Optimizing Product Line Design

MIT Data Center Conference
 December 7, 2005

Alexandre Belloni
Robert Freund
Matthew Selove
Duncan Simester

MIT Sloan School of Management

Agenda

1. Product line design exercise
2. Research on design optimization methods

Timbuk2 Has A Problem

Timbuk2's Problem

1. Price: $\$ 70-\$ 100$
2. Size: small or large
3. Color: black or red
4. Sloan logo
5. Handle
6. PDA holder
7. Cell phone holder
8. Mesh pocket
9. Sleeve closure
10. Reinforcing "boot"

Exercise 1

1. Which five bags will maximize Timbuk2's aggregate profit?
2. The market: MBA students
3. We will provide you with:

- The menu of product features
- The cost of each product feature
- The features of the 3 competing bags

4. Groups of 4

Exercise 1

> Change the prices and features in the yellow box.
$>$ Try to design bags that will maximize profits.
> Be sure to consider the three competing Coop bags.

Set price from $\$ 70$ to $\$ 100$ in $\$ 5$ increments.
Enter "1" to add a feature, "0" or "Delete" to remove it.

Feature $\mathbf{1}$ $\mathbf{2}$ $\mathbf{3}$ Feature Cost Price $\$ 70$ $\$ 70$ $\$ 70$ $\$ 70$						
						$\$ 30$
					$\$ 0.00$	
Sloan Logo					$\$ 2.00$	
Handle						$\$ 3.50$
PDA Holder						$\$ 3.00$
Cell Phone Holder						$\$ 3.00$
Mesh Pocket						$\$ 2.00$
Velcro Flap						$\$ 3.50$
Boot						$\$ 4.50$
Bag Profitability	$\$ 35.00$	$\$ 35.00$	$\$ 35.00$	$\$ 35.00$	$\$ 35.00$	

Feature	Coop's Three Bags		
	A	B	C
Price	$\$ 70$	$\$ 85$	$\$ 100$
Large Size			1
Red Color			1
Sloan Logo			1
Handle			1
PDA Holder		1	1
Cell Phone Holder		1	1
Mesh Pocket		1	1
Velcro Flap		1	1
Boot		1	1

Really 2 Problems

1. Measurement: which product features do customers prefer?
(customer behavior)
2. Optimization: how should firms act? (firm behavior)

Solution Methodology

1. Measurement: use Conjoint Analysis to measure customer preferences
2. Optimization: use Discrete

Optimization Methods to determine how firms should act

Timbuk2 Data

Timbuk2 Data

- 2001 study involving MIT Sloan students
- 324 students participated (92\% response)
- 16 paired comparison questions

Results For 1 Student

Features	Regression Coefficients
High Price	-0.7
Large Size	82.0
Color Red	-47.0
With Logo	12.2
With Handle	3.2
PDA Holder	-16.1
Phone Holder	32.5
Mesh Pocket	-43.9
Full Closure	61.3
With Boot	94.2

Different for each student

With Handle 3.2
PDA Holder -16.1
Phone Holder 32.5
Mesh Pocket -43.9
Full Closure 61.3
With Boot 94.2

Exercise 2

1. Which five bags will maximize Timbuk2's Aggregate profit
2. Use the same groups and focus on the same market
3. Additional information:

- Importance weights for the 10 features for each of the 324 students
- A spreadsheet calculating the profit from any combination of five bags

Exercise 2

> Change the prices and features in the yellow box. $>$ Try to maximize profits.

Try to maximize profits.										
-	-	\square								
Profits:	\$11,576									
Set price from $\$ 70$ to $\$ 100$ in $\$ 5$ increments.										
Enter "1" to add a feature, "0" or "Delete" to remove it.										
	Firm's five laptop bags									
Feature						Feature Cost	Feature	Coop's Three Bags		
	1	2	3	4	5			A	B	C
Price	\$95	\$80	\$100	\$75	\$100		Price	\$70	\$85	\$100
Large Size	1		1		1	\$3.50	Large Size			1
Red Color	1					\$0.00	Red Color			1
Sloan Logo	1		1			\$2.00	Sloan Logo			1
Handle	1		1	1	1	\$3.50	Handle			1
PDA Holder	1	1	1			\$3.00	PDA Holder		1	1
Cell Phone Holder	1	1	1			\$3.00	Cell Phone Holder		1	1
Mesh Pocket	1	1	1			\$2.00	Mesh Pocket		1	1
Velcro Flap	1	1	1			\$3.50	Velcro Flap		1	1
Boot	1	1	1			\$4.50	Boot		1	1
Bag Profitability	\$35.00	\$29.00	\$40.00	\$36.50	\$58.00		\# Purchased	15	1	3
\# Purchased	53	44	133	57	18	305				
Profits Generated	\$1,855	\$1,276	\$5,320	\$2,081	\$1,044	\$11,576				

Exercise 1 Profit Maximization Results

Team	Profits
Two by eight	$\$ 7,338$
Clue "<"	$\$ 6,721$
Jeff Bagwell Live	$\$ 6,500$
Sandbaggers	$\$ 6,468$
Seven	$\$ 5,176$
3MC	$\$ 3,419$
JAIK	$\$ 2,643$
Average	$\$ 5,466$

Exercise 2 Profit Maximization Results

Team	Profits
Clue "<"	$\$ 11,672$
Two by eight	$\$ 11,586$
JAIK	$\$ 11,443$
Sandbaggers	$\$ 11,409$
Jeff Bagwell Live	$\$ 11,126$
3MC	$\$ 10,444$
Seven	$\$ 9,316$
MBO	$\$ 7,833$
Average	$\mathbf{\$ 1 0 , 6 0 4}$

Optimal Profits: \$12,226

Chart of Profit Maximization Results

Earnings

$\$ 14,000$
$\$ 12,000$
$\$ 10,000$
$\$ 8,000$
$\$ 6,000$
$\$ 4,000$
$\$ 2,000$
$\$ 0$

Optimal Solution

Feature	Firm's 5 Laptop Bags				
	T1	T2	T3	T4	T5
Price	$\$ 80$	$\$ 95$	$\$ 95$	$\$ 100$	$\$ 100$
Large Size					
Red Color					
Sloan Logo					
Handle					
PDA Holder					
Cell Holder					
Mesh Pocket					
Velcro Flap					
Reinforcing Boot					

Enumeration won't work

- There are $7 \times 2^{9}=3,584$ possible laptop bag types.
- The number of possible combinations of five different bags is:
$\frac{3,584 \times 3,583 \times 3,582 \times 3,581 \times 3,580}{5 \times 4 \times 3 \times 2 \times 1} \approx 4.9 \times 10^{15}$
- Enumerating and evaluating the profit value of each combination is not a workable solution strategy.

Sample Optimization Problem

	Net Present Value (\$million) (at 18\% per year)	First-Year Investment Cost (\$million)	LINUX Transportable	Managers Required
A	$\$ 17$	$\$ 5$	1	3
B	8	5	1	3
C	11	4	1	1
D	14	2	0	3
E	18	1	0	1

- 5 potential projects
- First-year budget: $\$ 11$ million
- At least 2 projects must be LINUX transportable
- Elite software project managers available: 9

Solution

Which projects should the firm undertake?
Answer: A, C, E

What is the Net Present Value of the projects?
Answer: $\$ 46$ Million

Sample Optimization Problem

Project	Net Present Value (\$million) (at 18\% per year)	First-Year Investment Cost (\$million)	LINUX Transportable	Managers Required
A	$\$ 17$	$\$ 5$	1	3
B	8	5	1	3
C	11	4	1	1
D	14	2	0	3
E	18	1	0	1
F	18	1	1	2
G	16	3	1	3
H	18	6	0	2
I	9	4	1	3
J	20	9	0	0
K	9	1	1	1
L	19	8	0	3
M	13	1	0	3
N	16	4	0	3
O	11	4	1	1
P	9	6	1	3
Q	10	8	1	1
R	17	1	0	1
S	13	4	1	2
T	6	8	1	1

- 20 potential projects
- First-year budget: $\$ 85$ million.
- At least 6 projects must be LINUX transportable
- Elite software project managers available: 28

Solution???

Which projects should the firm undertake?

What is the Net Present Value of the projects?

Possible Solutions

- Tracy's feasible plan has NPV = \$167 million
- Mark's feasible plan has NPV = \$164 million
- Tom's feasible plan has NPV = $\$ 175$ million
- Laura's feasible plan has NPV = $\$ 188$ million
- Should we go with Laura's plan? How good is it really?

Decision Variables

$X A=1$ if we undertake project $A, 0$ if we do not
...
...
$\mathrm{XT}=1$ if we undertake project $\mathrm{T}, 0$ if we do not

Objective Function and Constraints

Maximize $\mathrm{NPV}=17 \mathrm{XA}+8 \mathrm{XB}+\ldots+6 \mathrm{XT}$
s.t. (budget:)
(LINUX:)
(managers:)

$$
\begin{aligned}
5 X A+5 X B+\ldots+8 X T & \leq 85 \\
X A+X B+\ldots+X T & \geq 6 \\
3 X A+3 X B+\ldots+1 X T & \leq 28
\end{aligned}
$$

$\mathrm{XA}, \mathrm{XB}, \ldots, \mathrm{XT}$ are binary (0 or 1)
variables

Solution

Decision Variable	Optimal Value
XA	1
XB	0
XC	1
XD	1
XE	1
XF	1
XG	1
XH	1
XI	0
XJ	1
XK	1
XL	1
XM	0
XN	1
XO	1
XP	0
XQ	1
XR	1
XS	1
XT	1

Solution

Which projects should the firm undertake?
Answer: A, C, D, E, F, G, H, J, K, L, N, O, Q, R, S, T

What is the Net Present Value of the projects?
Answer: \$233 million

What is the optimal resource utilization?
First-year budget: $\$ 69$ million < \$85 million
LINUX: 9 > 6
Managers: 28 = 28

Guarantee of Optimality

- Tracy's feasible plan has NPV = $\$ 167$ million
- Mark's feasible plan has NPV = \$164 million
- Tom's feasible plan has NPV = \$175 million
- Laura's feasible plan has NPV = \$188 million
- Optimal NPV = $\$ 233$ million

Without a guarantee of optimality, we cannot know if a proposed plan is very good or not.

Product Line Design Optimization Model

- Decision Variables
- Objective Function
- Constraints

Decision Variables

- Bag variables:
- List all bag types: $7 \times 2^{9}=3,584$ different types
- $Y_{j}=1$ if the firm produces bag $j, 0$ otherwise
- $\mathrm{j}=1, \ldots, 3,584$
- Student purchase variables

$$
\begin{aligned}
& P_{i j}=1 \text { if student } i \text { purchases bag } j, 0 \text { otherwise } \\
& i=1, \ldots, 324 \text {, and } j=1, \ldots, 3,584
\end{aligned}
$$

- Total of 1,161,216 decision variables

Constraints

- The firm will produce exactly 5 laptop bags:

$$
Y_{1}+Y_{2}+Y_{3}+Y_{4}+\ldots+Y_{3,584}=5
$$

- Other constraints that enforce presumed consumer behavior:
- Each student will purchases exactly one laptop bag from those offered by the firm and those offered by the Coop
- Each student will purchase the laptop bag that maximizes his/her individual utility
- Total of 3,483,973 constraints in model

Objective Function

- Maximize Profit = \sum (Profit to firm generated by each student's utilitymaximizing decision)
- The firm's profit generated by a given student depends on which bag the student purchases, and on the cost of each feature of that bag

Traditional Solution Methods...

- The binary optimization model includes over 1 million decision variables and over 3 million constraints
- We ran the model in OPL Studio (custom software for optimization)
- Software ran out of memory and crashed
- Running in Excel would be even more hopeless

...Traditional Solution Methods

- We tried a half-dozen other integer optimization formulations of the problem. None could be solved by existing methods and software.

A Sophisticated Solution Method

- Use "Lagrangian Relaxation" to reduce the number of constraints and to help to produce an optimality guarantee
- Use "Branch and Bound" to avoid having to do exhaustive enumeration

Comparison With Previous Research

- Academic researchers have been working on the optimal product line design problem for over twenty years.
- Previous research has relied on complete enumeration to guarantee optimality.
- Using Lagrangian relaxation with branch and bound, we have solved the problem presented in this exercise.

Size of Problems Solved in Previous Research

Our Sophisticated Method Is Impractical

- Our sophisticated method is extremely complex. Most firms would not have the ability to implement it.
- The method takes about 7 days to run.
- However, by providing a guaranteed optimal solution, the sophisticated method can benchmark more practical methods.

Practical Methods

- Coordinate ascent seeks local improvement by changing individual product features. The algorithm terminates when no further local improvement is possible.
- Simulated annealing is similar to coordinate ascent, except that it sometimes accepts negative changes. This enables the algorithm to escape from a local optimum and continue searching for a better solution.
- The product-swapping heuristic starts with a random solution and seeks local improvement by swapping new products into the solution. The algorithm terminates when no local improvement is possible.
- Genetic algorithms start with a population of random solutions and seek better solutions with a process that mimics natural selection.

Comparison of Methods

	Lagrangian Relaxation	Coordinate Ascent	Simulated Annealing	Product- swapping Heuristic	Genetic Algorithm
Trial 1	12,226	12,021	12,226	12,219	12,226
Trial 2		11,971	12,226	12,219	12,226
Trial 3		11,850	12,226	12,219	12,226
Trial 4		11,760	12,226	12,219	12,226
Trial 5		11,640	12,226	12,219	12,056
Trial 6		10,848	12,226	12,219	12,056
Trial 7		10,780	12,226	12,219	12,056
Trial 8		10,519	12,226	12,219	12,041
Trial 9		10,481	12,226	12,219	12,025
Trial 10	10,297	12,226	12,210	11,913	
Avg. earnings	$\mathbf{1 2 , 2 2 6}$	$\mathbf{1 1 , 2 1 7}$	$\mathbf{1 2 , 2 2 6}$	$\mathbf{1 2 , 2 1 8}$	$\mathbf{1 2 , 1 0 5}$
\% of optimum	100.0%	91.7%	100.0%	99.9%	99.0%
Avg. run time	7 days	0.2 sec	128.7 sec	14.1 sec	16.5 sec

Comparison of Methods

- Relatively simple methods such as product-swapping, simulated annealing, and genetic algorithms are very effective even though they do not produce guarantees
- In general, the longer a method takes to run, the better it performs. The outlier in this trend is product swapping, which achieves near-optimal earnings in about 14 seconds.
- The most successful methods continue to perform well even when there is moderately large error in part-worth estimates.

Some Limitations

- Part-worth and conjoint analysis might not model consumer behavior with sufficient accuracy
- Cost assessments might not be sufficiently accurate
- The premise of the optimal product line design model does not consider competitive response to new product introductions

Lessons

- Measurement is necessary but not sufficient
- The same is true for optimization
- Measurement precedes optimization
- Formal optimization models may look unwieldy, but can be very effective

Questions???

