MIT Joint Program on the Science and Policy of Global Change

Global Economic Effects of Changes in Crops, Pasture, and Forests due to Changing Climate, Carbon Dioxide, and Ozone

John Reilly, Sergey Paltsev, Benjamin Felzer, Xiaodong Wang, David Kicklighter, John Melillo, Ronald Prinn, Marcus Sarofim, Andrei Sokolov and Chien Wang

May 2007

The MIT Joint Program on the Science and Policy of Global Change is an organization for research, independent policy analysis, and public education in global environmental change. It seeks to provide leadership in understanding scientific, economic, and ecological aspects of this difficult issue, and combining them into policy assessments that serve the needs of ongoing national and international discussions. To this end, the Program brings together an interdisciplinary group from two established research centers at MIT: the Center for Global Change Science (CGCS) and the Center for Energy and Environmental Policy Research (CEEPR). These two centers bridge many key areas of the needed intellectual work. Additional essential areas are covered by other MIT departments, by collaboration with the Ecosystems Center of the Marine Biology Laboratory (MBL) at Woods Hole, and by short- and long-term visitors to the Program. The Program involves sponsorship and active participation by industry, government, and non-profit organizations.

To inform processes of policy development and implementation, climate change research needs to focus on improving the prediction of those variables that are most relevant to economic, social, and environmental effects. In turn, the greenhouse gas and atmospheric aerosol assumptions underlying climate analysis need to be related to the economic, technological, and political forces that drive emissions, and to the results of international agreements and mitigation. Further, assessments of possible societal and ecosystem impacts, and analysis of mitigation strategies, need to be based on realistic evaluation of the uncertainties of climate science.

This report is one of a series intended to communicate research results and improve public understanding of climate issues, thereby contributing to informed debate about the climate issue, the uncertainties, and the economic and social implications of policy alternatives. Titles in the Report Series to date are listed on the inside back cover.

Henry D. Jacoby and Ronald G. Prinn, *Program Co-Directors*

For more information, please contact the Joint Program Office

Postal Address: Joint Program on the Science and Policy of Global Change

77 Massachusetts Avenue

MIT E40-428

Cambridge MA 02139-4307 (USA)

Location: One Amherst Street, Cambridge

Building E40, Room 428

Massachusetts Institute of Technology

Access: Phone: (617) 253-7492

Fax: (617) 253-9845

E-mail: globalchange@mit.edu

Web site: http://mit.edu/globalchange/

Global Economic Effects of Changes in Crops, Pasture, and Forests due to Changing Climate, Carbon Dioxide, and Ozone

John Reilly^{†,*}, Sergey Paltsev[†], Benjamin Felzer[‡], Xiaodong Wang[†], David Kicklighter[‡], John Melillo[‡], Ronald Prinn[†], Marcus Sarofim[†], Andrei Sokolov[†] and Chien Wang[†]

Abstract

Multiple environmental changes will have consequences for global vegetation. To the extent that crop yields and pasture and forest productivity are affected there can be important economic consequences. We examine the combined effects of changes in climate, increases in carbon dioxide, and changes in tropospheric ozone on crop, pasture, and forest lands and the consequences for the global and regional economies. We examine scenarios where there is limited or little effort to control these substances, and policy scenarios that limit emissions of CO_2 and ozone precursors. We find the effects of climate and CO_2 to be generally positive, and the effects of ozone to be very detrimental. Unless ozone is strongly controlled damage could offset CO_2 and climate benefits. We find that resource allocation among sectors in the economy, and trade among countries, can strongly affect the estimate of economic effect in a country.

Contents

1. Introduction	1
2. Modeling Global Agricultural Economic Response to Environmental Change	2
3. Model Descriptions	
4. Scenarios.	
5. Agriculture, Pasture and Forestry Results	11
6. Caveats and Comparison with Previous Work	
7. Conclusions	18
8. References	19

1. INTRODUCTION

Multiple environmental changes will have consequences for global vegetation. To the extent that crop yields and pasture and forest productivity are affected there can be important economic consequences. We examine the combined effects of changes in climate, increases in carbon dioxide, and changes in tropospheric ozone on crop, pasture, and forestland productivity and the consequences for the global and regional economies. We consider scenarios where there is limited or little effort to control CO₂ and ozone precursors, and policy scenarios that limit emissions of these substances. Much analysis and research on the economic impacts of climate change and/or higher ambient levels of CO₂ on agriculture has been conducted. Our study is unique in several ways, including the focus on multiple environmental changes, use of transient climate scenarios, comprehensive assessment of crops, pasture and forests, and evaluation of effects in both a reference and in pollution mitigation scenarios.

We apply the MIT Integrated Global Systems Model (IGSM) (Prinn *et al.*, 1999), updated here to focus on the vegetation and economic effects of climate and ozone. In particular, the Terrestrial Ecosystem Model (TEM) component is a biogeochemical model that has been updated to include vegetation response to ozone as described in Felzer *et al.* (2004). We have also altered the Emissions Prediction and Policy Analysis (EPPA) model (Paltsev *et al.*, 2005), a

[†] Joint Program on Science and Policy of Global Change, Massachusetts Institute of Technology.

^{*} Corresponding author email address: jreilly@mit.edu.

[‡] Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA.

computable general equilibrium model of the world economy, to better represent crops, livestock, and forest sectors. In Section 2 we review key previous agricultural impact studies, identifying how our approach advances methods in this field of research. Section 3 reviews briefly the model components used in the study. Section 4 describes the reference and pollution mitigation scenarios. Section 5 describes the results. Section 6 offers some caveats and Section 7 summarizes key results.

2. MODELING GLOBAL AGRICULTURAL ECONOMIC RESPONSE TO ENVIRONMENTAL CHANGE

Key previous studies of climate and CO₂ effects, focusing on those that are global or pioneer new methods, include Parry *et al.* (1988a, b, 1999, 2004); Adams *et al.* (1990); Tobey *et al.* (1992); Reilly and Hohman (1993); Rosenberg (1993); Rosenzweig and Parry (1994), Mendelsohn *et al.* (1994), Darwin *et al.* (1996), Reilly *et al.* (2003), Izaurralde *et al.* (2003), and Alig *et al.* (2003). There have been no global estimates of potential economic impact of ozone damage to crops. The most comprehensive economic study focused on current estimates of ozone damage was for the United States (Adams *et al.*, 1986). More recent work has examined crop production effects in the eastern United States (Westenbarger and Frisvold, 1994, 1995) and Asia (Wang and Mauzerall, 2004) with very limited evaluation of economic effects. There has been much experimental work on both ozone and CO₂ effects and a large number of crop site studies, and farm or regional level studies for climate and CO₂, as reviewed in Gitay *et al.* (2001), and Reilly and Schimmelpfennig (1999). The methods pioneered in the literature cited above have also been applied in other studies, and using different climate scenarios. A recent review of these major agricultural assessment exercises is provided in Reilly (2002) and Gitay *et al.* (2001).

This study is unique in several ways. (1) We include the combined effects of climate, CO_2 , and tropospheric ozone whereas previous work has mostly examined climate and CO₂ or climate effects only. (2) The climate and yield effects are from fully transient climate scenarios where gradual increases in greenhouse gases (GHGs) gradually force the climate. Much previous work is based on equilibrium-doubled CO₂ climate scenarios, and so it is unclear in what year such a climate would be observed. Some previous work has simulated economic effects through time but have only estimated yield effects for a circa 2030, 2070, or 2100 climate scenario, interpolating yield effects for earlier years. Most previous work has used static economic models examining the impacts of climate change as if it occurred in the agricultural economy as it exists today. (3) The scenarios of climate, CO₂ and ozone concentrations are from consistent economic scenarios; most previous work is based on doubled CO₂ equilibrium climate scenarios, requiring assumptions about when such a climate would be realized as well as the extent to which the forcing was all CO₂ or partly due to other greenhouse gases. (4) We consider effects in no-policy and in policy scenarios thus making it possible to assess the "benefits" of the prescribed policy; previous work has simply examined different climate scenarios. (5) The terrestrial biogeochemical model we use simulates the relatively immediate response of vegetation to climate and atmospheric change as well as the longer-term soil dynamics and its impact on productivity. Previous work takes soil characteristics as unchanging.

There are important advances represented in previous work, and our approach follows closely the state-of-the-art in this regard. (1) We simulate the economic effects using a global

computable general equilibrium (CGE) model that is recursive dynamic thus capturing the interactions among agriculture, forestry, and livestock sectors and with the rest of the economy as well as international trade effects as economies develop over time. Rosenzweig and Parry (1994) and Parry et al. (1999, 2004) use a forward-looking dynamic CGE model capturing such effects as well. Darwin et al. (1996) use a static CGE model, and so capture interactions with the rest of the economy, but an economy of *circa* 1995. Other work uses partial equilibrium market models and so fails to capture interactions with the rest of the economy, or econometric approaches that do not consider market price effects at all. Much work considers a single country or smaller region and is thus unable to correctly account for international trade and changes in international prices. (2) We assess effects on a 0.5° x 0.5° latitude-longitude grid level, of which there are about 62,000 globally, allowing for a fairly complete assessment of existing spatial variation. Darwin et al. (1996) use 0.5° x 0.5° latitude-longitude grid but with a static CGE model, and without a process-model representation of effects on vegetation. Izauralde et al. (2003) approach this coverage by modeling 204 separate hydrologic unit areas, but their application is for the U.S. only. Mendelsohn et al. (1994) use county-level data for the U.S. (of which there are on the order of 3,000 counties) to estimate a statistical model of climate impacts on vegetation but there are no market feedbacks and no assessment of trade effects. Most previous work has used crop models applied at relatively sparsely located sites—as many as 40-50 for the United States but sometimes just a few to represent, for example, the entire African continent and thus one can question whether these relatively few sites are representative of spatially varying conditions. (3) We evaluate the combined effects on crops, pasture, and forests, activities that all compete for land use. Most studies consider only crops, and often a limited set of crops. Reilly et al. (2003) considered impacts on crops and pasture and Alig et al. (2003) included crops, pasture and forests but both studies were limited to the U.S.

To achieve these methodological advances we have had to simplify other aspects of the models so that they remained computationally feasible. The biogeochemical model runs on a monthly time step and simulates a generic crop thus making simulation for the large number of grid cells feasible. More detailed crop models run on an hourly or quarter-day time step with specific model parameters for each crop. We gain by representing the spatial diversity of cropping more completely, but we cannot represent the details of the phenological development of different crops and response to diurnal weather variability. We represent crops, livestock, and forestry sectors in a relatively aggregate fashion, assuming that the yield effects simulated by TEM are reflected as productivity impacts to land in the economic model. We gain by representing all three of these large land using sectors in a single model, and by treating the interaction of these sectors with other sectors of the economy but we are not able to represent individual crop and livestock sectors, or the details of optimal forest rotation, harvesting and regrowth. The climate model is a zonal land-ocean resolving model, and we therefore must use a fixed longitudinal pattern of climate that is adjusted by changes in the zonal average simulated by the two-dimensional (2D) model. We also use a fixed spatial pattern of ozone driven by modeled zonal mean ozone levels as projected by the 2D model. This makes simulation of multiple climate scenarios numerically feasible, but does not adequately capture finer details of the changing spatial pattern of climate, or possible changes in transport of ozone as climate changes. We return to these issues in the final section where we discuss caveats and implications for future research. Climate impact research remains subject to many caveats because the accurate prediction of fine scale changes in weather patterns, even in the most highly resolved general circulation models, remains elusive.

3. MODEL DESCRIPTIONS

We briefly describe the MIT IGSM, and then focus attention on the TEM and EPPA components as modified for this work. The MIT IGSM includes sub-models of the relevant aspects of the natural earth system coupled to a model of the human component as it interacts with climate processes. A description of the system components used in Version 1, along with a sensitivity test of key aspects of its behavior, is reported in Prinn *et al.* (1999).

The major model components of the IGSM are:

- A model of human activity and emissions (the Emission Prediction and Policy Analysis, or EPPA model),
- An atmospheric dynamics, physics and chemistry model, which includes a sub-model of urban chemistry,
- An ocean model with carbon cycle and sea-ice sub-models,
- A Terrestrial Ecosystem Model (TEM) that represents terrestrial ecosystem processes and a Natural Emissions Model (NEM) that represents methane and N₂O cycles.

For this work, we use Version 1 of the IGSM because we are interested in retaining the 0.5° x 0.5° resolution of the original TEM. The 0.5° x 0.5° TEM is forced off-line by the IGSM climate scenario. In addition, the version of EPPA model applied here—EPPA-AGRI—is also run off-line, forced by changes in crop, pasture and forest productivity as determined by TEM. The economic changes and ozone damages that result imply changes in emissions of greenhouse gases but we do not feed these back into the climate system. Thus, we are using the output of the 2-Dimensional Land-Ocean Resolving General Circulation Model (GCM) of the MIT IGSM as an exogenous scenario to drive the impact models. The MIT IGSM is a flexible model in the sense that parameters controlling climate sensitivity, response to aerosols, and ocean heat uptake can be set so the model replicates results of other GCMs. The standard settings for the model, and those used here, are the median values from a climate detection and attribution study, with expert priors, of Forest *et al.* (2002) as applied in Webster *et al.* (2003).

TEM (Melillo *et al.*, 1993; Tian *et al.*, 1999, 2003; Felzer *et al.*, 2004) is a process based biogeochemistry model that simulates the cycling of carbon, nitrogen, and water among vegetation, soils, and the atmosphere. Version 4.3 (TEM 4.3) includes modeling of the pathways by which ozone influences the productivity and carbon storage of terrestrial ecosystems (Felzer *et al.*, 2004). The effects of ozone on productivity were incorporated by modifying the calculation of Gross Primary Production (GPP) in TEM (Felzer *et al.*, 2004). The effect of ozone is to linearly reduce GPP above a threshold ozone level according to the Reich (1987) and

-

¹ Version 2 of the model includes an improved land system component (more closely linking the TEM, NEM, and Community Land Model that represents energy and water balance of the land surface with the atmosphere), but is resolved at zonal bands of 4° matching the resolution of the atmospheric model, inadequate for capturing the spatial variation in ozone concentrations. Because of flexibility of the model, the overall behavior of Version 1 and Version 2 of the IGSM is very close when key climate parameters are set to identical values as shown in Sokolov *et al.* (2005).

Ollinger *et al.* (1997) models. Separate coefficients of linearity are calculated for hardwoods, conifers, and crops. Although different species of trees and types of crops respond differently to ozone, we have made this simplifying assumption based on the Reich (1987) model.

To estimate the net assimilation of CO_2 into plant tissues (*i.e.* plant growth), we calculate net primary production (NPP) as follows:

$$NPP = GPP - R_A \tag{1}$$

where R_A is autotrophic respiration. To estimate carbon sequestration by the ecosystem, we calculate net carbon exchange (NCE) as follows:

$$NCE = NPP - R_H - Ec - Ep$$
 (2)

where $R_{\rm H}$ is heterotrophic respiration, $E_{\rm C}$ is the carbon emission during the conversion of natural ecosystems to agriculture, and $E_{\rm P}$ is the sum of carbon emission from the decomposition of agricultural products (McGuire *et al.*, 2001). For natural vegetation, $E_{\rm C}$ and $E_{\rm P}$ are equal to 0, so NCE is equal to net ecosystem production (NEP). As indicated by Equations (1) and (2), the reduction of GPP by ozone will also reduce both NPP and NCE.

The ozone effect within TEM 4.3 is based on the AOT40 index. This index is a measure of the accumulated hourly ozone levels above a threshold of 40 ppb. Since hourly datasets of surface ozone do not exist at the spatial extent and resolution of TEM, the Model for Atmospheric Transport and Chemistry (MATCH) (Lawrence *et al.*, 1999; Mahowald *et al.*, 1997; Rasch *et al.*, 1997; von Kuhlmann *et al.*, 2003) has been used, run at 2.8° x 2.8° or T42 horizontal resolution, to construct global AOT40 maps for each hour utilizing the zonal and 3-hour mean surface ozone concentration provided by the IGSM. MATCH is a three-dimensional (3D) global chemical transport model driven by reanalysis meteorological fields. The average monthly boundary layer MATCH ozone values for 1998 are scaled by the ratio of the zonal average ozone from the IGSM (which are 3-hourly values that have been linearly interpolated to hourly values) to the zonal ozone from the monthly MATCH to maintain the zonal ozone values from the IGSM. Greater detail on these procedures is provided in Felzer *et al.* (2005).

The Emissions Prediction and Policy Analysis (EPPA) model is a computable general equilibrium model of the world economy that has been extensively used to examine climate and environmental issues (**Table 1**). The main advantage of CGE models is their ability to capture the influence of a sector-specific (*e.g.*, energy, fiscal, or agricultural) policy or forces on other industry sectors, consumption, and on international trade. A traditional limitation of CGE models has been linkage of economic variables to physical variables such as land use, emissions, population, and energy use. The EPPA model overcomes this limitation by developing extensive supplementary tables on physical data as described in Paltsev *et al.* (2005) and is thus able to simulate and project growth and change in the economy, its implications for pollutant emissions, demands for natural resources, and feedback effects of environmental change on the economy. We designate the version of EPPA used here as EPPA-AGRI because of the further disaggregation of the agricultural sector as described in Wang (2005).

For this work, we examine the economic impacts of changes in climate, CO₂, and ozone as they affect crops, pasture, and forestry using the combined modeling system. Temporal and spatial scales, as discussed above, are resolved at different levels requiring interpolation or aggregation as data are passed from one modeling component to another. A complete description

Table 1. The Emissions Prediction and Policy Analysis (EPPA) model is a recursive-dynamic multiregional CGE model of the world economy (Babiker *et al.*, 2001, Paltsev *et al.*, 2005), which is built on the economic and energy data from the GTAP dataset (Dimaranan and McDougall, 2002) and additional data for the greenhouse gas (CO₂, CH₄, N₂O, HFCs, PFCs and SF₆) and urban gas emissions (CO, VOC, NO_x, SO₂, BC, OC, NH₄). It has been used extensively for the study of climate policy (Jacoby *et al.*, 1997; Babiker, *et al.*, 2002, 2004; Paltsev *et al.*, 2003; Reilly *et al.*, 2002; McFarland *et al.*, 2004), climate interactions (Reilly *et al.*, 1999; Felzer *et al.*, 2005), and to study uncertainty in emissions and climate projections for climate models Webster *et al.*, 2002, 2003). It has been modified for this analysis to include greater disaggregation of the food and agriculture sectors, as shown in italics.

Country or Region	ons, Sectors, and Factors in the EPPA-AG Sectors	Factors
Developed	Non-Energy	Economy-wide
United States (USA)	Services	Capital
Canada (CAN)	Energy Intensive products	Labor
Japan (JPN)	Other Industries products	
European Union+a (EUR)	Transportation	Energy
Australia/New Zealand (ANZ)	Food Processing	Crude Oil Resources
Former Soviet Union ^b (FSU)		Shale Oil Resources
Eastern Europe ^c (EET)	Energy	Coal Resources
	Coal	Natural Gas Resources
Developing	Crude Oil	Nuclear Resources
India (IND)	Shale Oil	Hydro Resources
China (CHN)	Refined Oil Products	Wind/Solar Resources
Higher Income East Asiad (ASI)	Natural Gas, Coal Gasification	
Indonesia (IDZ)	Electric: Fossil, Hydro, Nuclear,	Land Use
Rest of World ^e (ROW)	Solar & Wind, Biomass, Natural Gas	Crop Land
Mexico (MEX)	Combined Cycle, Integrated Coal	Pasture/Grazing Land
Africa (AFR)	Gasification with Sequestration	Forest land
Central and South America (LAM)		
Middle East (MES)	Agriculture	
	Crops	
	Livestock	
	Forestry	

^aThe European Union (EU-15) plus countries of the European Free Trade Area (Norway, Switzerland, Iceland).

of the model is provided in Prinn *et al.* (1999). Here we briefly describe how key linkages are handled. The TEM model operates at a 0.5° x 0.5° latitude by longitude spatial and monthly time scale. It includes the current monthly climatology resolved at that spatial scale. Ozone levels were resolved at the resolution of the MATCH model (T-42, approximately 2.8° x 2.8°) and interpolated to the TEM resolution as described in Felzer *et al.* (2005).

The 2D Land-Ocean resolving General Circulation Model is resolved at 20-minute time steps and for 24 latitudinal bands. CO₂ concentrations are assumed to be well mixed globally. The changes in temperature and precipitation as predicted by the climate model for land in each latitude zone were used to scale the 0.5° x 0.5° climatology of TEM (see Xiao *et al.*, 1997).

^bRussia, Ukraine, Latvia, Lithuania, Estonia, Azerbaijan, Armenia, Belarus, Georgia, Kyrgyzstan, Kazakhstan, Moldova, Tajikistan, Turkmenistan, and Uzbekistan.

^c Hungary, Poland, Bulgaria, Czech Republic, Romania, Slovakia, Slovenia.

^d South Korea, Malaysia, Philippines, Singapore, Taiwan, Thailand

^e All countries not included elsewhere: Turkey, and mostly Asian countries.

The EPPA CGE model is resolved at 5-year time steps and for the 17-geopolitical regions shown in Table 1. Projected emissions of greenhouse gases and other pollutants from EPPA drive the atmosphere ocean model. Emissions are distributed to the zonal resolution of the model and resolved for urban (high pollution) and non-urban (background pollution level) conditions.

The growth of crops, pasture, and forests is simulated on a monthly basis at 0.5° x 0.5° including spatial variation in soils, current climatology, and ozone levels, although simulated changes are only resolved at the latitudinal band level of the climate model. This follows a widely used methodology in impact assessment where simulated changes from a more coarsely resolved climate model are combined with actual weather/climate data that is more finely resolved. Retaining the current climatology at the spatial scale of the more detailed impact model retains the spatial variation in weather/climate that *currently exists*, but cannot capture *changes* in spatial variation that are finer than the climate model. To simulate the economic effects of these changes through the EPPA CGE model the yield and net primary productivity effects estimated by TEM are related to each land-use type (crops, pasture, forest) based on the TEM vegetation types (**Table 2**). These results are then aggregated from the 0.5° x 0.5° level to the EPPA geopolitical regions. The productivity changes driving the EPPA model are thus an average for each region that is based on spatial variation simulated at 0.5° x 0.5° .

4. SCENARIOS

We consider the following scenarios.

High Pollution (POLF): There are no efforts to control emissions of greenhouse gases (GHGs). Emissions coefficients per unit of combustion for other pollutants decline in different regions as incomes increase based on cross-section estimates of the relationship between per capita income and these coefficients in the base year as estimated in Mayer *et al.* (2000). The decline is estimated separately for each pollutant, and for different combustion sources including large point source, small sources, and for households. In principle, this would tend to create an environmental Kuznets' curve relationship, but the exhibited decline in emissions per unit of fuel combustion is insufficient to offset increases in use of fuels, and so pollution levels rise substantially.

Climate and GHGs only (POLFCTL): The same climate and pollution scenario as the High Pollution case but with the ozone damage mechanism in TEM turned off so that we can observe the climate and CO₂ effects alone without the effect of ozone damage.

Capped pollution (POLCAPF): Conventional pollutants (CO, VOC, NO_x, SO₂, NH₃, black carbon, and organic carbon) are capped at 2005 levels, but GHG emissions remain uncontrolled. The major effect of capping these pollutants is to reduce ozone levels because many of these are important ozone precursors and thus ozone damage to vegetation is reduced. The climate effects of reducing these pollutants are small because of the offsetting effects from different pollutants (Prinn *et al.*, 2006). Sulfates are cooling substances so reducing them tends to increase the temperature but ozone is a warming substance and so reducing ozone precursors leads to less warming.

GHGs capped (GSTABF): Greenhouse gases are controlled along a path that starts with the Kyoto Protocol, deepening the cuts in developed countries and expanding to include developing countries on a pathway that keeps CO₂ concentrations below 550 ppm by 2100 and with continued emissions reduction that could be consistent with stabilization of concentrations at

Table 2. TEM Vegetation Types and Land Use Classification.

TEMVEG	Description of Vegetation Type	Land Use Classification
1	lce	
2	Alpine Tundra and Polar Desert	
3	Moist and Wet Tundra	
4	Boreal Forest	Forestry
5	Forested Boreal Wetlands	Forestry
6	Boreal Woodlands	Forestry
7	Non-forested Boreal Wetlands	
8	Mixed Temperate Forests	Forestry
9	Temperate Coniferous Forests	Forestry
10	Temperate Deciduous Forests	Forestry
11	Temperate Forested Wetlands	Forestry
12	Tall Grasslands	Pasture
13	Short Grasslands	Pasture
14	Tropical Savanna	Pasture
15	Arid Shrublands	Pasture
16	Tropical Evergreen Forests	Forestry
17	Tropical Forested Wetlands	Forestry
18	Tropical Deciduous Forests	Forestry
19	Xeromorphic Forests and Woodlands	Pasture
20	Tropical Forested Floodplains	Forestry
21	Deserts	
22	Tropical Non-forested Wetlands	
23	Tropical Non-forested Floodplains	
24	Temperate Non-forested Wetlands	
25	Temperate Forested Floodplains	Forestry
26	Temperate Non-forested Floodplains	
27	Wet Savannas	
28	Salt Marsh	
29	Mangroves	
30	Tidal Freshwater Marshes	
31	Temperate Savannas	Pasture
32	Cultivation	Cropland
33	Temperate Broadleaved Evergreen	Forestry
34	Reserved	
35	Mediterranean Shrublands	Pasture

Note: Vegetation changes for ice, tundra, desert, and wetlands are excluded from any of the uses as indicated by blank space in the use column.

550 ppm. This scenario is described in Reilly *et al.* (1999). Because combustion of fossil fuels is affected, this scenario also leads to significant reduction from reference of other pollutants including ozone precursors.

GHGs capped-no ozone (GSTABFCTL): The same climate and GHG levels as in the *GHGs capped* scenario but with the ozone damage mechanism in the TEM model again turned off so that we can observe the climate and CO₂ effects alone without the effect of ozone damage.

GHGs and pollution capped (GSTABCAPF): GHGs controlled as in the *GHGs capped* scenario and conventional pollutants capped as in the *Capped pollution* scenario.

For expositional purposes we have adopted as labels in this paper the terms above in bold italics. For ease of comparison we include in parentheses labels that were used in Felzer *et al.*

(2005) and Prinn *et al.* (2006) who report carbon storage and climate impacts, respectively, of these same emissions scenarios.

The temperature change, CO₂ and ozone concentrations resulting from these emissions are shown in **Figure 1**. Unrestricted GHG emissions lead to a projected increase in average global temperature by 2.75°C over a century. The temperature is increased even in GHGs capped scenarios by approximately 1°C. Over the century CO₂ concentrations are rising from 375 ppm to around 810 ppm in unrestricted GHGs cases, and to around 515 ppm in the GHGs capped cases. Ozone stays at its current levels in the GHGs and pollution capped scenarios. Pollution-only control scenario affects ozone stabilization relatively more than the GHGs-only control scenario.

As noted, the spatial pattern of ozone is constructed for present from the MATCH model and the result is shown in **Figure 2**. For illustrative purposes we show a map for June-July-August (JJA), the Northern Hemisphere summer. Ozone levels are highest in the mid-latitude temperate areas where the largest emissions occur. However, the JJA period is the Southern Hemisphere winter, conditions that do not favor ozone formation, and thus the very low levels of ozone in the Southern Hemisphere partly reflect this choice of period. **Figure 3** shows the yearly levels of AOT40 for 2000 to 2100 for the 4 relevant scenarios² for key vegetation types, chosen to illustrate the differences between tropics, temperate, and boreal areas. Notably, the temperate regions, dominated by Northern temperate areas including the United States, Europe, and China have relatively high levels of AOT40. Also, note that levels of AOT40 increase much more rapidly than the levels of ozone itself as shown in Figure 1, panel c. Whereas the global

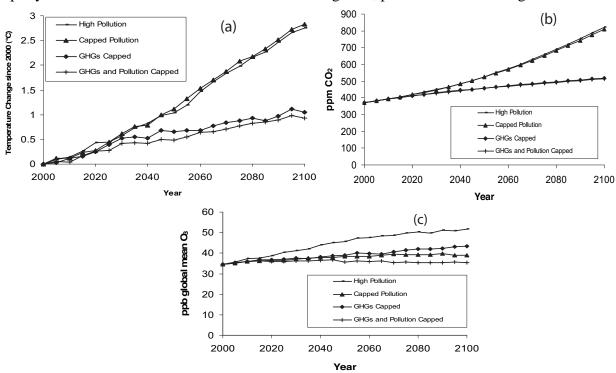
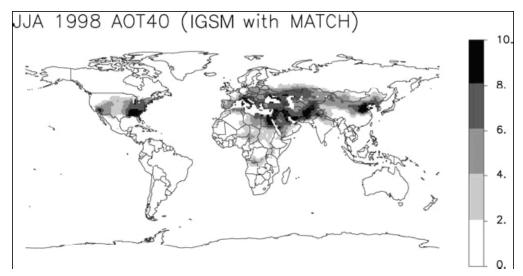



Figure 1. Global Changes in (a) Temperature, (b) CO_2 concentrations, (c) and Ozone levels.

9

² Those without any ozone damage (*Climate and GHGs only* and *GHGs capped, no ozone*) were constructed by leaving out the ozone damage mechanism in the TEM, and so the actual ozone levels are no different than in the comparable cases with ozone damage (*High Pollution* and *GHGs capped*, respectively).

Figure 2. Geographical distribution of ozone (AOT40, ppm-h), mean monthly levels for June–July–August of 1998.

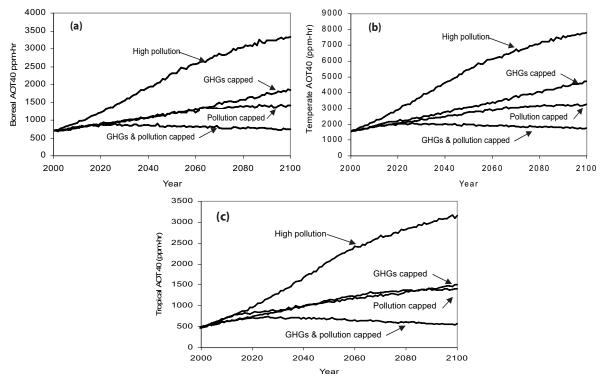
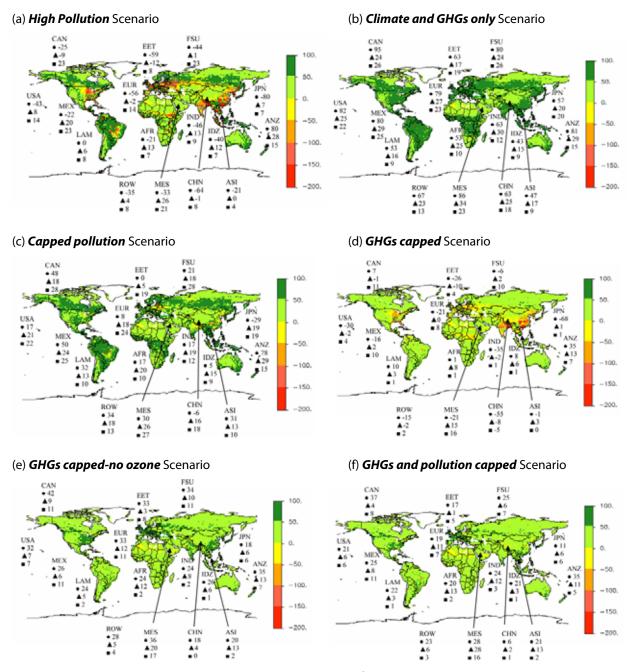


Figure 3. Annual ozone levels (AOT40) by vegetation type, 2000-2100.

increase in ozone levels is less than 50% in the *High Pollution* case and less than 20% in the cases where pollution and/or GHGs are controlled, AOT40 increases by as much as six times in the *High Pollution* case and doubles or triples in *Capped pollution* and *GHGs capped* cases, respectively.

The large increase in AOT40 despite much smaller increases in ozone levels themselves is because the AOT40 is a threshold measure. Any increase in ozone in areas near or above this threshold will add to AOT40, whereas much of current ozone contributes to levels that are below

this threshold and thus contribute nothing to the AOT40 index. Much of the industrial activity leading to emissions is in the temperate regions in the Northern hemisphere and ozone levels are highest over temperate vegetation, although ozone levels increase substantially over both boreal and tropical vegetation.


5. AGRICULTURE, PASTURE AND FORESTRY RESULTS

Yields on croplands are taken from TEM estimates of changes in yield for a "generic" C3 crop (Felzer *et al.*, 2004). This crop is grown on areas identified as cropland by McGuire *et al.* (2001), which has been derived from the historical fractional cropland data set of Ramankutty and Foley (1998, 1999), for the period of the early 1990's. For pasture and forestry the change in Net Primary Productivity (NPP) is used as a measure of yield effects. **Figure 4** shows the results for the six scenarios mapped at the 0.5° x 0.5° resolution of TEM, with absolute yield changes in gC/m²/year between 2090-2100 and present (1995-2005). The average yield/NPP is calculated for each of these decades. Also shown is the average percentage yield change for crops, pasture, and forestry for each of the 16 EPPA regions over the same period.

The *High pollution* and *Climate and GHGs only* were constructed to show the separate effects of ozone damage and climate and CO₂ in a scenario where there was no explicit climate policy and where emissions per unit of combustion of conventional pollutants fell as a function of rising per capita income, but insufficiently to prevent pollution levels from rising significantly. Comparing results for these scenarios in Figure 4 shows climate and CO₂ effects to be beneficial almost everywhere; however, when ozone damage is included many areas experience severely negative effects. These negative effects are especially strong in cropland areas, in the Northern Hemisphere. This is evident by examining the percentage change results for cropland as compared with pasture and forestry. The strong effects of ozone on cropland are the result of four effects as discussed in Felzer *et al.* (2005): (1) inherent higher sensitivity of crops than forests/natural vegetation to ozone as represented in response functions of Reich (1987); (2) spatial variation in ozone levels that often lead to higher ozone concentrations over cropland; (3) spatial variation in Gross Primary Production (GPP), with fertilized croplands tending to have higher levels, since stomatal conductance and, thus ozone damage, is proportional to GPP; and (4) the interaction of ozone damage with applications of nitrogen fertilizer.

Comparing the map of ozone damage in Figure 4 to the spatial pattern of high ozone (Figure 2, and zonal increases in Figure 3) there is a general correlation between areas where higher ozone damage occurs and higher ozone levels. The areas of high ozone damage occur mainly in Northern mid-latitudes where industrial activity and emissions of ozone precursors are high. With regard to (3), higher absolute effects (damage and benefit) occur where there are higher rates of vegetation growth. The arid areas of the western US, northern and Southern Africa, Central Asia, and much of Australia and the very cold areas of far northern Canada, Europe and Asia all show lower absolute increases in productivity due to climate and CO₂ than relatively moist and warmer climates. Thus, some areas of high ozone levels such as southwest

U.S., the Middle East, and central Asia do not show large decreases in productivity due to ozone exposure. However, as pointed out previously, Figure 2 represents JJA only and significant damage can occur in other months. For a more complete comparison of these effects see Felzer *et al.* (2004, 2005). With regards to (4), Felzer *et al.* (2004) also identify a strong

Figure 4. Change in yield between 2000 and 2100 (gC/m²/year). Regional level percent changes in yield (crops) and NPP (pasture, forestry): circle = crops, diamond = pasture, square = forestry.

interaction effect between ozone damage and nitrogen fertilization, beyond what one would expect simply because N fertilizer increases productivity of plants. In these scenarios, optimum nitrogen fertilization is applied on all cropland, and thus, the largest absolute losses of yield occur on cropland areas exposed to high ozone. This combination—stronger response of crops, use of N fertilizer, high productivity, and the spatial pattern of high ozone concentrations strongly biases high ozone damage toward crops, relative to pasture or forest land. By comparison pasture and forest land is not subject to N-fertilization in the model (reflecting

predominant practice) and these lands are often more remote from industrial regions where ozone concentrations are lower and productivity is lower. All these factors contribute to less ozone damage.

The *Capped pollution* scenario is intermediate between the *High pollution* and *Climate and GHGs only* scenarios. Even capping the conventional pollutants at current levels does not entirely prevent increases in ozone levels. CH₄ is uncontrolled in these scenarios and it is an ozone precursor. Further, there are non-linear interactions in chemistry that depend on relative levels of these pollutants and whether they are emitted into a relatively clean or highly polluted environment, in addition to temperature and humidity effects on various atmospheric reaction pathways. Prinn *et al.* (2006) provides a more in depth evaluation of these scenarios in terms of the implications of capping these pollutants. In general, yield of forests, pasture, and cropland are relatively positive.

The GHGs capped, GHGs capped-no ozone, and GHGs and pollution capped scenarios show generally less increase in yields in areas where the yield changes were dominated by the positive effects of CO₂ and climate and less ozone damage. In the GHGs capped scenario less ozone damage occurs because the GHG policy results in less combustion of fossil fuels and therefore a side effect is less emissions of ozone precursors as well as less CH₄. Ozone damage remains significant enough, however, to turn what would be large increase in yield in Eastern United State, Europe, India, and Eastern China from CO₂ and climate into significant negative effects on yields. This can be seen from comparing the GHGs capped and GHGs capped-no ozone scenarios. The GHGs and pollution capped scenario also keeps other ozone precursors from increasing and these two factors together mean there is very little increase in ozone from current levels as can be seen from Figure 3. The result is that the yield change map for the GHGs and pollution capped scenario is very similar to that for the scenario where the ozone damage mechanism was simply turned off in TEM (i.e. GHGs capped-no ozone).

The percentage yield effects at five-year intervals (the EPPA temporal resolution) were introduced as changes in the productivity of land from the reference level in each of the sectors (agriculture, livestock, forestry) in the EPPA model for each of the 16 regions. In general, land productivity is modeled as increasing in EPPA in the reference due to improving technology, and thus a positive effect of environmental change is a further increase in land productivity whereas a negative environmental effect reduces the productivity increase and may cause an absolute decline in yields (relative to current) if the environmental impact is large enough. Our principal interest is in how changes in the environment (climate, CO_2 , and ozone) affect agricultural production and the economy relative to the reference. Thus, for example, land productivity increasing at a compounded rate of 1% per year, would imply a 64% increase by 2050, or, with year 2000 = 1.00, an index value of 1.64 in 2050. If the TEM yield change estimate is for an increase of 10%, the new productivity index value in 2050 for that sector/region would by 1.10*1.64=1.81, or if environmental change caused average yield to fall to 0.9%, then the new productivity index for EPPA is 0.90*1.64=1.48.

_

³ We use the term "yield" to refer to estimates derived from TEM. "Land productivity" multiplier for land in the Constant Elasticity of Substitution (CES) production functions for crops, forestry, and livestock used in EPPA. Actual "yield" as modeled by EPPA depends on the exogenous time trend on land productivity in combination with parameters that govern substitution between land and other inputs as their prices change.

We focus first on global effects on production of these yield changes. To effectively compare the global production effects with the yield changes, we construct a measure of global yield change for crops, pasture, and forestry derived from TEM to compare with estimated production change once we simulate the effect of these changes in EPPA. The global yield changes are derived by summing the total level of agroecosystem productivity (gC/year) for the globe and calculating the difference from 2000, as we did for each of the regions. Thus, the percentage change is weighted by the absolute productivity in different regions. The global sector production (crop, livestock, forestry) is measured in the total value of production in real terms in 1997 US dollars and at 1997 market exchange rates as reported in EPPA. We calculate the difference from the reference projection (without environment effects) to measure the effect on production of each of the environmental change in terms of sector production levels. These are plotted in Figures 5-7. For exposition, we have not plotted the *GHGs capped-no ozone* scenario because it is very similar to *GHGs and pollution capped* scenario.

Figure 5 reports the results for crops. As expected, positive (negative) yield effects of environmental change lead to positive (negative) production effects. However, note that the production effects are far smaller than the yield effects. The global yield effects range from an increase of over 60% (*Climate and GHGs only*) to a decline of nearly 40% (*High pollution*) while the crop production effects are no larger than \pm 8%. This reflects relative inelastic demand for crops because of a relatively inelastic demand for food, the ability to substitute other inputs for land (adapt), and the ability to shift land into or out of crops.

Figure 6 reports results for livestock. Here the livestock production results bear little relationship to the yield effects for pasture. The pasture results are all positive whereas several of the scenarios show reductions in livestock production. In fact, the scenarios mirror closely the production effects on crops. This reflects the fact that feedgrains and other crops are important inputs into livestock production, relatively more important than pasture. A reduction (increase) in crop production is reflected in higher (lower) prices for feedgrains and other crops used in livestock, and this tends to lead to reduced (increased) production of livestock. Again, the percentage differences in livestock production are relatively small compared with the crop production changes, even in cases where production increases are driven both by an increase in crop production and an increase in pasture productivity.

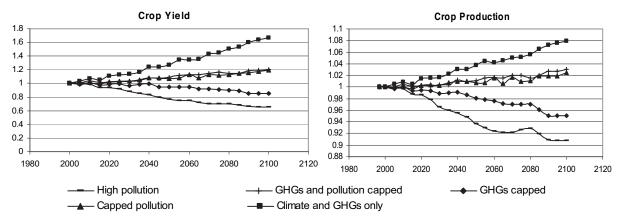


Figure 5. Index for Crop Yield and Production

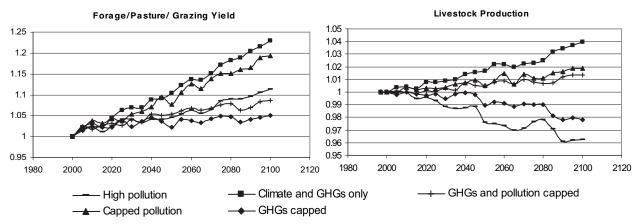
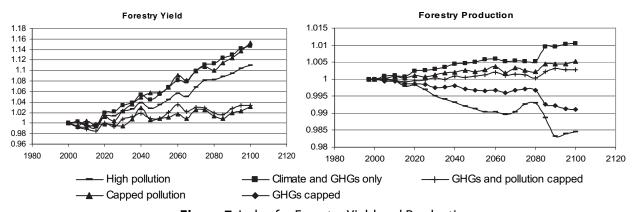
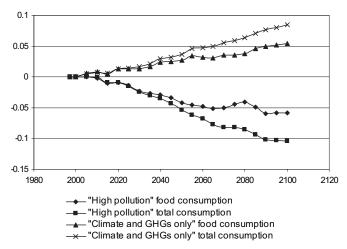


Figure 6. Index for Pasture Yield and Livestock Production.

Figure 7 reports results for forestry. The general result is that the production effects are very small—less than 1% compared with yield effects of 3 to 15%. Notably, however, despite small positive yield effects for forestry in all cases, the production effects are slightly negative in the *High pollution* and *GHGs capped* cases. One result of the strong negative crop yield effect is to use more land for crop production at the expense of forestry and pasture, and thus the negative forestry production effect is driven by reduction in land used for forestry. The livestock production effect is also partly driven by a reduction in pasture/grazing land but in that case the more important effect is the increase in feedgrain prices.

An important result of the general equilibrium modeling of these impacts is that effects can be felt beyond the agricultural sector. We can investigate the general equilibrium effects stemming from agricultural impacts because we are simulating only the climate/CO₂/ozone effects on agriculture (including crops, pasture, and forestry) and include no other impact shocks in other sectors. Thus, any economic effects occurring elsewhere in the economy are due to the initial agricultural shock. We show this in **Figure 8** where we have plotted macroeconomic consumption change and the change in food consumption, both as a percent of food consumption, in a reference case where there is no environmental feedback on the economy.

To illustrate this effect, we present the results for two scenarios – *High pollution* and *Climate* and *GHGs only*, because those are the ones that show the biggest change. This shows that, in general, the aggregate consumption effect is bigger in absolute terms than the agricultural

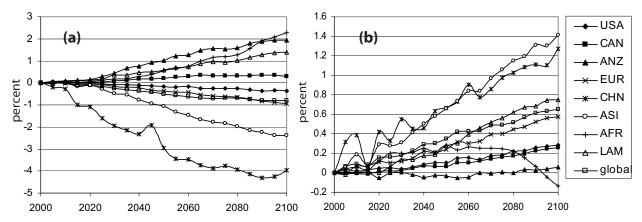

Figure 7. Index for Forestry Yield and Production.

Figure 8. Change in Global Food Consumption and Total Global Macroeconomic Consumption as a share of Agriculture Production.

production effect. Thus, adaptation in the agricultural sector, which was seen most clearly in the crop sector results, but with the general result that the production effects were much smaller than the yield effects, is partly the result of shifting of resources into or out of these sectors, thereby affecting the rest of the economy. Thus, we see in our results the frequently expressed view that the adaptation potential of the agricultural sector is considerable—most yield effects are offset leaving very little change in food consumption. But, we also see that this comes about through resource reallocation from or to the rest of the economy and so to focus only the changes in the agricultural sector/food consumption underestimates damages (or benefits) of the environmental change. Thus, while yield change alone overestimates the economic effect, focusing on agricultural production or food consumption underestimates the full economic effect. Fully measuring the economic effect requires a general equilibrium approach that evaluates the impact on resource reallocation beyond the agricultural sector.

Finally, we focus on the regional economic effects for the *High pollution* and *Climate and* GHGs only scenarios for selected countries on Figure 9. These illustrate several important results. First, the impact as a percentage of the economy differs because of the different importance of these sectors in the economy. Food consumption is generally income inelastic, a feature we have approximated in EPPA, and this means agriculture is generally falling as a share of all economies over time. However, for developing country regions agriculture is currently a relatively large share of the economy, as much as 20%, compared with as little 1 or 2% in developed countries. Second, trade effects can be important. In the *High pollution* case, tropical, Southern Hemisphere and far northern regions (AFR, LAM, ANZ, CAN) benefit economically even though they suffer crop yield losses (or no change in the case of LAM). Economic gains result because they export agricultural products to other regions where crop yields are severely reduced due to ozone. The trade effects in the *Climate and GHGs only* scenario are less obvious from the total economic impact, but ANZ, a major agricultural exporter suffers economic loss from lower export prices even though crop yields are estimated to rise by over 80%. Thus, the net economic effect due to changes in agriculture, pasture, and forestry productivity are a complex combination of a changing pattern of trade among regions and resource reallocation between the agriculture sectors and other sectors of the economy.

Figure 9. Percent Change in Macroeconomic Consumption in High Pollution Scenario (a) and Climate and GHGs only Scenario (b), in Selected Regions.

6. CAVEATS AND COMPARISON WITH PREVIOUS WORK

There have been no similar studies of the combined effects of climate, CO₂ and ozone on global crops, pasture, and forestry. There has been considerable work on climate/CO₂ effects on crops. Our estimates (*Climate and GHGs only* scenario) are relatively positive compared with previous work. The broad conclusion of past studies is that mid- and high latitude areas could see substantial yield gains from climate or climate and CO₂ effects but that yield losses are likely in tropical regions (Gitay, *et al.*, 2001; Reilly and Schimmelpfennig, 1999). In contrast, in this study we see less yield gains in all regions when only climate and CO₂ changes are considered, albeit the yield gains are smaller in the tropics than in temperate or boreal regions. Several factors likely contribute to this more positive result:

TEM grows the "generic" crop as soon as the weather is suitable and if the season is lengthened automatically grows additional crops, or in subtropical regions may find that winter cropping improves even if summer cropping fails. This full adaptation to changes in seasons has generally not been considered in previous studies.

The "generic" TEM crop is a C3 crop that responds relatively strongly to CO₂ fertilization. ⁴ In reality, agriculture includes C4 crops, which are less responsive to CO₂, and so the average response including C4 crops is likely to be lower than we estimate.

The TEM estimates assume an optimum nitrogen fertilization of crops, so that CO₂ fertilization is not nitrogen-limited as it would be for natural vegetation (Kicklighter *et al.*, 1999) or under conditions with where fertilizer application is not optimal. Thus, neither spatial nor temporal variations in the amount, timing and the effectiveness of fertilizer applications have been considered, which may also contribute to the positive effect. On the other hand, the TEM simulations also do not consider the influence of irrigation so that crop productivity may be underestimated in arid regions.

The CO₂ response modeled in TEM is similar to that used to parameterize crop models and so does not explain a major difference with studies that have included a CO₂ fertilization effect. Some comparisons of Free Air Carbon Exchange (FACE) results have suggested much lower

17

⁴ C3 and C4 crops refer to the photosynthetic carbon pathway of the crop. The main C4 crops are maize and sorghum. Most grains, legumes, and vegetables are C3 crops.

CO₂ response than conventionally assumed (Long *et al.*, 2006), however, further evaluation shows the response of mainstream crop models to be generally consistent with the FACE results (Tubiello *et al.*, 2006). Nevertheless inclusion of the CO₂ fertilization effect contributes a strong positive effect on yield.

The climate scenarios are for a relatively mild increase in global temperature (2.7°C by 2100 from present, less when GHGs are controlled), reflecting work that has tried to estimate climate sensitivity and other climate model parameters (Forest *et al.*, 2002; Webster *et al.*, 2003). More negative results in some studies have resulted from climate scenarios with a mean surface temperature increase of 4 to 5°C. There is considerable uncertainty in future temperature projections and so an increase of 4 to 5°C cannot be ruled out if GHGs are uncontrolled (Webster *et al.*, 2003). An update of the Forest *et al.* (2002) analysis (Forest *et al.*, 2006) likely implies considerably higher temperatures by 2100 because they find it likely that less heat is being taken up by the oceans and so higher temperatures will be realized sooner.

Apart from the global mean temperature change, the 2D climate scenarios used to force the TEM model may tend to produce milder climate changes. While the IGSM is a land-ocean resolving model it cannot project phenomena such as mid-continental drying, a result often shown in 3D models. The zonal climate changes may thus under-represent local extremes that are possible, particularly in precipitation. Precipitation changes remain uncertain in even highly resolved GCMs and the 3D pattern need not create more negative crop effects but it seems likely that it could.

TEM models vegetation on a monthly basis for a generic crop. Crop yield for specific crops can be severely affected by short periods of heat or drought during key developmental phases. TEM results can be seen as a case where crop breeders/changes in crop type are able to overcome these limitations as climate changes.

7. CONCLUSIONS

Multiple environmental changes will have consequences for global vegetation. To the extent that crop yields and pasture and forest productivity are affected there can be important economic consequences. We examine the combined effects of changes in climate, increases in carbon dioxide, and changes in tropospheric ozone on crop, pasture, and forests and the consequences for the global and regional economies. We find that climate and CO₂ effects are generally positive for crop, livestock and forestry yields over most of the world. However we find potentially highly detrimental effects of ozone damage unless ozone precursors are strongly controlled. Because climate and CO₂ effects are generally beneficial, controlling GHG emissions tends to reduce these beneficial effects. However, controlling GHGs also limits emissions of ozone precursors because CH₄ is an ozone precursor and control of CO₂ implies less combustion of fossil fuels and lower emissions of NO_x, VOCs, and other ozone precursors that are also generated during combustion.

Simulating the effects on vegetation demonstrated some important economic results. (1) Agriculture can successfully adapt to yield changes if adaptation is measured as change in production relative to change in the initial yield effect of environmental change. The production effect after adaptation is 1/5 to 1/6 the initial yield effect. (2) However, evaluating the impact terms of agricultural consumption/production underestimates the economic effects because

adaptation involves shifting resources into or out of the agricultural sector. The full effect of these changes can only be observed in looking at overall measures of economic well-being, such as macroeconomic consumption change. (3) National and regional economic effects are strongly influenced by trade effects such that yield effects that are positive for a region, may lead to negative economic effects if the other countries gain more. Or, countries can gain through trade even if yield effects are negative if other regions are more severely affected as we find for the case with high ozone levels. Thus, analysis that purports to estimate economic effects for a nation or region, absent a consideration of the effects on global markets or interaction with the rest of the economy, may be in error not only in the magnitude of the effect but of its direction.

8. REFERENCES

- Adams, R.M., S.A. Hamilton, and B.A. McCarl, 1986. The benefits of pollution control: the case of ozone and U.S. agriculture, *American Journal of Agricultural Economics*, **68**, 886-893.
- Adams, R.M., C. Rosenzweig, R.M. Peart, J.T. Richie, B.A. McCarl, J.D. Glyer, R.B. Curry, J.W. Jones, K.J. Boote and L.H, Allen. 1990. Global climate change and U.S. agriculture. *Nature*, **345**, 219-24.
- Alig, R.J., D.M. Adams, and B.A. McCarl, 2003. Projecting impacts of global climate change on the U.S. forest and agriculture sectors and carbon budgets, *Forest Ecology and Management*, **169**, 3-14.
- Babiker, M., H. Jacoby, J. Reilly, and D. Reiner, 2002. The evolution of a climate regime: Kyoto to Marrakech, *Environmental Science and Policy*, **5(3)**, 195-206.
- Babiker, M., J. Reilly, M. Mayer, R. Eckaus, I. Sue Wing, and R. Hyman, 2001. *The MIT Emissions Prediction and Policy Analysis Model: Revisions, Sensitivities, and Comparisons of Results.*MIT Joint Program on the Science and Policy of Global Change, Report 71, Cambridge, MA.
- Babiker, M., J. Reilly and L. Viguier, 2004. Is emissions trading always beneficial? *Energy J.*, **25(2)**, 33-56.
- Darwin, R., M. Tsigas, J. Lewandrowski and A. Raneses, 1996. Land use and cover in ecological economics, *Ecological Economics*, **17**, 157-181.
- Dimaranan, B., and R. McDougall, 2002. *Global Trade, Assistance, and Production: The GTAP 5 Data Base*. Center for Global Trade Analysis, Purdue University, West Lafayette, Indiana.
- Felzer, B. S. F., D. W. Kicklighter, J.M. Melillo, C. Wang, Q. Zhuang, and R.G. Prinn, 2004. Ozone effects on net primary production and carbon sequestration in the conterminous United States using a biogeochemistry model, *Tellus*, **56B**, 230–248.
- Felzer, B., J. Reilly, J. Melillo, D. Kicklighter, M. Sarofim, C. Wang, R. Prinn and Q. Zhuang, 2005. Future effects of ozone on carbon sequestration and climate change policy using a global biogeochemical model, *Climatic Change*, **73**, 345-373.
- Forest, C.E., P.H. Stone, A.P. Sokolov, M.R. Allen, and M. Webster, 2002. Quantifying uncertainties in climate system properties with the use of recent climate observations, *Science*, **295**, 113-117.
- Forest, C.E., P.H. Stone & A.P. Sokolov, 2006. Estimated PDFs of climate system properties including natural and anthropogenic forcings, *Geophysical Research Letters*, **33**, L01705.
- Gitay, H., S. Brown, W. Easterling, and B. Jallow, 2001. Ecosystems and their goods and services, Chapter 5 in J. McCarthy, O. Canziani, N. Leary, D. Dokken, K. White (Eds.), *Climate Change 2001: Impacts, Adaptation, and Vulnerability*, Cambridge University Press, Cambridge, UK.

- Izauralde, C., N.J. Rosenberg, R. A. Brown, and A. M. Thomson, 2003. Integrated assessment of Hadley Center (HadCM2) climate-change impacts on agricultural productivity and irrigation water supply in the conterminous United States. Part II. Regional agriculture production in 2030 and 2095, *Agricultural and Forest Meteorology*, **117**, 97-122.
- Jacoby, H., R. Eckaus, A.D. Ellermann, R. Prinn, D. Reiner and Z. Yang, 1997. CO₂ emissions limits: economic adjustments and the distribution of burdens, *Energy Journal*, **18**, 31-58.
- Kicklighter, D. W., M. Bruno, S. Dönges, G. Esser, M. Heimann, J. Helfrich, F. Ift, F. Joos, J. Kaduk, G. H. Kohlmaier, A. D. McGuire, J. M. Melillo, R. Meyer, B. Moore III, A. Nadler, I. C. Prentice, W. Sauf, A. L. Schloss, S. Sitch, U. Wittenberg and G. Würth, 1999. A first-order analysis of the potential role of CO₂ fertilization to affect the global carbon budget: A comparison study of four terrestrial biosphere models, *Tellus*, **51B**, 343-366.
- Lawrence, M.G., P.J. Crutzen, P.J. Rasch, B.E. Eaton and N.M. Mahowald, 1999. A model for studies of tropospheric photochemistry: Description, global distributions, and evaluation, *J. Geophys. Res.*, **104**, 26245–26277.
- Long, S.P, E.A. Ainsworth, A. D.B. Leakey, J. Nösefberger, and D.R. Ort, 2006. Food for thought: lower-than-expected crop yield stimulation with rising CO₂ concentration, *Science*, **312**, 1918-1921.
- Mahowald, N. M., P.J. Rasch, B.E. Eaton, S. Whittlestone and R.G. Prinn, 1997. Transport of 222 radon to the remote troposphere using the model of atmospheric transport and chemistry and assimilated winds from ECMWF and the National Center for Environmental Prediction/NCAR, *J. Geophys. Res.*, **102**, 28139–28152.
- Mayer, M., R. Hyman, J. Harnisch, J.Reilly, 2000. *Emissions inventories and time trends for greenhouse gases and other pollutants*, MIT Joint Program on the Science and Policy of Global Change, Technical Note 1, Cambridge, MA.
- McFarland, J.R., J.M. Reilly & H.J. Herzog, 2004. Representing energy technologies in top-down economic models using bottom-up information, *Energy Economics*, **26**(4), 685-707.
- McGuire, A. D., S. Sitch, J. S. Clein, R. Dargaville, G. Esser, J. Foley, M. Heimann, F. Joos, J. Kaplan, D. W. Kicklighter, R. A. Meier, J. M. Melillo, B. Moore III, I. C. Prentice, N. Ramankutty, T. Reichenau, A. Schloss, H. Tian, L. J. Williams and U. Wittenberg, 2001. Carbon balance of the terrestrial biosphere in the twentieth century: analyses of CO₂, climate and land-use effects with four process-based ecosystem models, *Global Biogeochemical Cycles*, **15(1)**, 183-206.
- Melillo, J. M., A.D. McGuire, D.W. Kicklighter, B. Moore III, C.J. Vorosmarty, and A. L. Schloss, 1993. Global climate change and terrestrial net primary production, *Nature*, **363**, 234–240.
- Mendelsohn, R., W.D. Nordhaus and D. Shaw, 1994. The Impact of Global Warming on Agriculture: A Ricardian analysis. *American Economic Review*, **84(4)**, 753-771.
- Ollinger, S. V., J. Aber, and P. Reich, 1997. Simulating ozone effects on forest productivity: Interactions among leaf-, canopy-, and stand-level processes, *Ecol. Appl.*, **7(4)**, 1237–1251.
- Paltsev, S., J.M. Reilly, H. D. Jacoby, R.S. Eckaus, J. McFarland, M. Sarofim, M. Asadoorian, M. Babiker, 2005. *The MIT Emissions Prediction and Policy Analysis (EPPA) Model: Version 4*, MIT Joint Program on the Science and Policy of Global Change, Report 125, Cambridge, MA.
- Paltsev, S., J.M. Reilly, H.D. Jacoby, A.D. Ellerman, and K.H. Tay, 2003. *Emissions Trading to Reduce Greenhouse Gas Emissions in the United States: The McCain-Lieberman Proposal*. MIT Joint Program on the Science and Policy of Global Change, Report 97, Cambridge, MA.

- Parry, M.L., Carter, T.R. and Konijn, N.T. (Eds.), 1988a. *The Impact of Climate Variations on Agriculture: Volume 1: Assessments in Cool Temperate and Cold Regions*, Dordrecht, The Netherlands, Kluwer Academic Press.
- Parry, M.L., Carter, T.R. and Konijn, N.T. (Eds.), 1988b. *The Impact of Climatic Variations on Agriculture: Volume 2 Assessment in Semi-arid Regions*, Dordrecht, The Netherlands, Kluwer Academic Press.
- Parry, M., C. Rosenzweig, A. Iglesis, G. Fischer, and M. Livermore, 1999. Climate change and world food security: A new assessment. *Global Environ. Change*, **9**, S51-S67.
- Parry, M.L., C. Rosenzweig, A. Iglesias, M. Livermore, and G. Fischer, 2004. Effects of climate change on global food production under SRES emissions and socio-economic scenarios. *Global Environ. Change*, **14**, 53-67.
- Prinn, R., H. Jacoby, A. Sokolov, C. Wang, X. Xiao, Z. Yang, R. Eckaus, P. Stone, D. Ellerman, J. Melillo, J. Fitzmaurice, D. Kicklighter, G. Holian and Y. Liu, 1999. Integrated global system model for climate policy assessment: Feedbacks and sensitivity studies, *Climatic Change*, **41**, 469-546.
- Prinn, R., J. Reilly, M. Sarofim, C. Wang and B. Felzer, 2006. Effects of air pollution control on climate, In: *Integrated Assessment of Human-induced Climate Change* [M. Schlesinger, ed.], Cambridge University Press (in press), Cambridge, UK, and MIT Joint Program for the Science and Policy of Global Change, Report No. 118, January, 2005, Cambridge, MA.
- Ramankutty, N. and J. A. Foley, 1998. Characterizing patterns of global land use: an analysis of global croplands data, *Global Biogeochemical Cycles*, **12**, 667-685.
- Ramankutty, N., and J. A. Foley. 1999. Estimating historical changes in global land cover: croplands from 1700 to 1992, *Global Biogeochemical Cycles*, **13**, 997-1027.
- Rasch, P. J., N.M. Mahowald and B.E. Eaton, 1997. Representations of transport, convection, and the hydrologic cycle in chemical transport models: Implications for the modeling of shortlived and soluble species. *J. Geophys. Res.*, **102**, 28127–28138.
- Reich, P. B., 1987. Quantifying plant response to ozone: A unifying theory, *Tree Physiol.*, **3**, 63–91. Reilly (Ed.), 2002. Agriculture: The Potential Consequences of Climate Variability and Change, Cambridge University Press, Cambridge UK.
- Reilly, J. and N. Hohmann, 1993. Climate change and agriculture: the role of international trade, *American Economic Review: Papers and Proceedings*, **83**, 306-312.
- Reilly, J., M. Mayer, and J. Harnisch, 2002. The Kyoto protocol and non-CO₂ greenhouse gases and carbon sinks, *Environmental Modeling and Assessment*, **7(4)**, 217-229.
- Reilly, J., R. Prinn, J. Harnisch, J. Fitzmaurice, H.D. Jacoby, D. Kicklighter, J. Melillo, P. Stone, A. Sokolov, and C. Wang, 1999. Multi-gas assessment of the Kyoto Protocol, *Nature*, **401**, 549-555.
- Reilly, J., and D. Schimmelpfennig. 1999. Agricultural impact assessment, vulnerability, and the scope for adaptation, *Climatic Change*, **43**(**4**), 745-788.
- Reilly, J., F. Tubiello, B. McCarl, D. Abler, R. Darwin, K. Fuglie, S. Hollinger, C. Izaurralde, S. Jagtap, J. Jones, L. Mearns, D. Ojima, E. Paul, K. Paustian, S. Riha, N. Rosenberg, C. Rosenzweig, 2003. U.S. agriculture and climate change: new results, *Climatic Change*, 57, 43-69.
- Rosenberg, N.J., 1993. *Towards An Integrated Assessment Of Climate Change: The MINK Study*. Boston, Kluwer Academic Publishers, 173 pp.

- Rosenzweig, C., and M. L. Parry, 1994. Potential impact of climate change on world food supply. *Nature*, **367**, 133-138.
- Sokolov, A.P., C.A. Schlosser, S. Dutkiewicz, S. Paltsev, D.W. Kicklighter, H.D. Jacoby, R.G. Prinn, C.E. Forest, J. Reilly, C. Wang, B. Felzer, M.C. Sarofim, J. Scott, P.H. Stone, J.M. Melillo, and J. Cohen, 2005. *The MIT Integrated Global System Model (IGSM) Version 2: Model Description and Baseline Evaluation*. MIT Joint Program for the Science and Policy of Global Change, Report 124, Cambridge, MA.
- Tian, H., J.M Melillo, D.W. Kicklighter, S., Pan, J. Liu, A.D. McGuire, and B. Moore, 2003. Regional carbon dynamics in monsoon Asia and its implications for the global carbon cycle, *Global Planet. Change*, **37**, 201–217.
- Tian, H., J.M. Melillo, D.W. Kicklighter, A.D. McGuire, and J.V.K. Helfrich, 1999. The sensitivity of terrestrial carbon storage to historical climate variability and atmospheric CO₂ in the United States, *Tellus*, **51B**, 414–452.
- Tobey, J., J. Reilly, S. Kane, 1992. Economic implications of global climate change for world agriculture, *Journal of Agricultural and Resource Economics*, **17**, 195-204.
- Tubiello, F.N., J. S. Amthor, K. Boote, M. Donatelli, W. Easterling, R. Gifford, M. Howden, G. Fischer, J. Reilly, and C. Rosenzweig, 2006. Crop response to elevated CO₂ and world food supply, *European Journal of Agronomy* (submitted).
- Von Kuhlmann, R., M. Lawrence, P. Crutzen, and P. Rasch, 2003. A model for studies of tropospheric ozone and nonmethane hydrocarbons: Model description and ozone results, *J. Geophys. Res.*, **108**, doi: 10.1029/2002JD002893.
- Wang, X. and D. L. Mauzerall, 2004. Characterizing distributions of surface ozone and its impact on grain production in China, Japan and South Korea: 1990 and 2020, *Atmospheric Environment*, **38**, 4383-4402.
- Wang, X., 2005. *The Economic Impact of Global Climate and Tropospheric Ozone on World Agricultural Production*. Master of Science Thesis, Engineering Systems Division, Massachusetts Institute of Technology, Cambridge (May).
- Webster, M.D., M. Babiker, M. Mayer, J.M. Reilly, J. Harnisch, M.C. Sarofim, and C. Wang, 2002. Uncertainty in emissions projections for climate models, *Atmospheric Environment*, **36(22)**, 3659-3670.
- Webster, M., C. Forest, J. Reilly, M. Babiker, D. Kicklighter, M. Mayer, R. Prinn, M. Sarofim, A. Sokolov, P. Stone and C. Wang, 2003. Uncertainty analysis of climate change and policy response, *Climatic Change*, **62**, 295-320.
- Westenbarger, D. and G. Frisvold, 1994. Agricultural exposure to ozone and acid precipitation, *Atmospheric Environment*, **28**, 2895-2907.
- Westenbarger, D. V. and G. B. Frisvold, 1995. Air pollution and farm-level crop yields: an empirical analysis of corn and soybeans, *Agricultural and Resource Economics Review*, **24(2)**, 156-165.
- Xiao, X., D. W. Kicklighter, J. M. Melillo, A. D. McGuire, P. H. Stone and A. P. Sokolov, 1997. Linking a global terrestrial biogeochemical model and a 2-dimensional climate model: implications for the carbon budget, *Tellus*, **49B**, 18-37.

REPORT SERIES of the MIT Joint Program on the Science and Policy of Global Change

- 1. Uncertainty in Climate Change Policy Analysis

 Jacoby & Prinn December 1994
- 2. Description and Validation of the MIT Version of the GISS 2D Model Sokolov & Stone June 1995
- 3. Responses of Primary Production and Carbon Storage to Changes in Climate and Atmospheric CO₂ Concentration Xiao et al. October 1995
- 4. Application of the Probabilistic Collocation Method for an Uncertainty Analysis Webster et al. January 1996
- 5. World Energy Consumption and CO₂ Emissions: 1950-2050 Schmalensee et al. April 1996
- 6. The MIT Emission Prediction and Policy Analysis (EPPA) Model Yang et al. May 1996 (superseded by No. 125)
- 7. Integrated Global System Model for Climate Policy Analysis Prinn et al. June 1996 (<u>superseded</u> by No. 124)
- 8. Relative Roles of Changes in CO₂ and Climate to Equilibrium Responses of Net Primary Production and Carbon Storage Xiao et al. June 1996
- 9. CO₂ Emissions Limits: Economic Adjustments and the Distribution of Burdens Jacoby et al. July 1997
- 10. Modeling the Emissions of N₂O and CH₄ from the Terrestrial Biosphere to the Atmosphere Liu Aug. 1996
- 11. Global Warming Projections: Sensitivity to Deep Ocean Mixing Sokolov & Stone September 1996
- 12. Net Primary Production of Ecosystems in China and its Equilibrium Responses to Climate Changes *Xiao et al.* November 1996
- 13. Greenhouse Policy Architectures and Institutions Schmalensee November 1996
- 14. What Does Stabilizing Greenhouse Gas
 Concentrations Mean? Jacoby et al. November 1996
- **15. Economic Assessment of CO₂ Capture and Disposal** *Eckaus et al.* December 1996
- **16. What Drives Deforestation in the Brazilian Amazon?** *Pfaff* December 1996
- 17. A Flexible Climate Model For Use In Integrated Assessments Sokolov & Stone March 1997
- **18. Transient Climate Change and Potential Croplands of the World in the 21st Century** *Xiao et al.* May 1997
- 19. Joint Implementation: Lessons from Title IV's Voluntary Compliance Programs Atkeson June 1997
- **20**. Parameterization of Urban Subgrid Scale Processes in Global Atm. Chemistry Models *Calbo* et al. July 1997
- 21. Needed: A Realistic Strategy for Global Warming Jacoby, Prinn & Schmalensee August 1997
- 22. Same Science, Differing Policies; The Saga of Global Climate Change Skolnikoff August 1997
- 23. Uncertainty in the Oceanic Heat and Carbon Uptake and their Impact on Climate Projections
 Sokolov et al. September 1997
- 24. A Global Interactive Chemistry and Climate Model Wang, Prinn & Sokolov September 1997
- 25. Interactions Among Emissions, Atmospheric Chemistry & Climate Change Wang & Prinn Sept. 1997
- **26. Necessary Conditions for Stabilization Agreements** *Yang & Jacoby* October 1997

- 27. Annex I Differentiation Proposals: Implications for Welfare, Equity and Policy Reiner & Jacoby Oct. 1997
- 28. Transient Climate Change and Net Ecosystem
 Production of the Terrestrial Biosphere
 Xiao et al. November 1997
- 29. Analysis of CO₂ Emissions from Fossil Fuel in Korea: 1961–1994 Choi November 1997
- **30**. Uncertainty in Future Carbon Emissions: A Preliminary Exploration Webster November 1997
- 31. Beyond Emissions Paths: Rethinking the Climate Impacts of Emissions Protocols Webster & Reiner November 1997
- 32. Kyoto's Unfinished Business Jacoby et al. June 1998
- 33. Economic Development and the Structure of the Demand for Commercial Energy Judson et al. April 1998
- 34. Combined Effects of Anthropogenic Emissions and Resultant Climatic Changes on Atmospheric OH Wang & Prinn April 1998
- 35. Impact of Emissions, Chemistry, and Climate on Atmospheric Carbon Monoxide Wang & Prinn April 1998
- 36. Integrated Global System Model for Climate Policy Assessment: Feedbacks and Sensitivity Studies Prinn et al. June 1998
- 37. Quantifying the Uncertainty in Climate Predictions Webster & Sokolov July 1998
- 38. Sequential Climate Decisions Under Uncertainty: An Integrated Framework Valverde et al. September 1998
- 39. Uncertainty in Atmospheric CO₂ (Ocean Carbon Cycle Model Analysis) Holian Oct. 1998 (superseded by No. 80)
- 40. Analysis of Post-Kyoto CO₂ Emissions Trading Using Marginal Abatement Curves *Ellerman & Decaux* Oct. 1998
- 41. The Effects on Developing Countries of the Kyoto Protocol and CO₂ Emissions Trading

 Ellerman et al. November 1998
- **42**. **Obstacles to Global CO₂ Trading:** *A Familiar Problem Ellerman* November 1998
- 43. The Uses and Misuses of Technology Development as a Component of Climate Policy Jacoby November 1998
- **44. Primary Aluminum Production:** *Climate Policy, Emissions and Costs Harnisch et al.* December 1998
- **45. Multi-Gas Assessment of the Kyoto Protocol** *Reilly et al.* January 1999
- **46**. From Science to Policy: The Science-Related Politics of Climate Change Policy in the U.S. Skolnikoff January 1999
- **47. Constraining Uncertainties in Climate Models Using Climate Change Detection Techniques** *Forest et al.* April 1999
- **48.** Adjusting to Policy Expectations in Climate Change Modeling *Shackley et al.* May 1999
- **49**. **Toward a Useful Architecture for Climate Change Negotiations** *Jacoby et al.* May 1999
- 50. A Study of the Effects of Natural Fertility, Weather and Productive Inputs in Chinese Agriculture *Eckaus & Tso July 1999*
- 51. Japanese Nuclear Power and the Kyoto Agreement Babiker, Reilly & Ellerman August 1999

REPORT SERIES of the MIT Joint Program on the Science and Policy of Global Change

- 52. Interactive Chemistry and Climate Models in Global Change Studies Wang & Prinn September 1999
- 53. Developing Country Effects of Kyoto-Type Emissions Restrictions Babiker & Jacoby October 1999
- 54. Model Estimates of the Mass Balance of the Greenland and Antarctic Ice Sheets Bugnion Oct 1999
- 55. Changes in Sea-Level Associated with Modifications of Ice Sheets over 21st Century Bugnion October 1999
- **56. The Kyoto Protocol and Developing Countries** *Babiker et al.* October 1999
- 57. Can EPA Regulate Greenhouse Gases Before the Senate Ratifies the Kyoto Protocol?

 Bugnion & Reiner November 1999
- 58. Multiple Gas Control Under the Kyoto Agreement Reilly, Mayer & Harnisch March 2000
- **59. Supplementarity:** *An Invitation for Monopsony? Ellerman & Sue Wing* April 2000
- **60. A Coupled Atmosphere-Ocean Model of Intermediate Complexity** *Kamenkovich et al.* May 2000
- **61. Effects of Differentiating Climate Policy by Sector:** *A U.S. Example Babiker et al.* May 2000
- **62. Constraining Climate Model Properties Using Optimal Fingerprint Detection Methods** Forest et al.
 May 2000
- **63. Linking Local Air Pollution to Global Chemistry and Climate** *Mayer et al.* June 2000
- **64.** The Effects of Changing Consumption Patterns on the Costs of Emission Restrictions *Lahiri et al.* Aug 2000
- **65. Rethinking the Kyoto Emissions Targets** *Babiker & Eckaus* August 2000
- **66. Fair Trade and Harmonization of Climate Change Policies in Europe** *Viguier* September 2000
- 67. The Curious Role of "Learning" in Climate Policy: Should We Wait for More Data? Webster October 2000
- **68. How to Think About Human Influence on Climate** *Forest, Stone & Jacoby* October 2000
- **69. Tradable Permits for Greenhouse Gas Emissions:**A primer with reference to Europe Ellerman Nov 2000
- **70. Carbon Emissions and The Kyoto Commitment in the European Union** *Viguier et al.* February 2001
- 71. The MIT Emissions Prediction and Policy Analysis Model: Revisions, Sensitivities and Results Babiker et al. February 2001 (superseded by No. 125)
- 72. Cap and Trade Policies in the Presence of Monopoly and Distortionary Taxation Fullerton & Metcalf March '01
- **73.** Uncertainty Analysis of Global Climate Change Projections Webster et al. Mar. '01 (<u>superseded</u> by No. 95)
- 74. The Welfare Costs of Hybrid Carbon Policies in the European Union Babiker et al. June 2001
- 75. Feedbacks Affecting the Response of the Thermohaline Circulation to Increasing CO₂ Kamenkovich et al. July 2001
- 76. CO₂ Abatement by Multi-fueled Electric Utilities: An Analysis Based on Japanese Data Ellerman & Tsukada July 2001
- 77. Comparing Greenhouse Gases Reilly et al. July 2001

- 78. Quantifying Uncertainties in Climate System Properties using Recent Climate Observations Forest et al. July 2001
- 79. Uncertainty in Emissions Projections for Climate Models Webster et al. August 2001
- 80. Uncertainty in Atmospheric CO₂ Predictions from a Global Ocean Carbon Cycle Model

 Holian et al. September 2001
- 81. A Comparison of the Behavior of AO GCMs in Transient Climate Change Experiments Sokolov et al. December 2001
- **82**. The Evolution of a Climate Regime: Kyoto to Marrakech Babiker, Jacoby & Reiner February 2002
- **83.** The "Safety Valve" and Climate Policy *Jacoby & Ellerman* February 2002
- 84. A Modeling Study on the Climate Impacts of Black Carbon Aerosols *Wang* March 2002
- **85. Tax Distortions and Global Climate Policy** *Babiker et al.* May 2002
- 86. Incentive-based Approaches for Mitigating
 Greenhouse Gas Emissions: Issues and Prospects for
 India Gupta June 2002
- 87. Deep-Ocean Heat Uptake in an Ocean GCM with Idealized Geometry Huang, Stone & Hill September 2002
- **88.** The Deep-Ocean Heat Uptake in Transient Climate Change *Huang et al.* September 2002
- 89. Representing Energy Technologies in Top-down Economic Models using Bottom-up Information *McFarland et al.* October 2002
- 90. Ozone Effects on Net Primary Production and Carbon Sequestration in the U.S. Using a Biogeochemistry Model Felzer et al. November 2002
- 91. Exclusionary Manipulation of Carbon Permit

 Markets: A Laboratory Test Carlén November 2002
- 92. An Issue of Permanence: Assessing the Effectiveness of Temporary Carbon Storage Herzog et al. December 2002
- **93.** Is International Emissions Trading Always Beneficial? *Babiker et al.* December 2002
- 94. Modeling Non-CO₂ Greenhouse Gas Abatement *Hyman et al.* December 2002
- **95**. Uncertainty Analysis of Climate Change and Policy Response *Webster et al.* December 2002
- 96. Market Power in International Carbon Emissions Trading: A Laboratory Test Carlén January 2003
- 97. Emissions Trading to Reduce Greenhouse Gas
 Emissions in the United States: The McCain-Lieberman
 Proposal Paltsev et al. June 2003
- **98**. **Russia's Role in the Kyoto Protocol** *Bernard et al.* Jun '03
- 99. Thermohaline Circulation Stability: A Box Model Study Lucarini & Stone June 2003
- **100. Absolute vs. Intensity-Based Emissions Caps** *Ellerman & Sue Wing* July 2003
- 101. Technology Detail in a Multi-Sector CGE Model: Transport Under Climate Policy Schafer & Jacoby July 2003

REPORT SERIES of the MIT Joint Program on the Science and Policy of Global Change

- 102. Induced Technical Change and the Cost of Climate Policy Sue Wing September 2003
- 103. Past and Future Effects of Ozone on Net Primary Production and Carbon Sequestration Using a Global Biogeochemical Model Felzer et al. (revised) January 2004
- 104. A Modeling Analysis of Methane Exchanges
 Between Alaskan Ecosystems and the Atmosphere
 Zhuang et al. November 2003
- 105. Analysis of Strategies of Companies under Carbon Constraint *Hashimoto* January 2004
- **106. Climate Prediction:** The Limits of Ocean Models Stone February 2004
- **107. Informing Climate Policy Given Incommensurable Benefits Estimates** *Jacoby* February 2004
- 108. Methane Fluxes Between Terrestrial Ecosystems and the Atmosphere at High Latitudes During the Past Century Zhuang et al. March 2004
- **109**. **Sensitivity of Climate to Diapycnal Diffusivity in the Ocean** *Dalan et al.* May 2004
- **110**. **Stabilization and Global Climate Policy** *Sarofim et al.* July 2004
- 111. Technology and Technical Change in the MIT EPPA Model Jacoby et al. July 2004
- 112. The Cost of Kyoto Protocol Targets: The Case of Japan Paltsev et al. July 2004
- 113. Economic Benefits of Air Pollution Regulation in the USA: An Integrated Approach Yang et al. (revised) Jan. 2005
- 114. The Role of Non-CO₂ Greenhouse Gases in Climate
 Policy: Analysis Using the MIT IGSM Reilly et al. Aug. '04
- 115. Future U.S. Energy Security Concerns Deutch Sep. '04
- 116. Explaining Long-Run Changes in the Energy Intensity of the U.S. Economy Sue Wing Sept. 2004
- 117. Modeling the Transport Sector: The Role of Existing
 Fuel Taxes in Climate Policy Paltsev et al. November 2004
- **118. Effects of Air Pollution Control on Climate** *Prinn et al.* January 2005
- 119. Does Model Sensitivity to Changes in CO₂ Provide a Measure of Sensitivity to the Forcing of Different Nature? Sokolov March 2005
- 120. What Should the Government Do To Encourage
 Technical Change in the Energy Sector? Deutch May '05
- **121**. Climate Change Taxes and Energy Efficiency in Japan *Kasahara et al.* May 2005
- 122. A 3D Ocean-Seaice-Carbon Cycle Model and its Coupling to a 2D Atmospheric Model: Uses in Climate Change Studies Dutkiewicz et al. (revised) November 2005
- 123. Simulating the Spatial Distribution of Population and Emissions to 2100 Asadoorian May 2005
- **124. MIT Integrated Global System Model (IGSM) Version 2: Model Description and Baseline Evaluation**Sokolov et al. July 2005
- 125. The MIT Emissions Prediction and Policy Analysis (EPPA) Model: Version 4 Paltsev et al. August 2005
- 126. Estimated PDFs of Climate System Properties Including Natural and Anthropogenic Forcings Forest et al. September 2005

- 127. An Analysis of the European Emission Trading Scheme Reilly & Paltsev October 2005
- 128. Evaluating the Use of Ocean Models of Different Complexity in Climate Change Studies

 Sokolov et al. November 2005
- 129. Future Carbon Regulations and Current Investments in Alternative Coal-Fired Power Plant Designs
 Sekar et al. December 2005
- 130. Absolute vs. Intensity Limits for CO₂ Emission Control: Performance Under Uncertainty
 Sue Wing et al. January 2006
- 131. The Economic Impacts of Climate Change: Evidence from Agricultural Profits and Random Fluctuations in Weather Deschenes & Greenstone January 2006
- 132. The Value of Emissions Trading Webster et al. Feb. 2006
- 133. Estimating Probability Distributions from Complex Models with Bifurcations: The Case of Ocean Circulation Collapse Webster et al. March 2006
- **134. Directed Technical Change and Climate Policy** *Otto et al.* April 2006
- **135. Modeling Climate Feedbacks to Energy Demand:** *The Case of China Asadoorian et al.* June 2006
- 136. Bringing Transportation into a Cap-and-Trade Regime Ellerman, Jacoby & Zimmerman June 2006
- **137. Unemployment Effects of Climate Policy** *Babiker & Eckaus* July 2006
- 138. Energy Conservation in the United States: Understanding its Role in Climate Policy Metcalf Aug. '06
- 139. Directed Technical Change and the Adoption of CO₂
 Abatement Technology: The Case of CO₂ Capture and
 Storage Otto & Reilly August 2006
- 140. The Allocation of European Union Allowances: Lessons, Unifying Themes and General Principles Buchner et al. October 2006
- 141. Over-Allocation or Abatement? A preliminary analysis of the EU ETS based on the 2006 emissions data Ellerman & Buchner December 2006
- **142**. Federal Tax Policy Towards Energy *Metcalf* Jan. 2007
- 143. Technical Change, Investment and Energy Intensity
 Kratena March 2007
- 144. Heavier Crude, Changing Demand for Petroleum Fuels, Regional Climate Policy, and the Location of Upgrading Capacity: A Preliminary Look Reilly, Paltsev & Choumert April 2007
- **145. Biomass Energy and Competition for Land** *Reilly & Paltsev* April 2007
- 146. Assessment of U.S. Cap-and-Trade Proposals Paltsev et al., April 2007
- **147.** A Global Land System Framework for Integrated Climate-Change Assessments Schlosser et al. May 2007
- 148. Relative Roles of Climate Sensitivity and Forcing in Defining the Ocean Circulation Response to Climate Change Scott et al. May 2007
- 149. Global Economic Effects of Changes in Crops,
 Pasture, and Forests due to Changing Climate, CO₂
 and Ozone Reilly et al. May 2007