Global Takeoff of New Products Role of Economics, Culture, & Country Innovativeness

Gerard J. Tellis

(with Deepa Chandrasekaran, Peter Golder, Stefan Stremersch, Eden Yin)

Engineering Marketing Science December 7th, 2005

- New products either
 - takeoff: success
 - never takeoff: failure
- We rarely see even growth

Sales of Microwaves for 3 Major Countries

Research Questions

- Is Takeoff a distinct phenomenon?
- Does it vary by country?
- If so, does economics or culture explain variation?
- Can we model and predict takeoff?
- Should firms use sprinkler or waterfall strategy?
- In which countries to launch first?

Takeoff involves growth of about 300%

• Takeoff requires enormous resources

• Takeoff marks beginning of success

Contribution

- Bass diffusion model captures new product adoptions assuming takeoff & slowdown
- We try to predict takeoff and slowdown:
 - 1. Takeoff in US, *Marketing Science* (1997)
 - 2. Takeoff in Europe, *Marketing Science* (2003)
 - **3**. Global Takeoff (in progress 2006)

- Takeoff
 - The transition from introduction to growth in the product life cycle
 - First major turning point in curve
 - First large increase in growth rate
- Time to Takeoff
 - Period between introduction & takeoff

Reason for Takeoff

- From Management of Technology
 - New products introduced on technological waves
 - Initially well known but expensive, not popular
 - When benefit/price ratio rises above competing technology, sales take off
- Takeoff is binary, time dependent event

Technological Life Cycles

Measuring Takeoff

- Problem:
 - Growth rates high when base sales low
 - Need standard across countries
- Solution: use growth rate & penetration
 - Using Heuristic: 1st year growth > 50% when penetration > 1%
 - Threshold: adjusts continuously for both

Threshold of Takeoff

Penetration

Advantages of Threshold Rule

Provides

- A simple metric for analysts
- A standard for comparisons across countries
- A heuristic of takeoff for managers

Success in Identifying Takeoff

- For US, over 90%
- For Europe, over 95%
- For World in progress (now using a 2% rule)

Modeling Takeoff

- Hazard Model:
 - = Probability of takeoff given it has not
 - -=f(baseline hazard plus effect of
 explanatory variables)
- Reasons for using: Hazard Model
 - Models binary time dependent event takeoff
 - Gives nonlinear baseline probabilities
 - Allows for time varying explanatory variables
 - Allows for censored data

Parametric Hazard Model

 $h\{t|X(t)\} = \{f(t)|X(t)\}/\{S(t)|X(t)\} \\ = h_0\{t|X(t)\} g(X(t))$

We use a logistic hazard function, for which: $h\{t|X(t)\} = \{\lambda \alpha(\lambda t)^{\alpha-1}\}/\{1+(\lambda t)^{\alpha}\}$

> $\alpha = 1/\sigma$ = characteristic of distribution $\lambda = e^{-\beta X}$ = hazard ratio

Why Time-to-Takeoff May Vary

- Reasons for variation: characteristics of
 - Country
 - Product category
 - Firm's strategy: price
- Country itself can be explained by
 - Economics
 - Culture
 - Information access

Variables

- Economic variables
 - Economic wealth
 - Economic progressiveness
 - Openness of economy
 - Economic role of women
- Cultural variables
 - Uncertainty avoidance
 - Religion
 - Work Climate

- Information Access
 - Media intensity
 - Mobility
 - Education
- Category
 - Market penetration
 - Prior takeoffs
 - Year of introduction
 - Electronic (entertain) vs
 K&L (work)

Measures for Variables

• <u>Economic variables</u>

- Economic wealth GDP
- Economic progress GINI
- Openness of economy Imp/Exp
 EU member
- Economic role women % work
- <u>Cultural variables</u>
 - Uncertainty avoidance Hofstede

climate

- Religion % protest
- Work Climate

- Information Access
 - Media intensity
 - Mobility
 - Education % school

- <u>Category</u>
 - Market penetration lag pen
 - Prior takeoffs number
 - Year of introduction year
 - Electronic vs K&L dummy

index

index

Three Studies

- 1. US: 1 country x > 40 categories
- 2. Europe: 16 countries x 10 categories
- 3. Globe: 40 countries x > 20 categories

European Data

- Countries:
- Categories:
- Total:
- Source:

16 Western European
10: 4 entertainment, 6 work
137 x about 30 years on each
Economist Intelligence Unit
Euromonitor, GFK, UN, EC

Libraries, Firms, Friends

Categories

Category	Countries
Entertain/Electronic	
Computer	12
CD Player	8
VCR	16
Color TV	3
Work/K&L	
Microwave	16
Dryer	15
Freezer	15
Refrigerator	16
Dishwasher	15
Washers	15

- Will time-to-takeoff vary?
- Why will time-to-takeoff vary?

Poll: For Europe

- Will time-to-takeoff across countries be:
 - Strong
 - Weak
 - None?
- Which variables will explain time to takeoff?
 - Economics
 - Culture
 - Category?

Regarding Countries?

- Which group will take off first?
 - Large or small economies?
 - Latin/Mediterranean, mid-Europe, Scandinavian?
- Which of 16 countries will be first?

Results: Mean Time to Takeoff					
Country	Time To Takeoff	Νο	Country	Time To Takeoff	No
Denmark	3.7	9			
Norway	4.0	7			
Sweden	4.4	8			
Finland	4.6	8			
Belgium	5.0	9	Spain	7.4	8
Austria	5.1	7	Italy	7.9	8
Swiss	5.3	3	UK	8.5	6
Ireland	5.8	4	Portugal	9.3	7
Germany	6.3	4	France	9.4	7
Netherlands	6.5	8	Greece	9.8	6

	By	<i>Time to T</i> <i>Country C</i>	Takeoff Groups
<u>Group</u>	<u>Years</u>	<u>Categories</u>	<u>St Dev</u>
Scandinavian	4.1	32	3.3
Mid Europe	5.8	41	4.5
Mediterranean	8.4	35	6.3

Category Effects Very Strong Time to Takeoff by Categories

<u>Class</u> <u>C</u>	ountries	Years	St Dev
Entertainmer	nt 33	2.1	0.2
Work	76	7.7	2.5
Overall	109	6.1	3.2

What Variables Explain Takeoff (From Hazard Model)

- Three variables very strong and robust:
 - Type of product category
 - Prior takeoffs in other countries
 - Market penetration
- Culture important but not strong
- Economics, size of country, density of population, unimportant

Estimates of Hazard Model (with 4 variables & 3 factors)

Variables	Takeoff-Prob	" <u>t-stat</u> "
Work Products	78	5.2
Penetration _(t-1)	.75	-2.2
Prior Takeoffs	.34	-3.8
Uncertainty Avoidance	.20	-2.9

J J2

50% (vs null model without distribution)

Assessing Models' Predictive Ability

- Re-estimate model excluding 1 target category each time
- Forecast explanatory variables of target category
 - At introduction: from mean of other categories
 - One-year-ahead: by mean changes over time
- Predict target category
- Compare actual vs. predicted
 - For 1st predicted takeoff (error of 1.2 yrs)
 - At introduction (error of 1.9)

Strategic Implications 1

• Use baseline Hazard as guide to decide whether or not to pull the plug

When to Pull the Plug? Use Baseline Hazard of Takeoff

Strategic Implications 2

- Managing takeoff
 - Simulate hazard of takeoff for various levels of marketing variables (e.g., price)
 - Choose level that gives optimum time of takeoff

Strategic Implications 3

Introducing new products

- Use waterfall strategy: introduce first in
 - Innovative regions (e.g., Scandinavian)
 - Small innovative countries (e.g., Denmark)
- Reasons
 - Lowers risk
 - Increases speed of takeoff
 - Provides learning for big markets

Mean Lead & Lags in Year of Takeoff By Country Groups

<u>Group</u>	Lead (Yrs)
Scandinavian	2.6
Mid Europe	1.3
Mediterranean	-3.3
Denmark	3.1
UK	0.4
Greece	-7.0
Range	10

Mean Lead in Takeoff vs Introduction

<u>Country</u>	Takeoff	Intro
Denmark	3.1	1.0
Sweden	2.7	2.1
UK	0.4	3.2
France	-0.4	2.9
Italy	-2.1	1.1

Conclusions for Europe

- Takeoff varies distinctly by country
 - Scandinavian countries distinctly earlier takeoffs
 - Mediterranean countries distinctly late
 - Yet firms introduce first in English-speaking countries, large economies, use sprinkler strategy
- Hazard model can predict takeoff
 - Category characteristics have strong predictive value
 - Use for deciding when to pull the plug
 - Use for controlling takeoff

Extension to Global Takeoff

- Over 20 categories
- Over 47 countries
- 402 product x category combinations

- Post 1990

• DVD player, Digital camera, MP3 player, MD player, Hand-held computer

-1960-1990

• Microwave oven, VTR, Personal computer, CD player, Video camera, Cell phone, Internet

– Pre 1960

• Dishwasher, Freezer, Dryer, Washing machine

Japan	Brazil
South Korea	Venezuela
India	Chile
Thailand	Mexico
Indonesia	Canada
Philippines	US
China	
Vietnam	
Italy	
Norway	Egypt
	Morocco
Portugal	
Ireland	
	Japan South Korea India Thailand Indonesia Philippines China China Italy Norway Portugal Ireland

Patterns by Country

- Japan, Scandinavian countries most "innovative"
- North American, major mid-European countries highly innovative
- Latin countries across continents similar
- South-East Asian countries rank higher than Mediterranean countries
- Emerging Asian economies lag despite rapid economic growth

Time-to-takeoff by Category

- Big differences across categories
- Mean across all categories is 9 years
 - 7 years for entertainment products
 - 13 years for work products

Conclusions of Global Study

- Takeoff varies distinctly by categories
 - Entertainment much shorter than work
 - Big time x region x category interactions
- Convergence in takeoff across countries

 esp for entertainment products in recent years
- Yet takeoff varies distinctly by country
 - Japan & Scandinavian c. lead world
 - Especially for work products

- Big differences across countries
 Waterfall strategy has benefits
- Big differences across products categories
- Model can predict takeoff
 - Do not assume linear growth
- Model can help control takeoff
 - Price most critical

Thank you!