fluid

[1, 7]. As reported in those experiments, if the wall velocity is ramped up to its

final value, the flow curve exhibits a shear stress overshoot before entering the

plateau region of the curve. By contrast if the wall velocity was ramped down

to its final value this overshoot disappeared, and so this overshoot represents

a metastable, history-dependent branch of the flow curve.

To explore whether the existence of this overshoot is dependent on the initial

ramp conditions, we show two steady state flow curves in Fig. 8 evaluated

for different values of the step rate ramp parameter a (Fig. 8 (a) is for a

faster ramp a = 10 and Fig. 8 (b) is for a slower ramp a = 1). In each figure

the hollow circles (blue) represent the steady state solution for a shear rate

ramped up from equilibrium (that is vinner = De tanh(at), with other variables

initialized at their equilibrium conditions), the asterisks (red) represent the

steady state flow curve for a shear rate which is ramped down from a steady

state at a higher wall velocity using the same value of a (here we use vinner =
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Fig. 8. The effect of varying the ramp rate parameter a on the steady state flow

curve for the inertialess VCM model: (a) for a fast ramp up or down (a = 10), the

steady state curves are indistinguishable. The green dashed line is the homogeneous

response; (b) for a slow ramp up or down (a = 1) the profiles obtained during the

ramp up and ramp down are different. In this figure the labeled points correspond

to A: ramp up, De = 1; point B: ramp up, De = 2; point C: ramp up, De = 3; point

D: ramp down, De = 2. In both figures the gap curvature and diffusivity are held

constant at p = 0.01, δ = 0.001. All other parameters remain the same as in Fig. 1.
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500 + (De − 500) tanh(at) and the initial values of other variables are their

values at the steady state value obtained after a ramp up to De = 500). The

number 1/a represents roughly the time for the velocity applied at the inner

wall to reach its final (imposed) value. Small values of a correspond to a slow

ramp whereas large values a correspond to a fast ramp. A ramp with a = 10

is almost complete at a dimensionless time of 0.1, well before the system has

time to relax (note that for a typical De on the plateau, elastic recoil is well

in progress at roughly t ∼ 0.4, see Fig. 3). On the other hand, a ramp with

a = 1 is not complete until an elapsed time of t ∼ 1, well after relaxation

to a banded state has occurred. Thus in the latter case the dynamical system

locally equilibrates to shear rates along the upwards ramp or decay (during the

ramp down) hence effectively experiencing all shear rates between the initial

value and the final value. The two flow curves shown in Fig. 8 for each pair of

simulations are coincident except at the beginning of the plateau region and

at the end of the plateau region. The results in Fig. 8(b) show that for a slow

ramp up and ramp down (a = 1), there is hysteresis at the low shear rate end

of the plateau; i.e. there is an overshoot in the stress if the system reaches

steady state through a ramp-up condition (hollow circles), but no overshoot

when ramping down (red asterisks). Similarly, at the high shear rate end of

the plateau under ramp-down conditions there is a small undershoot, while

for ramp up there is no undershoot. For a fast ramp up or a fast ramp down

(a = 10, Fig. 8(a)), there is both an overshoot at the low shear rate end of

the plateau and an undershoot at the high shear rate end of the plateau.

The hysteresis observed at the beginning of the plateau for slow ramp up

conditions (a = 1) is consistent with experiments [1, 50]: i.e. a stress overshoot

is observed in the flow curve at the beginning of the plateau when the shear
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Fig. 9. (a) The transient stress growth curves as a function of time for the inertialess

VCM model in the overshoot region of Fig. 8(b). In the figure we hold p = 0.01 and

a = 1. (b) The corresponding steady state velocity profiles for De = 1 and 2 in ramp

up and ramp down flow conditions.

rate ramps up but no such overshoot is observed when the shear rate is ramped

down. In Fig. 9 the transient stress responses for the VCM model for apparent

shear rates of De = 1, 2, 3 during the ramp up, and De = 2 during the

ramp down are plotted. At De = 1 (state A), there is no shear banding, the
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shear stress smoothly approaches its steady state. At De = 3 (state C), the

stress overshoots in time, thereafter decaying eventually to reach its steady

state value. For De = 2, during the ramp up (state B), the stress increases

monotonically to the steady state and then remains constant with no time

overshoot and no band formation (see Fig. 9(b) for the steady state velocity

profile), however, when the flow is ramped down to the same value of De = 2

(state D), the shear band has already been formed (at the initial, much higher

shear rate) and the banding persists. It is for this reason that [1] refer to the

overshoot branch near De = 2 as a metastable branch of the steady state flow

curve: If the flow starts from a linear initial condition (ramp up), it will take

an infinite time for the bands to nucleate and thus for the shear stress to relax

to the plateau stress value; however if shear bands have already been formed

in the velocity profile, then the banded structure persists.

As pointed out above the situation for a fast ramp is quite different from that

for the slow ramp up as we have shown in 8(a). In this case, for a curvature

of p = 0.01, the overshoot at the beginning of the plateau is seen for both

ramp up and ramp down conditions. The same is true for the undershoot at

the right hand end of the plateau. In these cases the ramp is so fast that the

final wall velocity is attained well before the stress in the system has relaxed

to the steady state profile. The velocity across the gap rapidly reaches its

"homogeneous" value at the targeted apparent shear rate. When this shear

rate is on the stable portion of the flow curve the system stays on that branch,

unbanded. By contrast, in the slow ramp case the system samples all shear

rates on the path to the final equilibrium profile.
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3.4 Long time, Diffusive effects

In [28] the transition to multiple shear banded structures was studied in the

presence of fluid inertia. It was shown that multiple banded structures can

develop in the transient velocity profiles, and, in the absence of diffusion these

can persist to the steady state velocity profiles. This multiple banding arises

due to the interaction between the initial inertio-elastic shear wave that prop-

agates across the gap and the nonlinear evolution in the viscoelastic stress

field within the fluid which drives the band formation. In our previous study

we also considered the effect of diffusion on this multiple banding formation

process and showed that the multiple banding events eventually decay to a

two banded state when the presence of stress-concentration diffusion in the

system is accounted for. In that paper it was shown that the time for the

multiply banded velocity to decay to the two banded curve was proportional

to 1/
√
δ.

That observation motivates investigation of the effect of varying the magni-

tude of the diffusion constant on the steady state flow curves. In Fig. 10(a)

we show the changes in the steady state flow curve observed for values of

δ = 10−1, 10−2 and 10−3. The steady state flow curves were obtained for a

fast initial ramp rate (a = 10). Calculation is carried out for these values of δ

to an elapsed time of O(200) well after the steady state is achieved. Note that

the small undershoot on the right hand end of the plateau (see Fig. 8) does

not survive for a large curvature such as p = 0.1 used in this calculation. The

effect of diffusion in this parameter range is weak except at the very begin-

ning of the plateau. The overshoot in this region indicates a transition from

a homogeneous velocity profile to a banded or kinked profile. This overshoot,
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Fig. 10. (a) The steady state flow curve for the VCM model with different values of

the dimensionless diffusivity δ = λAD/H2. (b) The corresponding velocity profile

for De = 10 for different values of diffusivity. The inset shows the second order

derivative of velocity v′′(r). In the simulation we set p = 0.1 and a = 10. The other

parameters are the same as those of Fig. 1.

documented experimentally in [1], smooths out as the diffusion constant in-

creases in the VCM model. In this earlier experimental study, the overshoot

is interpreted as a metastable branch with an "effectively infinite relaxation

time" [1] for the system which is attempting to form a shear banded state.

Also Radulescu et. al [42] attribute the difficulty of forming the shear bands
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at the beginning of the plateau to the effect of the wall since at this juncture

the band formation initially develops close to the moving inner wall. Because

diffusion is a nonlocal effect, such wall-driven effects are stronger for larger

diffusion constant. In Fig. 10(b) we plot the simulated VCM model velocity

profiles for De = 10 for diffusivity values spanning the range δ = 10−4− 10−2.

The computations show that for these values of diffusivity the effects of stress-

concentration coupling on the velocity profile are located primarily at the kink.

Larger values of the diffusivity smooth and broaden the connection between

the two bands and their distinct shear rate regions. The spatial extent of the

transition region scales with
√
δ.

In Fig. 11 we show the effect of diffusion on the steady state number density

and the stress distribution across the gap for each species. Diffusion smoothes

out the sharp transition between the two shear rate bands just as it does to

the velocity profiles shown in Fig. 10(b). We have also confirmed numerically

that the width of the transition region in the shear stresses scales with
√
δ,

too. The total number density, 2nA+nB, remains invariant across the gap and

the total shear stress τrθ = −(Arθ +Brθ + βγ̇) always varies as r−2.

3.5 Model prediction in transient shear flow

The elasticity number E = λeffηp/ρH
2 does not have an appreciable effect on

the long time (steady state) VCM model behavior when diffusive effects are

present, it does have an effect on the transient response of the system. Fig.

12(a) shows the transient response of the total shear stress for different values

of E with a fixed diffusivity of δ = 10−4 and a fixed De = 10. The responses

for the selected values of E differ on time scales smaller than one relaxation
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Fig. 11. The effect of changing the dimensionless diffusion parameter δ in the VCM

model on the steady state profiles in the banded region at De = 10 . The top row

shows the number density distributions nA and nB of species A and B, respectively

across the gap. The bottom row shows the shear stress distribution across the gap

arising from each species.

time; however, the shear stresses all approach the same steady state at about

the same time (see inset). The effects of fluid inertia captured in the elasticity

number E primarily modify the short term behavior of the shear stress.

Following the startup of a steady shear flow, there are five distinct time re-

sponses as indicated in Fig. 12(a) by Roman numerals. The first stage (region

I) corresponds to the initial propagation of an inertio-elastic wave across the

gap with characteristic wave speed
√
E. This is particularly noticeable when E

is small. Note that in Fig. 12(a), the "shoulder" in Region I is associated with

the reflection of the elastic shear wave from the stationary wall. A detailed
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Fig. 12. (a) Transient responses in the dimensionless shear responses of the VCM

model for fixed value of diffusivity δ = 10−4 and different values of the elasticity

number E. (b) Transient shear responses for fixed E = 100 and different δ. The

insets of both figures show the long term behaviors for t ≤ 40. Here we keep a = 10

and De = 10. All other model parameters remain the same as in Fig. 1.

discussion of the elastic wave responses can be found in [28]. Following the

shear stress overshoot (region II) there is a period in which the shear stress

decreases (region III) and the shear bands develop. In the fourth stage (region

IV) , depending on the magnitude of the elasticity number E, the stress may

either experience a temporary plateau or an undershoot followed by another

overshoot. During the long slow (diffusive) period (region V shown in the in-

set) the stress gradually increases to approach its steady state value. These

different response regions have been documented in experiments by Lerouge.

et al [38, 40].

To demonstrate that this long time response in region V is diffusive in char-

acter, we show in Fig. 12(b) a set of computations for varying values of δ.

Clearly there is minimal effect on the short time shear stress responses result-

ing from changes in δ. In the case of E = 100 all of the profiles show that the
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stress first increases, then overshoots, then decreases to a short lived plateau

followed by an oscillatory approach to the steady state. However, the inset

of (b) shows different long term responses for different values of diffusivity δ:

both the value of the steady state solution and the time at which the steady

state is achieved are dependent on δ; as the diffusivity is decreased the time

to reach the final steady state value increases.

To further investigate the VCM time responses in these five stages, the veloc-

ity profiles in regions I-V are plotted in Fig. 13 for E = 100 and E = 1000,

respectively. The elasticity number represents a balance of inertial and dif-

fusive time scale and the speed of the inertio-elastic shear wave scales with
√
E [28]. Note that the response for E = 1000, as anticipated, is very close

to the inertialess response (see Fig. 12(a)). For the smaller value of E = 100,

in region I, the inertio-elastic wave propagation (regularized by the diffusive

response of the solvent and shorter B chains) is clearly observed (left top figure

of 13(a)). It takes a finite time ∆t = 1/
√
E = 0.1 for the velocity to propa-

gate from the inner cylinder to the outer cylinder. The reflected wave causes

an overshoot in the velocity profile near the middle of the gap at t = 0.15.

This overshoot is not observed for the larger value of E at the same time (left

top figure of 13(b)) in which case the speed of the wave is about
√
E ≈ 32.

By an elapsed of time t = 0.15, the effects of the inertio-elastic wave have

already been dissipated [28]. The local maximum in the stress (region II) oc-

curs at about t = 0.23. At this moment, the velocity at the inner wall reaches

its final value. This time scale is related to the value of the ramp parameter

a that we use in the simulation (here we use a = 10). If the ramp time is

shorter (i.e. a is larger), we expect this time to be smaller. During region III,

as the shear stress locally decreases, the shear bands are formed. Although
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the stresses look similar for each simulation in this region, the velocity profiles

evolve quite distinctly for different values of E. For E = 100, a transient three-

banded structure is formed due to interference of the reflected inertio-elastic

wave and the developing stress profile, as we have documented previously [28],

while for a larger elasticity number E = 1000, multiple bands do not develop.

The absence of a multiple banding structure for the larger value of E is again

because the reflected inertio-elastic wave has already dissipated by the time

the stress overshoots in Region II [28]. Instead, a regular two-banded struc-

ture is observed with a prominent elastic recoil in the velocity profile. This

elastic recoil has been observed in different models [18, 22] as well as exper-

iments [2, 51]. In region IV, the multiple bands that are initially formed in

the E = 100 case gradually diffuse away and a steady two banded structure

is recovered (left bottom of Fig. 13(a)). This gives rise to the intermediate

plateau in the stress responses, while for the E = 1000 case, the velocity vk at

the kink location (rk) oscillates weakly before relaxing to its steady state value

(left bottom of 13(b)) which gives rise to the undershoot and overshoot in the

shear stress. As the stress profiles gradually approach the final steady state

for t ≥ 0.7, the kink between the two shear bands becomes sharper and its

spatial location rk slowly diffuses inwards slightly toward the moving cylinder.

This final diffusion-dominated region is denoted region V for both cases.

The long-time transient responses of the VCM model in the banded regime is

determined not only by the diffusivity, but also by the apparent shear rate De

imposed at the wall which determines how deeply into the nonlinear banded

regime the system is being driven. For the same value of the diffusion constant,

when the apparent shear rate (De) is large, the system takes longer to reach

steady state (see Fig. 14 and the inset to Fig. 14(a)). To explore this long-
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Fig. 13. Evolution in the velocity profiles across the gap during start up of a shear

flow for a viscoelastic shear banding fluid; (a) larger inertia E = 100 and (b) smaller

inertia E = 1000.

time response systematically we set E → ∞ so that fluid inertial effects are

excluded (as we have shown in Fig 12, inertia has no effect on the long-term

behavior). In Fig. 14(b), we plot the time for the shear stress to reach steady

state (denoted tss) as a function of the diffusion constant δ and the apparent

shear rate De. In the range of 10−5 ≤ δ ≤ 10−2 and for De = 5, 10, 20, the
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computed time for the shear stress to reach steady state scales with tss ∼ δ−1/2

as indicated by the solid line. This relationship breaks down for large values

of δ > 10−2 because the diffusive layer is broader and there is interaction with

the wall [42]. This observed scaling is consistent with experiments [38].
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Fig. 14. (a) Responses of the shear stress for different apparent shear rates with a

fixed value of the diffusion constant δ = 10−4. (b) Time for shear stress to reach

steady state as a function of diffusion constant for selected De = 5, 10, 20. The

straight lines show a scaling of tss ∼ δ−1/2.

In [52], the dimensionless time to reach steady state is estimated to be

tss = µ
N√
δ

De

∆γ̇
, (6)

where the apparent shear rate value is close to the left (low shear rate) end

of the plateau, i.e. De ∼ γ̇M . In this expression N is a dimensionless number

determined by the model and ∆γ̇ is the dimensionless breadth of the plateau,

∆γ̇ = γ̇1 − γ̇2. This result shows that the time for the shear stress to reach

its final steady state is proportional to the apparent shear rate when the

apparent shear rate De = V ′λeff/H is close to the critical value at which

banding onsets. This general scaling also appears to be initially true in the
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VCM model. In Fig. 14(b), when imposed apparent shear rate is increased from

De = 5 to De = 10, the time tss to reach steady state doubled. However, when

De increases further from 10 to 20, this is no longer true. Using this expression

in Eqn. (6) and the data from Fig. 14 we determine values of µN ∼ 6 for the

VCM model, therefore N ∼ 1. This value of N is approximate 3 times larger

than estimates found from the diffusive Johnson-Segalman model [38, 52]. This

expression enables us to obtain an estimation of the diffusion constant from

experimental data in the start-up of steady shear flow. If tss is measured, then

the dimensional diffusion constant D can be computed from the VCM model

in the following way,

D =

(

N De

µtss∆γ̇

)2

· H2

λeff
(7)

where, as indicated above the precise value of the numerical constant N varies

for different fluid formulations and different models.

4 Conclusion

This paper, Part III of a sequence of papers, described respectively: the VCM

model, new experimental findings relative to shear flow of a wormlike micellar

solution, and the (inhomogeneous) predictions of the VCM model[7, 24]. The

VCM model is a two species model proposed to study wormlike micelles with

breakage and reforming events incorporated in a self-consistent way. In this pa-

per, the third of the series, the spatio-temporal predictions of the VCM model

in a Taylor-Couette shearing flow were presented. First, the model predictions

for steady state flow were assembled namely the flow curve, the first normal

stress difference as a function of apparent shear rate and the shear banded

velocity profiles across the Couette cell gap. Then, a complete investigation of
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the effect of varying the model parameters on the steady state flow curve was

examined. It was shown that the parameter ξ which multiplies the nonlinear

breakage term and thus determines the importance of the breakage can be

scaled out of the shear flow governing equation if an inertialess simulation is

considered.

The VCM model predictions were compared with a particular set of data from

two mixed experiments (Taylor-Couette at low shear rates, microchannel at

high shear rates) and reasonable agreement was shown. As noted in an earlier

paper [29], experiments in a microchannel will only generate flow curves which

agree directly with those of a Couette cell for particular choices of the driving

pressure.

The effect of the start-up ramp rate and the role of geometry (curvature) on

the steady state flow curve was examined, and the overshoot and undershoot

observed in steady flow curve at the beginning and end of the plateau region

was discussed. We also showed the hysteresis at the beginning of the flow curve

plateau as well as the associated temporal evolution of the shear stress profiles.

A complete description of the dynamics observed in the stress and velocity

fields, from the initial formation of inertial waves (studied more carefully in

[28] ), through the time of the stress overshoot and shear band formation to

the long time diffusion-mediated achievement of the steady state stress, was

presented.

Most of the phenomena discussed have been documented in experimental work

with micellar fluids. This class of model, a two species session-reforming model,

thus appears to capture many of the key features that characterize micellar

fluids whilst also being amenable to computational analysis.
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