Learning Objectives

- Define the importance of mathematical modeling in practice
- Understand the theory of capacitated MRP
- Learn how to convert an infinite capacity MRP system into capacitated MRP, using mathematical models (case study)
- Understand how capacitated MRP can optimize cost in the supply chain
- Focus on CPG, with applications in other process industries

The Process Industries

- Have manufacturing operations that include:
 - Mixing
 - Separating
 - Forming
 - Chemical reactions
- Major Industries:
 - Food
 - Chemical
 - Pharmaceutical
 - Paper
 - Biotechnology

Capacitated MRP (CMRP) Defined:

- Optimal lot sizing for dependent demand given capacity constraints
- Raw materials and work in process
- Capacity and cost trade-offs, deep in logistics system
- Reduce disruption of the master production schedule (MPS)

A Simple Diagram of Planning in Consumer Goods Manufacturing

Independent Demand

- Finite capacity
- Optimal cost
- Production sequence

- Finite capacity
- Optimal cost
- Raw material and WIP lot sizing

Why is CMRP Important?

- Business environment of process-oriented firms is logistics intensive
- Infinite capacity logic MRP remains common
- Capacity and cost drives all planning and logistical decisions
- MRP is part of the integrated supply chain

The Supply Chain Model

Some Examples of Typical CMRP Opportunities in the Process Industries:

- Problem 1: Planning for raw material flows in a multi-plant manufacturing network
- Problem 2: Scheduling a key resource that produces WIP for other manufacturing plants
- Both problems represent opportunities to convert an existing infinite capacity MRP system into CMRP using models

Remaining Topics:

- Discussion of <u>problems 1&2</u> in the context of Welch's
- Implementation issues concerning CMRP
- Potential solution methods to achieve CMRP in practice
- The solution Welch's adopted for problems 1 & 2

Welch's, Inc.

- The world's largest processor of Concord and Niagara grapes
- Established in 1869 by Thomas B. Welch
- Owned by National Grape Cooperative
- Harvest nearly 300,000 tons of grapes
- Sales surpass \$600 million
- Growing areas in NY, PA, MI and WA

Company Environment

- Dynamic, uncertain demand
- High customer service requirements
- Make-to-stock inventory policy
- Plants located near growing areas
- Full product line at each plant

Steps in Grape Juice Processing

Planning and Material Management for Grape Juice (problem 1)

- After harvest all grape juice becomes work in process
- Time lags between several important processing steps (settling, concentration, filtering)
- Welch's has a "state of the art" infinite capacity MRP system for decision making and materials management

The Total Grape Crop

What is the proper allocation for each major product group?

Crop vs. Demand

Demand for Grape Juice per Month

Recipe/Transfer Coordination

System Costs Include:

- Interplant transfers of grape juice
 - mode of transportation
 - timing of shipments
- Cost of recipe
 - blending of juice, quality attributes
- Inventory holding costs (carryover and crop storage)
 - space making
 - outside storage

Grape Juice Quality Attributes:

- Fruit solids (sweetness)
- Flavor
- Color
- Acid
- All attributes change with crop size and weather. We keep extensive records on the <u>brix/acid</u> ratio, <u>color</u> and <u>flavor</u>

Capacity Constraints

- Transfer constraint rate of transfer between plants, number of rail cars and location
- Carryover (new crop) and tank space availability
- Material balance constraint

Major Raw Material Decisions Include:

- Recipes to use for major product groups
- Transfers of grape juice between plants
- Control of carryover (year to year)
- Financial impact of recipe and transfer decisions on return per ton
- The mode of transportation (rail or truck) for transfers between plants

Summary Problem 1 - Raw Material Planning

- Complex, dynamic system
- Supply seldom meets demand
- MRP does not account for capacity constraints or cost
- Current system has regenerative logic, requiring six hours per run
- Limited decision-making ability with current "state of the art" MRP system

Scheduling a Key Resource that Produces WIP (Problem 2)

- Concentrate single strength juice
- From between five and twelve different types of juice to concentrate
- Set-up time and cost vary for each type of juice, at each plant
- Current MRP system has infinite capacity logic for lot sizing

Key Resource Deep in the Process Flow of Each Plant

Master Production Schedule

Production Line

MRP (infinite capacity logic)

output

gal of juice to be concentrated

Concentrator (bottleneck process)

Summary <u>Problem 2</u> - Scheduling dependent demand

- Infinite capacity logic
- No optimal cost solution (trade-off between setup and carrying cost)
- Single level, lot sizing problem under limited capacity

The Issues of CMRP

- Lot sizing with dependent or independent demand looks the same
- Trade-off between inventory carrying cost and set-up cost or between set-up cost and capacity (Umble, 1992)
- No traditional methods consider capacity
- Since 1980 researchers developed capacitated approaches

CMRP Implementation Issues

- Multi-level vs. single level
 - deep bills-of-material cause problems
- Large scale vs. small scale
 - math solutions require specialized knowledge
- WIP lot sizing vs. raw material lot sizing
 a single lot sizing method often used
- Multi-plant vs. single plant
 - MRP was designed for single plant operation

Viability of CMRP in Practice

- Capacity management is one of the most important issues to practitioners (Berry and Lancaster, 1992)
- Practitioners use the simplest lot sizing method, lot for lot (Haddock and Hubicki, 1989)
- Simple methods are poor performers (Choi, Malstrom and Tsai, 1988)

Why is CMRP Viable in the Process Industries?

- Survey did not include process-oriented firms, no distinction between discrete and processoriented mfg.
- Process industries reject MRP in favor of other methods based on process structure (Taylor and Bolander, 1994)
- An integrated supply chain requires finite capacity at each link

Traits of Process Manufacturing

- Wide range of environments
 - continuous vs batch process
- No universal solutions
 - wide differences between different segments
- High customer service expectations
 - 99% percent cases ordered vs cases shipped
- Dynamic demand
 - sudden changes in demand

Flat Bill of Material Structures and CMRP

- Single level local optimal solution
- Modify existing MRP systems heuristics
- Specific lot sizing methods focus
- More chance for multi-plant CMRP simplification of BOM structure
- V-shaped product families influence system design

Solution Methods for CMRP

- Mathematical programming
 - classic approach to capacitated problems
 - longest history of research
- Heuristic (rule of thumb)
 - few theorems in support of solutions
 - sometimes very specific to problem
- Theory of constraints
 - new view of manufacturing
 - no documented applications in the process industries

CMRP and Mathematical Programming

- The "sifter" method (Dzielinski and Gomory, 1965)
- Multi-level lot sizing
- Harris Corporation semiconductor sector
 - Leachman, Benson, Liu and Raar (1996)
 - replace infinite capacity MRP
 - decomposition solution method
- Several years before widespread use in the process industries

CMRP and Heuristics

- Very quick solutions
- Testing under different conditions required
 - design of experiments
- The work of Allen, Martin, D'Itri and Schuster
 - 1997, 1998 and 1999
- Dixon-Silver heuristic (1981)
- Solve using Excel plus visual basic

Solutions Welch's Adopted to <u>Problems 1 & 2</u>

- Adapt existing MRP and cost accounting systems using additional "auxiliary" models to achieve CMRP in practice (Geoffrion, 1976)
- Download data into spreadsheets from the minicomputer
- Use a combination of mathematical programming and heuristics as the "auxiliary" model

Solution <u>Problem 1</u> - Raw Material Planning

- An auxiliary model introduced that interacts with the MRP and cost accounting systems
- The Juice Logistics Model (JLM)
- Recursive solution method
- Formulated as a linear programming problem
- Spreadsheet optimizer (What's Best)

Recursive Solution Method

The Juice Logistics Model

i = month, where i=1,2,...I

j = product group, where j=1,2...J

k = plant, where k=1,2,...K

Decision Variables:

TS(i,j,k) = Grape juice shipped to customers in month i, for product group j at plant k (in tons)

TI(i,k,m) = Grape juice transferred into plant k from plant m during month i (in tons)

TO(i,k,m) = Transfers of grape juice out of plant k into plant m during month i (in tons)

EI(i,k) = Ending inventory of grape juice for month i at plant k (in tons)

Costs:

CT(i,k) = Cost of transporting grape juice in month i from plant k (cost per ton)
CR(j,k) = Cost of recipe for product group j at plant k (cost per ton)
CS(12,k) = Carrying cost of storing grape juice in month 12 at plant k (storage cost per ton)

Given Parameters:

TU(i,j,k) = Total grape juice used (from NGCA plus juice from outside the cooperative) in product j at plant k in month i

(Note - Input comes from the existing MRP System (tons))

a(i,j,k) = Maximum percentage of grape juice (from NGCA) in product group j for plant k in month i

(percentage expressed as a decimal)

b(**i**,**j**,**k**) = Minimum percentage of grape juice (from NGCA) in product group j for plant k in month i

(percentage expressed as a decimal)

MI(k) = Minimum ending inventory for plant k, where i = 12 (tons)OL(i,k) = Limit on outbound shipments for plant k in month i (tons)SL(k) = Limit on grape juice sold for plant k (tons)Ivalue(k) = Initial value of grape juice inventory at plant k (tons).C(i,k) = Crop received in month i at plant k (tons).

Objective Function

Objective Function:

 $Min[\sum_{k=1}^{K}\sum_{j=1}^{J}\sum_{i=1}^{J}CR(j,k)TS(i,j,k) + \sum_{k=1}^{K}\sum_{j=1}^{J}\sum_{m\neq k}^{M}CT(i,m)TI(i,k,m)$

Subject to

(1) Beginning inventory

EI(0,k) = Ivalue(k) For all k

(2) Material balance

$$EI(i,k) = EI(i-1,k) + \sum_{m \neq k}^{M} TI(i,k,m) - \sum_{m \neq k}^{M} TO(i,k,m) + C(i,k) - \sum_{j=1}^{J} TS(i,j,k)$$

For all i,k

(3) Tons sold maximum recipe

 $TS(i,j,k) \le a(i,j,k)TU(i,j,k)$ For all i,j,k

(4) Tons sold minimum recipe

 $TS(i,j,k) \ge b(i,j,k)TU(i,j,k)$ For all i,j,k

(5) Minimum ending inventory

 $EI(12,k) \ge MI(k)$ For all k

(6) Transfer constraint

$$\sum_{m \neq k}^{M} TO(i,k,m) \le OL(i,k) \quad \text{For all } i,k$$

(7) Transfer balance

TO(i,k,m) = TI(i,m,k) For all i,k,m; $k \neq m$

(8) Tons sold constraint for each plant

$$\sum_{i=1}^{I} \sum_{j=1}^{J} TS(i, j, k) \le SL(k)$$
 For all plants k

Solution <u>Problem 2</u> - Scheduling Dependent Demand

- Heuristic solution Allen, Martin and Schuster (1997)
- Embed heuristic into infinite capacity MRP system for capacitated lot sizing
- Use Excel spreadsheet for calculations
- The heuristic considers capacity, cost and is very quick

TABLE 1 - Inputs to the Scheduling Heuristic

	CAPACITY	HOLDING	SET-UP	SET-UP
	ABSORBED	COST	COST	TIME
<u>ltem</u>	(hrs/1000 gal)	(\$/1000 gal)	(\$/set-up)	(hrs)
Niagara	2.0	\$10	\$200	1.0
Apple	2.0	\$10	\$220	1.0
Cranberry	1.5	\$10	\$150	1.0
White	1.5	\$10	\$300	2.0
Concord	4.0	\$10	\$2,000	4.0

Table 2

Demand Forecast - Gal. of Concentrate Req. per Time Period

	Time Peric	b								
ltem	Wk 1	Wk 2	Wk 3	Wk 4	Wk 5	Wk 6	Wk 7	Wk 8	Wk 9	Wk 10
Niagara	3.0	7.6	18.9	24.2	17.6	4.4	6.2	8.4	12.6	13.4
Apple	4.4	1.1	4.0	5.5	4.1	4.3	4.3	4.4	1.1	4.0
Cranberry	0.0	0.0	0.0	0.0	2.3	0.9	1.9	1.1	0.0	0.3
White	0.7	0.8	1.6	0.8	0.8	0.0	0.0	0.0	0.8	0.8
Concord	0.0	0.0	0.0	0.2	0.1	0.2	0.2	0.2	0.9	2.9

Table 3 - Planned Production per Time Period in Gal.

	ltem	Wk 1	Wk 2	Wk 3	Wk 4	Wk 5	Wk 6	Wk 7	Wk 8	Wk 9	Wk 10
	Niagara	10.1	29.5	19.5	0.0	16.6	0.0	6.2	21.0	0.0	13.4
	Apple	9.5	0.0	0.0	13.9	0.0	0.0	9.8	0.0	0.0	4.0
	Cranberry	0.0	0.0	0.0	0.0	3.2	0.0	3.0	0.0	0.0	0.3
	White	4.7	0.0	0.0	0.0	0.0	0.0	0.0	0.8	0.0	0.8
	Concord	0.0	0.0	0.0	0.5	0.0	0.0	1.3	0.0	0.0	2.9
PRODUCTION CAPACITY (hrs/wk)		60	60	40	40	40	0	60	60	0	60
REMAINING CAPACITY (hrs/wk)		9.7	0.0	0.0	5.2	0.0	0.0	11.3	13.8	0.0	2.9
ADDITIONAL CAP. REQUIRED		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Table 4 - Ending Inventory per Time Period in Gallons

<u>ltem</u>	Time Period									
	Wk 1	Wk 2	Wk 3	Wk 4	Wk 5	Wk 6	Wk 7	Wk 8	Wk 9	Wk 10
Niagara	7.1	29.0	29.6	5.4	4.4	0.0	0.0	12.6	0.0	0.0
Apple	5.1	4.0	0.0	8.4	4.3	0.0	5.5	1.1	0.0	0.0
Cranberry	0.0	0.0	0.0	0.0	0.9	0.0	1.1	0.0	0.0	0.0
White	4.0	3.2	1.6	0.8	0.0	0.0	0.0	0.8	0.0	0.0
Concord	0.0	0.0	0.0	0.3	0.2	0.0	1.1	0.9	0.0	0.0

Implementation Issues

- Support and software
- validity of the models
- end-used computing and programming
- The application of visualization to model formulation in spreadsheets
- Structured modeling (Geoffrion, 1987)

Conclusion

- CMRP will become a reality
- Practical methods exist to adapt MRP into a pseudo CMRP
- Next generation of MRP solutions will be defined by capacity
- More intensive use of mathematics in logistics and operations management