Rheological Fingerprinting of Complex Fluids and Soft Solids

Prof. Gareth H. McKinley
With Dr. Randy H. Ewoldt, Dr. Trevor Ng, And Chris Dimitriou, Thomas Ober, Laura Casanellas

Department of Mechanical Engineering
Massachusetts Institute of Technology
 Congress on Rheology

August 10, 2012

A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS)

Kyu Hyun ${ }^{\text {a,* }}$, Manfred Wilhelm ${ }^{\text {b }}$, Christopher O. Klein ${ }^{\text {b }}$, Kwang Soo Cho ${ }^{c}$, Jung Gun Nam ${ }^{\text {d }}$, Kyung Hyun Ahn ${ }^{d}$, Seung Jong Lee ${ }^{\text {d }}$, Randy H. Ewoldt ${ }^{e}$, Gareth H. McKinley ${ }^{f}$
${ }^{4}$ School of Chemical and Biomolecular Engintering Pasan National University, Jangeon-Dong 30. Busan 690-735, Republic of Korra
Insthate for Chemicol Technolagy asd Pelymer Chemisry, Kartruhe Intifure of Technology (KIT, Engesserstrape 18.76128 Karlsnate, Germany
Department of Polymer Sclence and Engineering Kyunapook National University, Sangreok-Dong 1370 , Doegu 702 -701, Republic of Korea
School of Chemical and Biolagical Engineering Seoul National University. Seval 151-744, Bepublic of Korea
Instifate for Mathematics and its Applications \&s Department of Chemical Engineering and Materiats Sclence. University of Minnesota. Minneapolis, MN
SS45s. Usa
${ }^{\prime}$ Department of Mechanical Engineering, Massachusets Instinute of Technology (MIT), Cambridge, MA 02139, USA

ARTICLE INFO

Articie histary:

Received 10 May 2010
Received in revised form 11 Febraary 2011
Accepted 16 February 2011
Available online 11 March 2011
Keywords:
LNOS (Large amplitude oscillatory shear)

ABSTRACT

Dynamic oscillatory shear tests are common in rheology and have been used to investigate a wide range of soft matter and complex fluids including polymer melts and solutions, block copolymers, biological macromolecules, polyelectrolytes, surfactants, suspensions, emulsions and beyond. More specifically, small amplitude oscillatory shear (SAOS) tests have become the canonical method for probing the linear viscoelastic properties of these complex fluids because of the firm theoretical background [1-4] and the ease of implementing suitable test protocols. However, in most processing operations the deformations can be

Motivation for LAOS

- Develop rheological methods that leverage the capabilities of modern instrumentation to probe the nonlinear properties of complex fluids and soft solids?
- Foods and consumer products (gels, foams, surfactant systems)
gluten gel, micellar solutions, mucins, gastropod pedal mucus (snail slime)
- "... the whole infinite-dimensional space of shearing strain is projected onto two dimensions"
- "Nothing very systematic is known about the interior region..."
$\tau\left(t ; \omega, \gamma_{0}\right)$

$\gamma(t) / \gamma_{0}$
Bowditch-Lissajous Curve

Increasing frequency, $\omega[\mathrm{rad} / \mathrm{s}]$, Deborah number, $\lambda \omega$ A.C. Pipkin, Lectures on Viscoelastic Theory, Springer, New York (1972)

Linear Viscoelasticity \& Ellipses

- The equation for a linear viscoelastic response can be re-written (by eliminating time t) to show that the Lissajous figure for stress is elliptical when represented vs. shear strain or shear-rate.

For further reading, see Wikipedia, Wolfram Mathworld or http://ibiblio.org/e-notes/Lis/Lissa.htm

Nathaniel Bowditch (1773-1838)

- "I have now traced the mathematical analysis and experimental illustration of the Lissajous curves from France to Gt. Britain...to their home in Salem, MA. The so-called Lissajous curves are the Bowditch curves...They will continue, probably to be called the Lissajous curves. But their history should be known and will be known; though it is not necessary for the reputation of the self-taught mathematician, Dr. Nathaniel Bowditch"...
J. Lovering, Hollis Prof. of Physics, Harvard College "Anticipation of the Lissajous Curves",

Proc. Am. Acad. Arts \& Sci. 16 (1881)

- Originally published in N. Bowditch, Mem. Am. Acad. Arts. Sci 3, 413-436 (1815)
http://en.wikipedia.org/wiki/Nathaniel Bowditch
In 1787, aged fourteen, Bowditch began to study algebra and two years later he taught himself calculus. He also taught himself Latin in 1790 and French in 1792 so he was able to read mathematic works such as Isaac Newton's Philosophiae Naturc Principia Mathematica. At seventeen, he wrote a letter to a Harvard University professor pointing out an error in the Principia....

Fig. 3. Tracings of drawings of the orbits of two mutually orthogonal oscillations, published by N. Bowditch (Ref. 3). Drawings a, b, c, and d A.D. Crowell, Am. J. Phys 1981

Tools for Analyzing Nonlinear Oscillatory Rheology

- Pipkin Space Pipkin, 1972
- Bowditch-Lissajous curves W. Philippoff, Trans Soc. Rheol. 10, 1964

Dealy \& Wissbrun Melt Processing 1990; Giacomin \& coworkers

- Fourier Transform Rheology Dodge \& Kreiger, Trans Soc Rheol 1972; Willhelm et al., Macromol. Mater Eng. 2002

FT-Rheology and LAOS

The set up:

Ganeriwala \& Rotz, Polym. Eng. Sci. 27 (1987) M. Wilhelm; Macromol. Mater. Eng. 28783 (2002)

The data:

Linear Viscoelasticity of Mucin Gels

- The linear viscoelastic envelope is determined by performing an oscillatory stress sweep
- Elastic gel over a broad range of frequencies
$\xi \approx\left(k_{B} T / G^{\prime}\right)^{1 / 3} \approx 30 \mathrm{~nm}$

Ewoldt, Clasen, GHM; Soft Matter 2007

Linear Viscoelasticity of Mucin Gels

- The linear viscoelastic envelope is determined by performing an oscillatory stress sweep
- Elastic gel over a broad range of frequencies: $\xi \approx\left(k_{B} T / G^{\prime}\right)^{1 / 3} \approx 30 \mathrm{~nm}$

Physical Interpretation of LAOS Deformations

- General Fourier decomposition $\tau=\gamma_{0} \sum_{n \text { odd }} G_{n}^{\prime \prime} \cos (n \omega t)+G_{n}^{\prime} \sin (n \omega t)$

A New Approach

- Consider strain and strain rate as independent orthogonal inputs
Cho, Hyun, Ahn, Lee, J.Rheol. 49 (2005).
- Decompose output stress using symmetry arguments into 'elastic' (x) and 'viscous' (y) contributions
- Point group symmetries \& Frieze group analysis Rogers \& Vlassopoulos, J. Rheol. 54 (2010).

- Represent the unknown material response or Transfer Function in terms of Chebyshev polynomials in x and y :

$$
\tau\left(t ; \omega, \gamma_{0}\right) \equiv \tau_{\text {elastic }}(\gamma(t))+\tau_{\text {viscous }}(\dot{\gamma}(t))=\gamma_{0} \sum_{i=1}^{N} e_{i} T_{i}(x)+\gamma_{0} \omega \sum_{i=1}^{N} v_{i} T_{i}(y)
$$

R.H. Ewoldt, A.E. Hosoi, GHM, J. Rheology 52 (2008)
The Benefits of Chebyshev* polynomials

Example: Wormlike Micellar Fluid

- Measure of viscoelastic nonlinearity: v_{3}
$\tau_{v}=\gamma_{0}\left\{e_{1} T_{1}(x)+e_{3} T_{3}(x) \ldots\right\}+\left(\gamma_{0} \omega\right)\left\{v_{1} T_{1}(y)+v_{3} T_{3}(y) . ..\right\}$

Phase Plane Portrait

The material response studied in this example can also be compactly
represented as three-dimensional trajectories in space:
a $x(t)=$ strain, $y(t)=$ shear rate, $z(t)=$ stress $\}$

Phase Plane Portrait

- The material response studied in this example can also be compactly represented as three-dimensional trajectories in space:
- $\{x(t)=$ strain, $y(t)=$ shear rate, $z(t)=$ stress $\}$

Strain [-]
For a discussion on "loops" see Ewoldt \& GHM., Rheol. Acta, 2010

Using LAOS to Evaluate Constitutive Models

- Use LAOS fingerprints to evaluate nonlinear coefficients of constitutive models for complex fluids and compare with experiments

The Q-Parameter (Hyun, Wilhelm)
$\lim _{\gamma_{0} \rightarrow 0} \frac{I_{3}}{I_{1}} \equiv \lim _{\gamma_{0} \rightarrow 0} I_{3 / 1}=Q(\omega) \gamma_{0}^{2}+O\left(\gamma_{0}^{4}\right) \ldots$
Remember. $\sin x \approx x-\frac{1}{3} x^{3} \ldots \Rightarrow I_{3 / 1} \sim x^{2}$
[Loss of phase information... (also have to monitor phase angle δ_{3})

$$
\frac{I_{3}}{I_{1}}=\frac{\sqrt{e_{3}^{2}+\left(v_{3} \omega\right)^{2}}}{\sqrt{e_{1}^{2}+\left(v_{1} \omega\right)^{2}}}
$$

- Other general representations of linear and nonlinear viscoelastic response: $R^{\prime}\left(\omega, \gamma_{0}\right), R^{\prime \prime}\left(\omega, \gamma_{0}\right)$ (Rogers, JoR 56(5), 2012)

Commercial PP (linear chain structure)

Sample)	MnJ	Mwd	MWD	
PP-A	106 k	460 k	4.3	Linear
PP-D	37 k	270 k	7.3	Linear
PP-E	50 k	240 k	4.8	Linear
PP-F	57 k	230 k	4	Linear
PP-G	76 k	220 k	3.9	Linear

K. Hyun, M. Willhelm; Macromolecules 42411 (2009) 25

The Reptation Model in LAOS

Behavior of Concentrated Polystyrene Solutions in Large-Amplitude Oscillating Shear Fields

DALE S. PEARSON and WILLIE E. ROCHEFORT, Bell Laboratories, Murray Hill, New Jersey 07974
$\sigma_{x y}(t)=\gamma_{0}\left[G_{11}^{\prime}(\omega) \sin \omega t+G_{11}^{\prime} \cos \omega t\right]+\gamma\left[i\left[G_{31}^{\prime}(\omega)\right.\right.$ sin $\omega t+G_{31}^{\prime} \cos \omega t$ $\left.+G_{30}^{\prime}(\omega) \sin 3 \omega t+G_{33}^{*} \cos 3 \omega t \mid+O(\gamma)^{5}\right)$
where

$$
\begin{align*}
& G_{31}=-\frac{3}{14} \frac{\rho k T}{N_{\epsilon}} \sum_{p, \text { osd }} \frac{8}{\pi^{2} p^{2}}\left(\frac{2 \omega^{2} r \frac{3}{2}}{p^{4}+\omega^{2} r \frac{2}{d}}-\frac{2 \omega^{2} r \frac{3}{p^{4}}+4 \omega^{2} r^{3}}{)}\right) \tag{15a}\\
& G_{\mathrm{31}}^{*}=-\frac{3}{14} \frac{\rho k T}{N_{e}} \sum_{p, \mathrm{~cd}_{\mathrm{d}}} \frac{8}{\pi^{2}}\left(\frac{\omega \tau_{\mathrm{d}}}{p^{4}+\omega^{2} \tau_{\mathrm{g}}^{2}}-\frac{\omega \tau_{\mathrm{d}}}{p^{4}+4 \omega^{2} r_{\mathrm{d}}^{2}}\right)
\end{align*}
$$

$$
\begin{align*}
& G_{33}^{j}=\frac{3}{28} \frac{\rho k T}{N_{c}} \sum_{p \text { pdd }} \frac{8}{\pi^{2}}\left(\frac{\omega \tau_{d}}{p^{4}+\omega^{2} r_{d}^{2}}-\frac{2 \omega \tau_{d}}{p^{4}+4 \omega^{2} r^{2}}+\frac{\omega \tau_{d}}{p^{4}+9 \omega^{2} r^{2}}\right) \tag{16a}
\end{align*}
$$

(16b)
All the sums in these equations can be evaluated, leaving analytical expressions for G_{31} and G_{33} (see Appendix A).

Journal of Polymer Science: Polymer Physics Edition, Vol. 20, 83-98 (198: © 1982 John Wiley \& Sons, Inc.

CCC 0098-127

The Reptation Model in LAOS
 Iliī

- Evaluating the Q parameter for the DE model gives:
$\lim _{\omega \rightarrow 0} Q_{0}(\omega)=\begin{gathered}\frac{1}{3}\left(\lambda_{d} \omega\right)^{2} \\ \text { Reptation time }\end{gathered}$

	M_{b}	M_{a}
76 K	75.9	-
100 K	100	-
220 K	214	-
330 K	330	-
C632	275	$\mathbf{2 5 . 7}$
C622	275	11.7
C642	275	$\mathbf{4 7}$

Effect of Chain-Branching on Nonlinearity in LAOS

C Comb PS with entangled branches displays two relaxation processes, one corresponding to the branches' disentanglements and one due to the backbone chain.
K. Hyun, M. Willhelm; Macromolecules 42411 (2009)
K. Hyun et al. Prog Polym Phys. (2011)

Fluids with Yield Stresses/Critical Stresses

How "yield-stressy" is a given fluid?

Most common rheometric tests

- Steady flow: steady state nonlinear viscous properties
$\eta(\dot{\gamma})$
- Thixotropic loops: time-dependent viscous properties $\eta\left(\dot{\gamma}_{\text {up }}\right), \eta\left(\dot{\gamma}_{\text {down }}\right)$
- Linear viscoelasticity: $G^{\prime}(\omega), G^{\prime \prime}(\omega)$

A more-complete characterization?

- Large amplitude oscillatory shear (LAOS) systematically spans the timescale and magnitudes of deformation
- Probes time-dependent nonlinear viscous and elastic properties
- Connects steady flow viscosity, linear viscoelastic moduli, and nonlinear viscoelastic properties

Carbopol Gel
W. Hartt, P\&G

Oil-based Drilling Mud (Invert Emulsion) J. Maxey, Halliburton

Stress-Controlled Experiments: LAOStress

- For many foods and consumer products it is more common to perform stresscontrolled experiments.
- LAOStress is a great experimental methodology to probe differences between yielded/unyielded regime as well as limitations of constitutive models
- Decompose strain into an elastic component and a viscoplastic component
- Describe in terms of models that naturally capture 'sequence of physical processes' for elastic strain, yielding, viscoplastic flow

Normalized Input

sinusoidal stress:

$$
x(t)=\frac{\tau(t)}{\tau_{0}}=\cos \omega t
$$

Fourier series representation of strain:
$\gamma(t)=\tau_{0} \sum_{n \text { odd }} J_{n}^{\prime} \cos n \omega t+J_{n}^{\prime \prime} \sin n \omega t$
Chebyshev representation:
$\gamma_{e}(t)=\tau_{0} \sum_{n \text { odd }} J_{n}^{\prime} \cos n \omega t=\tau_{0} \sum_{n \text { odd complianc }} c_{n} T_{n}(x)$
$\dot{\gamma}_{p}(t)=-\tau_{0} \sum_{n \text { odd }} n \omega J_{n}^{\prime \prime} \cos n \omega t=\tau_{0} \sum_{n \text { odd }} \phi_{n} T_{n}(x)$

Lauger \& Stettin, Rheol. Acta 2010
S. Rogers \& coworkers, J. Rheol. 2011, 12

The Basic Anatomy of a Lissajous Figure in LAOStress

- Input is an oscillating stress field $\tau(t ; \omega)=\tau_{0} \cos \omega t$ => output is the strain
- Shear strain and shear rate are no longer orthogonal variables $\gamma\left(t ; \omega, \tau_{0}\right)$
- How do I traverse this trajectory in 3-dimensional space?
- How do I describe it quantitatively?

Ewoldt, Winter, Maxey, GHM, Rheol. Acta. 49(2), 2010

- For yielding materials, elastic LAOStress measures are typically more effective at quantifying nonlinear elastic behavior
- Typical yielding material retain some (measurable) elasticity even under flow

LAOStress vs. LAOStrain

- In the linear regime the two techniques yield the same information
- Linear viscoelastic moduli and compliances are interchangeable $G^{*}(\omega) J^{*}(\omega)=1$

J. D. Ferry, Viscoelastic Properties of Polymers (1980)
- Energy dissipated in cycle (per unit volume) is always represented by area enclosed by the corresponding Bowditch-Lissajous curve:

$$
E_{d}=\oint \tau(t) \dot{\gamma}(t) d t
$$

LAOStress vs. LAOStrain

- In the linear regime the two techniques yield the same information
\square Linear viscoelastic moduli and compliances are interchangeable $G^{*}(\omega) J^{*}(\omega)=1$this is NOT true in the nonlinear regime!

- Energy dissipated in cycle (per unit volume) is always represented by area enclosed by the corresponding Bowditch-Lissajous curve:

$$
E_{d}=\oint \tau(t) \dot{\gamma}(t) d t
$$

LAOStress: Yielding in Three-Dimensions

- Visualize the yielding surface as a function of stress amplitude and frequency
- Remember shear strain and shear rate are no longer orthogonal!

LAOStress: Yielding Signature in a Lissajous Figure

Iliii

- Visualize the yielding surface as a function of stress amplitude and frequency
- Also: remember shear strain and shear rate are no longer orthogonal!

What'S Going On Inside?

Pipkin Diagram for LAOS of a Shear-Banding Material

- Constitutive Modeling:
- Rolie-Poly Model for monodisperse entangled polymer melts; Adams, Fielding, Olmsted
- Two-species VCM model, (\& Larson PEC model) for micellar networks; Zhou, Cook, GHM

Shear Banding in Micellar Fluids - Nonlinear Regime |l||il

- Very pronounced banding and strong nonlinearities in stress signal =>No slip condition preserved at the plate boundary by a transparent optical film
- Interesting dynamics can be observed in shear band structure \& position

CSI: Lisbon

* CSI = Controlled Stress Investigation

Summary of Rheological Fingerprinting

- A physical interpretation and language for LAOS experiments in complex fluids
- Framework of elastic/viscous stress decomposition plus Chebyshev coefficents
Time Series

$$
\tau\left(t ; \omega, \gamma_{0}\right) \equiv \tau_{\text {elastic }}(\gamma(t))+\tau_{\text {viscous }}(\dot{\gamma}(t))=\gamma_{0} \sum_{i=1}^{N} e_{i} T_{i}(x)+\gamma_{0} \omega \sum_{i=1}^{N} v_{i} T_{i}(y)
$$

Bowditch-
Lissajous

$$
\begin{array}{ll}
G_{M}^{\prime}=\left.\frac{d \tau}{d \gamma}\right|_{\gamma=0}=e_{1}-3 e_{3}+5 e_{5}+\ldots & S=\frac{G_{L}^{\prime}-G_{M}^{\prime}}{G_{L}^{\prime}} \\
G_{L}^{\prime}=\left.\frac{\tau}{\gamma}\right|_{\gamma=\gamma_{0}}=e_{1}+e_{3}+e_{5}+\ldots & T=\frac{\eta_{L}^{\prime}-\eta_{M}^{\prime}}{\eta_{L}^{\prime}}
\end{array}
$$

- Also applıcable to thıxotropic and 'yield stress' responses: elasto-visco-plastic materials Ewoldt, et al. Rheol. Acta, 49(2), 2010; Dimitriou, Ewoldt, GHM, J. Rheol. In prep

Acknowledgments
• Thank You ICR!
Students
Dr. Randy Ewoldt
Dr. Trevor Ng
Chris Dimitriou
Thomas Ober
Laura Casanellas
Everyone in the NNF Group at HML
Collaborators
Carlos Barron-Lopez (Exxon)
Christian Clasen (Leuven)
Kwang Cho (Kyungpook)
Pamela Cook (Delaware)
Marc-Antonie Fardin (Paris-Diderot)
Kate Gurnon (Delaware)
Anette ('Peko') Hosoi (MIT)
Kyu Hyun (Pusan)
Simon Rogers (Jülich)
Manfred Wilhelm (KIT)
Norm Wagner (U. Delaware)
Lin Zhou (CUNY)
Additional discussions
R. Byron Bird (Wisconsin)
Jeff Giacomin (Wisconsin)
Chris Macosko (Minnesota)
John Dealy (McGill)
Dimitris Vlassopoulos (FORTH)
Sponsors
Chevron Energy Technology Corp. Chevron
Kraft Foods
Procter \& Gamble
Schlumberger Foundation
National Science Foundation

MITlaos Matlab program available for use by anyone....contact mitlaos@mit.edu

Current MITlaos Users

Industry \& Government

Abbott Nutrition
ASM Technology Hong Kong Ltd.
Bridgestone Corporation
Cabot Corporation
Caravan Ingredie
CG Global
Dow
Dupont
DURECT Corporation
Exxon-Mobil
Firmenich, Switzerland
GE India Technology Center
Halliburton
Ineos Olefins \& Polymers Europe
International Specialty Products (ISP)
INVISTA
INVISTA
Kohnson Matthey Emission Control Technologies The Lubriz \& D (Munich)
Specialties
Magna Closure
Magna Closures
Malvern Instrumen
Malvern Instruments
Momentive Performa
Nestlé Research Center (Switzels, Inc
NIST - National Institer (Switzerland)
(polymers division)
Procter \& Gamble
SABIC Innovative
SABIC Innovative Plastics
TA Instruments
Timken
Unilever (USA)
Unilever (Netherlands)

For more info: Email mitlaos@mit.edu

Academic Groups
Ben Gurion University of the Negev, Israel
Benjamin Levich Institute
Brown University
Catholic University of Rio de Janeiro (PUC-Rio)
Centro Universitário Fundação Santo André (São Paulo - Brazil)
China University of Petroleum, Beijing Campus
Chinese Academy of Sciences - Institute of Chemistry
Chinese Academy of Sciences - Institute of Chemistry
Chinese Academy of Sciences - Institute of Theoretical Physics
Colorado School of Mines
Dankook University (Seoul, Korea)
Duke University
Duke University
Erasmus Medical
FOM Institute AMOLF (Netherlands)
Harvard University
Hunan University of Technology
ICIPC (Institute for plastic and rubber) in Colombia.
IESL-FORTH (Greece)
Imperial College Londo
Institute for Polymer Materials POLYMAT in the Basque Country (Spain)
Instituto Politecnico Nacional in México City
Iran University of Science and Technology
KarIsruhe Institute of Technology, Germany
Katholieke Universiteit Leuven, Belgium
M.I.T.
M.IT.
Masser

Massey University New Zealand
Mississippi State University
National University of Science \& Technology - Pakistan
National University of Singapore
Neuroscience Research Australia
North Carolina State University
Princeton
Seoul National University
Shanghai liao Tong Univers
South China University of Technology ($\times 2$, one is Lab for Mirco-molding and
Polymer Rheolog)
Polymer Rheology)
Stevens Institute of Technology
Swansea University
Swansea University
Technische Universität Berlin
....and 62 more...

