HIERARCHY OF PRODUCTION DECISIONS

Comparison of Different Scheduling Approaches

	OPTIMAL	SIMULATION	HEURISTIC	MIXED	
HOLD TIME		Х	Х	Х	
QUEUE TIME		Х	Х	Х	
CUSTOMER SERVICE		Х		Х	
FORCAST BIAS		Х		Х	
SET-UP COST	Х		Х	Х	
HOLDING COST	Х		Х	Х	
OVERTIME COST	Х		Х	Х	
CAPACITY	Х		Х	Х	
PRODUCTION LOT SIZING	G X	L	Х	Х	
PRODUCTION SEQUENCE	X	L	Х	Х	
CUSTOMER DUE DATE	Х	Х	Х	Х	
FAMILY STRUCTURE	Х			Х	

X = Functional L = Limited

Visual Interactive Simulation Attributes:

- *Visual output*: portraying the dynamic behavior of the model
- User Interaction: allowing the user to interact with the running model
- *Visual Input*: where a model can be created visually instead of being data driven

Finite Capacity and Sequencing

- Very important problem
- Hard to get the "best" solution
- We use a two step approach with success
- Nearest neighbor with variable origin heuristic

	To State ^{**}								
From	0	1	2	2	4	E	(
State	0	1	2	3	4	5	6		
0 (Process Idle)	*	150	110	120	100	130	100		
1 (White Grape)	150	*	90	100	100	150	100		
2 (Fruit Harvest)	110	500	*	500	500	500	500		
3 (Grape Juice)	100	200	70	*	100	200	100		
4 (Grape Apple)	100	200	70	100	*	500	100		
5 (Harvest Blend)	150	150	90	100	100	*	100		
6 (Grape Raspberry)	100	200	70	100	100	200	*		

 Table 1.
 Set-up Cost Matrix

**State numbers are used to simplify the discussion.

Capacitated MRP

- Huge area for future research
- Integration of the supply chain
- Implementation issues
- New mathematical ideas on "optimal" cost solutions for finite capacity

Safety Stock Planning and Forecast Bias

- Forecast error seldom is normally distributed
- There are few finite planning models that include safety stock
- Mathematical models account for bias