# **Closing The Loop Of The Digital Thread**





Joe Pritchett



F-35 is Re-Inventing Aerospace Programs

This Program is Different.....



# ...VERY Different

#### **Different in Everything We Do**

- International Partnering
- Prime Contractor & Partners
- Multi-Service Platform
- Manufacturing Concept
- Commonality Across Versions
- Industrial Participation
- Communication
- Best Value Replaces Offset

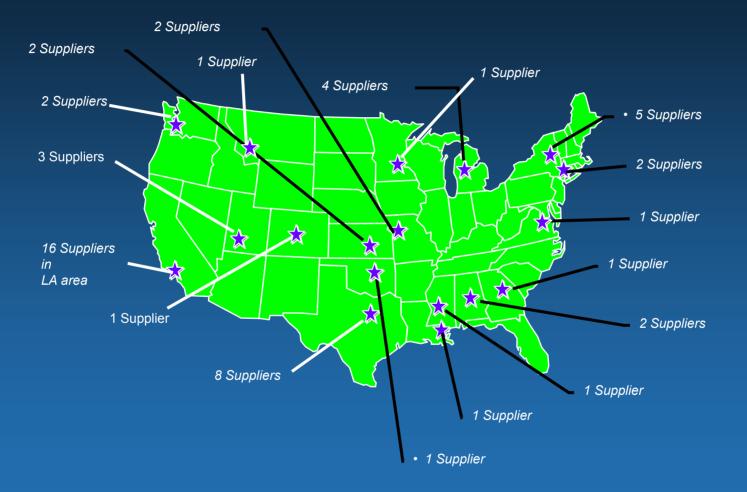


### Environment – Radically Different Production Requirements



Next Generation Affordable Fighter




F-35 Rate Production System
1 Day Takt Time
JIT/Point of Use Delivery
Standard Work Instructions
Mixed Model Assembly Line

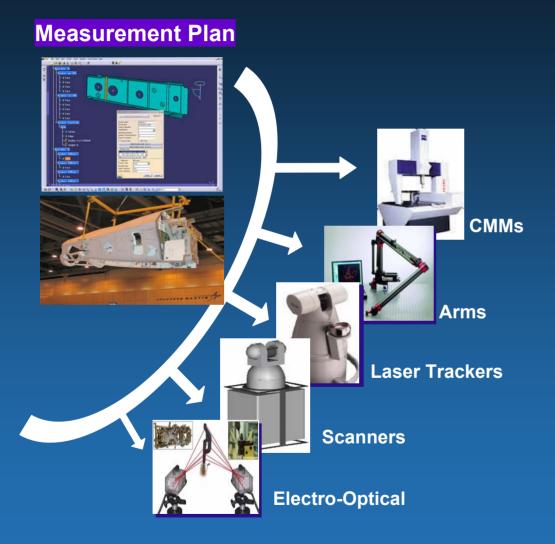
**5 Month Assembly Span** 

- Standard Work for every task
- Snap Together vs. Hand Crafted
- Moving line in Final Assembly
- Predictable Supply Chain
- Predictable Detail Part Dimensional Control
- Product Designs Must Be Tolerant of Manufacturing Process Variations
- Supplied Parts Must Meet Assembly Requirements
- Processes Must Be Capable and Stable



#### JSF Airframe Domestic Suppliers






## JSF Airframe International Suppliers





### **Global Standardization Challenge**



#### Design

- Standardize Tolerances
- Standardize Datum Schemes
- Standardize KC Definition
- Standardize Inspection Plans

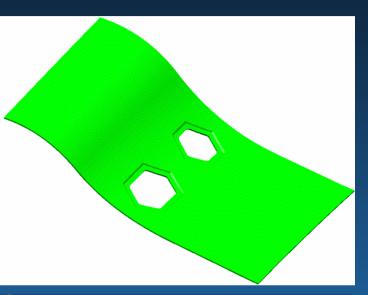
#### Supplier

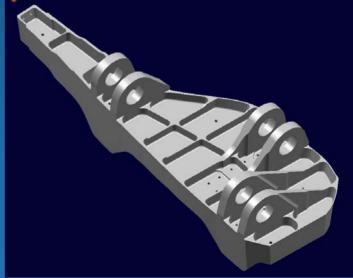
- Communication
- Standardize Inspections
- Performance Assessment

#### Quality

- Standard Reporting & Metrics
- Standardize Supplier
   Feedback
- Influence Design & Source Selection

## Airframe KC Selection/Management Process



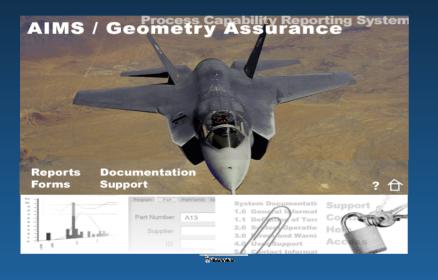




### Challenge – Parts Must Meet Assembly Requirements



- Dimensional Integrity
- Many of the disruptions in the Assembly process are a direct result of part feature not meeting dimensional requirements.
- A complex part can have thousands of dimensional requirements, but how do you communicate what is important at Assembly?







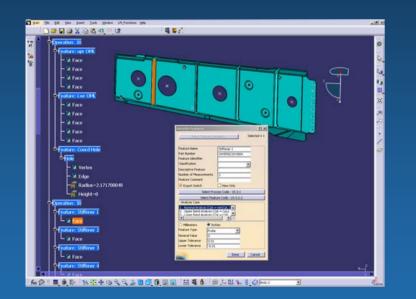

### Step 1 – Define and Understand Process Performance



#### **Enterprise Process Capability Database**



- Selected the AIMS suite developed by Boeing & Metronor
- Provides the ability group by Part Family, Part Number, Part Feature, Process, Program, and Supplier
- Reporting function provides basic
   management information type reports
- Reports are accessed via the Web


#### **Collaboration — One Set of Shared Information**



### Step 2 – Standardize the Measurement Process



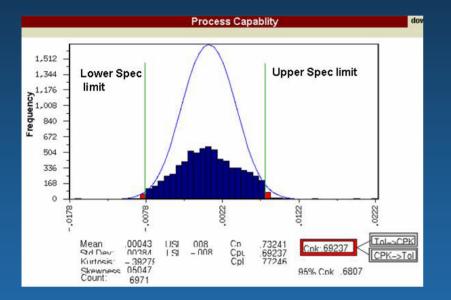
#### Measurement Plan



- Define a measurement approach to ensure that a part is measured the same way no matter where it is built
- Focus attention on Key Characteristics and assembly integration
- Require actual measurement result data to be sent in ahead of the part
- This allows us to efficiently populate a Process Capability Database
- Improves communication between design & build



### Step 3 – Manage the Process to Improve




- Manage the processes proactively "Information Rich not Data Rich"
- The Supply chain is a process; not just a subcontract management task
- Inspection/verification must be managed like any other process

#### **Stable and Predictable Supply Chain**



#### Key Characteristics Data Usage



- Updates Machining Design Standard
- Trade study support for reducing designed in shim gap
- A-1 troubleshooting/problem resolution
- Reconciling Loss Function estimates with actual performance
- Getting initial insight to Supply Chain capabilities
- Data is available to support Corrective & Preventative action tasks for both Suppliers and Internally

#### More than simply a data collection exercise

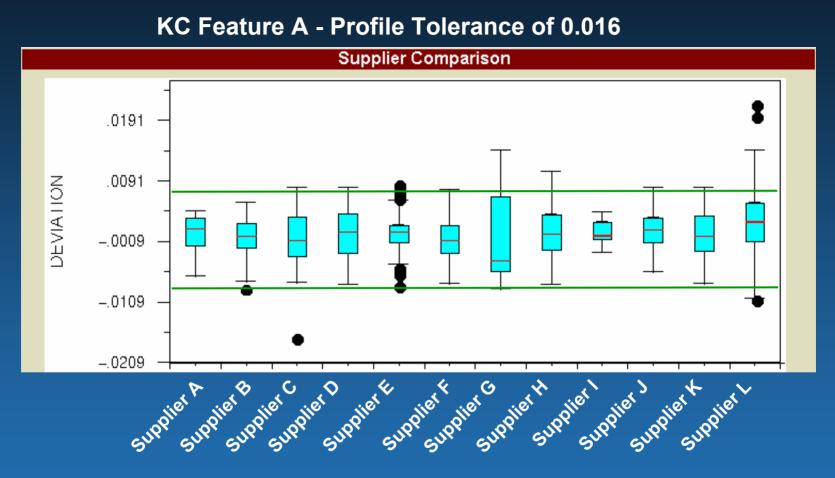


## Detail Part Process Capability Metrics - KC's



#### Supplier: All Process: Multi-Axis Machining Product Family: Detail Parts Material: Aluminium/Ti Date: March 2005

|     |                       |           |        |                              | Data<br>cce: AIMS | Database ( | )3 / 2005 |
|-----|-----------------------|-----------|--------|------------------------------|-------------------|------------|-----------|
| Ref | Key<br>Characteristic | Tolerance | Range  | Actual<br>% Points<br>Passed | Ср                | Cpk        | Status    |
| 1.  | KC Feature A          | 0.016     | 0.0388 | 99.27%                       | .73               | .69        |           |
| 2.  | KC Feature B          | 0.020     | 0.0304 | 92.7%                        | .62               | .48        |           |
| 3.  | KC Feature C          | 0.016     | 0.0246 | 93.4%                        | .65               | .39        |           |
| 4.  | KC Feature D          | 0.020     | 0.0104 | 100%                         | 1.68              | 1.54       |           |
| 5.  | KC Feature E          | 0.020     | 0.0165 | 100%                         | 1.15              | .82        |           |
| 6.  | KC Feature F          | 0.016     | 0.0159 | 100%                         | .85               | .84        |           |
| 7.  | KC Feature G          | 0.020     | 0.0114 | 100%                         | 1.51              | 1.1        |           |




#### Corrective / Preventive Action

- Get Process Control Documents in place to identify process improvements
- Program to Nominal



### KC Feature - Supplier Comparison



The Green line are Specification limits

Who do You want to support Your Moving Assembly Line?



# Questions

X-35C