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Introduction 

We live in a world filled with data. The underlying success of business depends on the 

flow of data and information for effective management. Since the 1960’s, the advent of low cost 

data collection methods such as bar codes along with advances in database technology have  

drastically improved the amount, quality, and timeliness of data in all organizations [41].  This 

long-term trend has contributed to significant improvements in productivity, especially in the areas 

of logistics, supply chain management, quality assurance, marketing science, and the financial 

management of complex organizations. 

Rapidly emerging technologies such as Auto-ID and the Electronic Product Code (EPC) 

combined with interactive sensor networks will create even larger data streams of greater 

complexity.  By some estimates, the amount of data generated each year is growing as much as 

40% to 60% for many organizations [34].  All indications are that the pace of data generation is 

accelerating.  EMC, a leading manufacturer of data storage devices recently noted “…companies 

are struggling to figure out how to turn all those bits and bytes from a liability into a competitive 

advantage [34].” 

Dealing with increasing volumes of data will require innovative standards and information 

architectures to improve integration and communication between hardware, software, and 

business entities. However, the bigger question remains “How are we going to analyze and make 

sense of large volumes of data?”  

A new research initiative at MIT called The Data Center addresses the important issue of 

generating value from data. The mission of The Data Center is to create innovative ways of 

making sense of data through new computer languages and protocols.  Semantic Modeling 

provides a general description of these new technologies that will eventually connect data and 

various mathematical models together for improved analysis, business decision-making, and 

better day-to-day operations within large and small systems [9] [42].  Greater connectivity will 
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spur new waves of productivity as managers learn to take advantage of the models and data 

within and outside of their organizations. This development represents the next logical step for 

the Internet. 

The specific activities of The Data Center involve the research and development of a new 

computer language, called “M” that will achieve Semantic Modeling in practice.  Designed as an 

open source code, M serves as the base system capable of linking models to other models, data 

to models, and data-to-data.  All of these activities will occur through an Intelligent Modeling 

Network that spans organizations.  The conceptual design of M is such that network growth, in 

terms of adding additional models and data, occurs at minimal cost to end-users.  This lowers the 

marginal cost of expansion, thus creating an incentive for active participation.  A large intelligent 

modeling network will offer great value to industry. 

This Cutter Business Intelligence report discusses the framework, details and 

background of proposed standards for a language and protocol that will enable computers to 

describe and share models and to assemble new models automatically from a general repository 

[7] [8]. This will substantially increase the Clockspeed [17] of modeling, and the computational 

efficiency of applying models to perform the functions of “sense,” “understand,” and “do,” that 

comprise the underpinning of creating smart objects within supply chains along with other 

business activities of importance in achieving competitive advantage.  The new computer 

language infrastructure includes open standards with two specific purposes 1) communication of 

models between computers to create interoperability, and 2) to run distributed models across the 

Internet.   

In a sense, this effort is a step beyond linking the physical world, the underlying concept 

that has made Auto-ID technology successful.  Networks, of physical objects or abstractions like 

models, share the premise that leaps in productivity arise from the free flow of information.  

Creating an Intelligent Modeling Network will accelerate the flow of information to the great 

advantage of many businesses and form the backbone of a new type of Internet.  Simply put, 

forging stronger links between models and data results in productivity gains for business. 



 5

It is important for IT managers to understand the direction of various types of connective 

technology research, including Semantic Modeling and M, as a means of planning for future 

computing systems.  Some element of this planning becomes inevitable if firms desire to get the 

greatest benefit from the explosive growth in data available within businesses and entire supply 

chains.  Computer languages and architectures currently exist that could enable immediate intra-

organizational implementation of interoperable systems on a limited scale.  Understanding these 

technologies is an important first step in organizing computing functions to accommodate the 

increasing amounts of data expected during the next several years.  This exclusive report forms a 

solid base for IT professionals to gain insight into the emerging field of Semantic Modeling. 

The next several sections describe initial research on designing a network for abstract 

objects like models, including the underpinnings of Semantic Modeling and an overview of M, the 

new computer language designed to create an integrated modeling environment. 

The final part of this report describes three prototypes of Semantic Modeling currently 

under development at The Data Center.  The first prototypes deal with Enterprise Resource 

Planning Systems (ERP), retail operations (lot sizing for short life cycle products), and agricultural 

modeling (harvest risk) [43].   

 

The Modern Context of Modeling 

There is no question that recent developments such as Auto-ID technology [35] [6] [12] 

will further increase the amounts of data available for the analytics of business decision-making 

by using computing systems that sense and interact with the physical world.  In the field of 

logistics management alone, these computing systems open new opportunities in terms of track 

and trace [25] [39],  theft detection [26], improved service parts inventory management [24], and 

the control of production and logistics within military [14], and civilian supply chains.  However, 

analyzing the large volume of raw data (including real-time telemetry) produced by Auto-ID 

technology in an orderly way requires the additional use of new mathematical models to provide 

representations and understanding. 
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Managers from all business disciplines often comment that the process of building 

mathematical models lacks productivity.  Implementing mathematical models is complex, time 

consuming and requires advanced technical capabilities and infrastructure.  Although there is a 

strong history of applying models to help managers make decisions about complex systems, 

specialists often develop these comprehensive models internally within business organizations or 

academia.  This is commonly an application specific job and the same model building technique 

must be re-invented afresh for each new situation.  Though internal development can lead to 

significant breakthroughs, this approach depends on trial and error, mathematical intuition, and 

an extensive knowledge of technical publications.  

Beginning in the 1980’s, software companies started to embed models into software 

packages installed on network servers, enabling organizational wide modeling ability.  This 

approach improved the productivity of modeling, but limited users to a relatively small set of 

proprietary methods for problem solving.  In all cases, internal development, or packaged 

software, models have become highly structured with few opportunities for creative applications.  

Proprietary systems also reduce the possibility of sharing of models between business 

applications that exist outside the computing environment under which the original model 

implementation took place. 

Part of the problem traces to traditional thinking about information theory.  Computers 

today are faster, memory cheaper and bandwidths plentiful, yet the tasks performed on these 

machines, such as email, documentation, and data storage, are nearly the same as ten years 

ago.  Computers primarily store, manipulate, and transmit data to people.  Unless there is direct 

human interaction, computers essentially do nothing.   

Yet computers have far greater unrealized capability.  With current technology, it is 

possible to design large-scale Internet systems that might allow computers to store and analyze 

vast quantities of information and to share these results automatically with other computers 

throughout the world.  Networks of computers have the potential to operate independently or 

collectively, without human interaction. 
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The failure to take full advantage of the computer’s potential lies not in the hardware or 

communications technologies, but in lack of languages and standards that allow systems to share 

data and interface models across multiple applications and domains.  The consensus view is that 

this lack of integration is a barrier to increased productivity for a wide range of situations. 

Semantic Modeling challenges the long-standing philosophy of that emphasizes 

individual effort in formulation and implementation of mathematical models.  The ultimate goal is 

to build an integrated modeling structure for accelerating the development of new applications. 

 

Recent Developments That Show the Future 

Some important premises of Semantic Modeling already exhibit signs of practical 

implementation.  These include 1) greater integration of data and information, 2) improved search 

capabilities, and 3) a relative approach to information and data organization. 

Amazon has recently announced “A9” a new tool that can accomplish searches of 

information located on HTML web pages in addition to the text of thousands of books [22].  

Eventually, A9 hopes to incorporate the ability to do even more specialized searches by 

accessing other proprietary databases.  The Chief Executive of A9 has also commented that he 

wants to help curb information overload by allowing people to organize the web in a more 

personal way.  With A9, each user can have their own view of information gathered by Internet 

searches. 

All of the activities of A9 point toward greater integration, improved search capabilities 

and a relative approach to organizing information.  Other developments, not confined to Internet 

searches for information, also point toward greater integration.  

In the US economy, there are billions of embedded microcontrollers in cars, traffic lights, 

and air conditioners that give specialized instructions for control based on sensing specific 

aspects of the environment.  All of these microcontrollers act in total isolation from one another.  

Ember, a company located in Cambridge, MA, has developed a “mesh network” that holds the 

potential of allowing all of these microcontrollers to communicate with each other [11].  One 

practical application of mesh network technology involves the integration of home electrical 
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systems without the need for hardwiring.  Ember markets a device that allows a homeowner to 

turn off all electric lights through a single switch that does not require re-wiring.  There are almost 

endless opportunities to establish communication connections for a wide variety of 

microcontrollers. 

Just as Internet searches cannot reach all potentially useful information, and 

microcontrollers lack integrated communication within a network, the science and application of 

mathematical modeling often occurs in isolation with only occasional reporting at conferences and 

in academic journals.  Often these means of sharing ideas are somewhat closed with little 

information reaching the business world.  With the explosion of data streams, models provide a 

useful means to make sense of data.  In the past, the lack of widespread use of models has been 

dependent on several factors including an inability to apply models to data quickly.  Overcoming 

these limitations is a complex task.  One option to meet this challenge involves building networks 

based on semantics.  The next section explores this idea in greater depth. 

 

Semantic Based Internet Search 

The existing standards of the Internet do not provide any semantics to describe models 

precisely or to interoperate models in a distributed fashion.  For the most part, the Internet is a 

“static repository of unstructured data” that is accessible only though extensive use of search 

engines [16, p. 377].  Though these means of finding data have improved since the inception of 

the Internet, human interaction is still required and there are substantial problems concerning 

semantics.  In general, “HTML does not provide a means for presenting rich syntax and 

semantics of data [16, p. 7].”  

For example, one of the authors of this article recently did a search for “harvest table, 

oak” hoping to find suppliers of home furniture.  Instead, the search yielded a number of 

references to forestry and the optimal time to harvest oak trees.  Locating the URLs relating to 

furniture required an extensive review of a number of different web sites.  This process of filtering 

can only be accomplished though human interdiction and is time consuming. 



 9

With inaccurate means of doing specific searches based on one semantic interpretation 

of data, information, or models, it is nearly impossible for the Internet to advance as a productive 

tool for modeling. 

 

Several Types of Webs 

The problem of semantics arises from the fact that keywords are the means used to 

describe the content of web pages.  Each keyword can have multiple meanings, creating a 

situation of great difficulty when attempting to accomplish an exact search.  The difficulty 

increases by an order of magnitude when attempting to do phrase-based searches.  Without 

exact search capability, it is impossible to create any sort of machine understandable language 

for the current Web of Information. 

Even though the search engine issue has not been resolved, industry forces are pushing 

for a new type of Internet characterized as the Web of Things.  Driven by developments in Auto-

ID technology and ubiquitous computing, the Web of Things aims to link physical objects to the 

internet using Radio Frequency Identification (RFID) tags as real-time communication devices 

and to “shift from dedicated computing machinery (that requires user’s attention, e.g., PC’s) to 

pervasive computing capabilities embedded in our everyday environments [46].” 

Aiding this effort is EPCglobal, Inc.,1 an international standards organization formed by 

the Uniform Code Council (UCC), and European Article Numbering (EAN) Association (known in 

the industry as GS1).  The group administers the Electronic Product Code (EPC) numbering 

system, which provides the capability to identify an object uniquely.  With serial identification for 

physical objects, searches accomplished through Internet search engines or proprietary IT 

infrastructures will become much more effective in finding an exact match.  This provides the 

ability to do track and trace across entire supply chains and other computerized functions 

important to logisticians.  Linking the physical world, using Auto-ID technology and ubiquitous 

                                                 
1 EPCGlobal, inc.  http://www.epcglobalinc.org/ 
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computing, will form the basis for a revolution in commerce by providing real-time information and 

enabling smart objects [40] [44] [45].   

As impressive as the effort to create the Web of Things has become, it still does not 

address the question of semantics in describing objects beyond the use of a simple serial 

number.  There exist a large number of abstractions, such as mathematical models, that cannot 

be characterized by a unique serial number no matter how sophisticated the syntax.  Without the 

ability to provide unique identification of an abstraction, the Internet will serve little useful purpose 

in linking mathematical models together in a way similar to the manner that the Web of Things will 

eventually link the physical world.   

In the future, the definition of a model and the sharing of models though a network will 

become as important as the model itself.  To accomplish this higher goal, the Internet must 

become a Web of Abstractions, in addition to a Web of Information and a Web of Things. 

Creating a Web of Abstractions requires a semantic definition of models that is precise 

and can be machine understandable.  Given this capability models can be searched, organized, 

categorized and executed – sequentially and in parallel – creating multiple, large-scale synthetic 

environments.  These synthetic modeling environments will exist only in virtual reality and offer 

the potential for creating a dynamic meta-structure for specific classes of models.  

Through a Web of Abstractions, models can be matched much more quickly to practical 

problems, along with the available data, and shared beyond single end-user applications.  This 

capability is of great value to both practitioners and researchers who are interested in gaining the 

maximum value in modeling logistics for practical decision-making. 

 

The Representation of Model Schema 

Previous research in computer science consistently states that the missing structure 

needed to create a Web of Abstractions is an ontology.  Simply stated, “an ontology specifies 

what concepts to represent and how they are interrelated [16, p. 34].”  This structure provides 

order when conducting searches and serves the important purpose of creating a crude form of 

intelligent behavior.  For example, one group of researches involved in the early aspects of using 
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computers to create Artificial Intelligence concluded that “…the clue to intelligent behavior 

whether of men or machines, is highly selective search, the drastic pruning of the tree of 

possibilities explored [15, p. 6].”   Properly constructed, the ontology reduces search time for 

abstractions creating a free flow across a network.  With the thousands of models that do not find 

widespread application in practice, the capability to conduct a quick and accurate search 

improves the chances that more applications will occur. 

In using an ontology to organize abstractions like mathematical models for machine 

understandable searches, there are two important aspects to consider. 

First, the ontology assumes that a semantically precise definition of an abstraction 

(model) exists.  Absence of this in the current schema presents a problem in that the 

classification of mathematical models depends on keywords that might have different meanings 

under different contexts e.g., planning and scheduling. 

Second, the ontology also serves an indirect definitional function in that meaning arises 

by the way one model is connected or related to other models.  This is important in visualizing the 

big picture of the relationships between different types of models.  It also drastically decreases 

search time by reducing the number of possibilities in reaching an exact semantic match.  

However, there are significant drawbacks concerning the establishment of an ontology that is 

robust enough to include all mathematical models in existence. 

 

The Limitations of Representing Models Using Ontologies 

By definition, ontologies are rigid and inflexible, and assume one absolute definition 

exists for each knowledge element.  The idea is to establish a set structure of definitions and 

relationships between different abstractions (models) that are canonical and eternal.  This means 

that the usefulness of an ontology for modeling depends on intensive study and rigorous 

examination of the canon put forth.  It is unrealistic to believe that any independent body of 

academics or practitioners could formulate an all-inclusive canon that would stand the test of 

time.  The ontology approach is a throwback to the philosophy of Scholasticism that dominated 

Western thought during the high middle ages.  History has proven that canonical structures, 
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meant to organize and communicate knowledge, often have the unintended outcome of restricting 

the adoption of further innovations that exist outside the bounds of the canon. 

In addition, rigid ontological structures lack the ability to adapt based on inductive 

reasoning.  There is no ability to learn automatically from specific examples that occur through 

time and generalize to form a new element of knowledge contained in the ontology.  This was the 

major limitation of expert system architectures and a leading reason for the decline in the 

application of expert systems in practice.  

A final major drawback involves the difficulty in merging separate, distinct ontologies into 

a whole.  For all the advantages of a rigid structure in organizing abstractions (models) and 

reducing search time, there is no easy translation or interface to integrate two different classes of 

models.  We believe that advances will only take place through the free exchange between widely 

disparate fields of modeling.  Without this ability, efforts in establishing computer languages to 

share and interoperate models will be difficult.  

 

A Relative Approach to Model Representation 

To overcome the disadvantages of traditional ontologies in computer science, we 

advocate the abandonment of a single, unified structure to represent abstractions (models).  The 

reality is that the representation of objects and their interrelation is almost entirely dependent on a 

person’s viewpoint.  In other words, as opposed to a single ontological representation for models, 

we propose a more flexible means of description, so that others may construct their own 

particular representations and unique ways for connecting them together. 

Furthermore, our approach provides the means for building dynamic, “on-the-fly” model 

taxonomies; that is hierarchical organizations of models that are generated as a function of an 

individual’s point of view.  In our system, there is no one classification scheme (ontology), but 

multiple.  Simply put, several ontologies can exist simultaneously with no contradictions. 

With this approach, a model is an atomic element that may subscribe to one or more 

classification hierarchies.  These taxonomies may be mutually agreed industry standards – 

essentially commercial data dictionaries, proprietary schemes or dynamically generated 
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groupings for particular applications.  In all cases, the representations, relations, and organization 

of models will be dynamic and configurable to the task.  Later in this article, we provide an 

example of model representation that is integral to our view of the schema needed to create the 

Web of Abstractions. 

In the next two sections, we discuss the practical and theoretical aspects of combining 

advances in computer science with the existing body of mathematical models that have been 

developed by logistics researchers over a period of many years.  The prospect of doing Semantic 

Modeling for business applications on a large scale draws upon the intersection between 

computer science and the practice of modeling.  We anticipate other disciplines such as 

linguistics, graph theory, and discrete mathematics will be important in the development of 

Semantic Modeling.   

 

Semantic Modeling 

Most would agree that modeling is a craft industry analogous to the production of 

automobiles prior to the advent of the assembly line.  Although models are ubiquitous 

management tools, they are, for the most part, isolated from one another.  In other words, a 

model from one domain, such as weather forecasting, does not interact with another, such as 

logistical systems. 

The reason for this is obvious.  Until very recently humans were the only ones who built, 

used, and shared models.  Our limited cognitive ability naturally restricts the number and diversity 

of models we can accommodate.  Computers, on the other hand, have the ability to execute and 

communicate models with vast numbers of other computers.  With ever increasing processing 

power, data storage and networking bandwidth, the computing grid is poised to revolutionize our 

ability to understand and manage the physical world.  The Internet with its standards and 

languages provides the backbone for communication, but does not provide the mechanism for 

describing and integrating diverse models.  The future is a form of modeling on demand similar to 

other efforts in establishing a computer grid that resembles electric power distribution [28]. 
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Our goal is to turn modeling into a mass production system based on standardization, 

scale, and interoperability.  In summary, this means that a Semantic Modeling language capable 

of achieving this functionality must include: 

 

1. “A formal syntax and formal semantics to enable automated processing of their content 

[16, p. 8].” 

2.  “…a standardized vocabulary referring to real world semantics enabling automatic and 

human agents to share information and knowledge [16, p. 8].”    

 

Achieving this goal will mean that practitioners can produce models in a timely manner 

with greater productivity and relevance.  This anticipates a new era for computers in terms of 

insight and awareness and it implies the ability to organize data, and define the inputs and 

outputs of models in a semantically precise way. 

The mechanism we put forth to mass produce models and create interoperability draws 

inspiration from current efforts to improve the search capabilities for the Web of Information.  The 

World Wide Web Consortium (W3C) is responsible for initiating select efforts to improve overall 

web search capabilities.2  Some of the initial work conducted by W3C forms a reference base for 

our research in developing and implementing a Web of Abstractions. 

Each abstraction (model) has unique elements that can be defined just as a language 

has a specific syntax and grammar.  Defining these elements alone will be of no benefit unless 

there is a protocol, or computer language, to communicate and execute the elements of models 

across a large network like the Internet.  Our efforts in establishing Semantic Modeling are 

grounded in the idea of having data and models defined and linked in a way that can be used by 

machines not just for display purposes, but also for automation, integration and reuse across 

various applications.  Accelerating the reuse of model elements across vast networks of users will 

lead to the mass production of models and great benefit to practitioners.  In addition, distributed 

modeling, a set of geographically separated model elements working simultaneously in parallel, 
                                                 
2 W3C Semantic Web,   http://www.w3.org/2001/sw/ 
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adds additional prospects for large-scale parallel computing.3   This capability will improve the 

utilization of desktop computers and provide grids of almost unlimited modeling power. 

Though the W3C provides something called a Resource Definition Format (RDF) that 

defines the basics of representing machine processable semantics [16, p. 9], no formal computer 

language has been put forth that enables the sharing of models or doing large-scale modeling in 

parallel.  The next section gives an overview of our vision for a computer language and protocols 

that achieves Semantic Modeling.  

 

System Architecture 

The fundamental idea is to design a family of standards that enable the creation of 

models that integrate automatically into an executing synthetic environment.  In this way, 

developers can formulate models within their particular areas of expertise and know that the 

resulting models will interoperate in a shared environment.  We believe it is possible, with 

sufficient care in the definition, to create such a language that is both precise and expressive in 

its description yet shows constraint in its breadth to ensure compatibility. 

The goal is to create synthetic environments that receive data from the physical world (for 

example through Auto-ID technology) and then produce inferences, interpretations, and 

predictions about the current and future states of the environment.   

These interpolated or extrapolated state data are essential for any automated decision 

system.  In other words, the estimated environmental states support networks of decision-making 

algorithms so that they can make informed decisions and deliberate plans (that feed back to the 

physical world.)  This type of modeling is essentially the underlying basis for automated control, 

monitoring, management, and planning. 

Currently in the initial stages of research and development at The Data Center, Dave 

Brock is credited with the idea of creating M.  Comprised of several important elements, the 

purpose of M is to serve as the fundamental language to link models and data together. 

                                                 
3 Software Agents for Distributed Modeling and Simulation, 
   http://www.informatik.unirostock.de/~lin/AnnounceIEEE/node2.html   
 



 16

Fundamentally, M resembles peer-to-peer networking.  In this type of architecture, 

computers running M can communicate and share models and data as equals.  There are no 

servers.  The important element in achieving peer-to-peer sharing is a new vision of how to attach 

a semantically precise definition to a model or data element, along with a series of computer 

languages and protocols to group, sort, interconnect, and match semantic definitions in a 

machine understandable way.  With this approach, the relationships between a large group of 

models and data, all pre-assigned precise semantic definitions through M, provide a mapping of 

connections between models and other models, data and models, and the connections of data-to-

data, all within a network.  Deeper meaning arises through the visualization of these connections, 

either individually or group-to-group.  Figure 1 provides a simple representation of model 

connections where the output of one model can become the input of another model. 

 
 

Figure 1 – Connecting Models 
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To achieve these connections, the structure of M must be comprised of two languages 

and two protocols.  A comprehensive dictionary of words and various meanings is also included.  

The following provides brief definitions for each element of M. 

 

Data Modeling Language (DML) is a semantic for describing modular, interoperable 

model components in terms of individual outputs, inputs and data elements. 

Data Modeling Protocol (DMP), once a connection between models and data is 

established, the DMP coordinates the communication sequence between the computing 

machines that host models in terms of outputs and inputs. 

Automated Control Language (ACL) establishes the connection between models and 

data based on DML (descriptor of inputs, outputs, and data) and the ACP, which locates the 

appropriate connections. 

Automated Control Protocol (ACP) helps model outputs and inputs locate one another 

within a network, even though the individual models may exist in different host systems and 

organizations.  The ACP identifies potential connections and takes priority over the DMP, which is 

a coordinating activity after achieving connections through the ACL. 

Dictionary a common resource containing words with multiple meanings.  The dictionary 

will utilize established sources such as the Oxford English Dictionary, WordNet, and various 

specialty dictionaries from the medical field, operations, logistics and other disciplines.  

 

With M, model inputs, outputs, and data elements are described through DML by using 

words from the dictionary to express a precise semantic.  In cases where a word has multiple 

meanings, only one definition will be used.  Because multiple words, akin to a phrase or simple 

sentence, best provide accurate descriptions of outputs and inputs for models and data elements, 

we envision the use of graphs to express syntax thus giving a precise semantic meaning. 

The graphs produced through M to represent outputs, inputs, and data elements will 

need to be of the form that operations, such as sorting, can be applied using computer code.  The 

ACP helps to locate graphs with commonalities that are resident in a network.  These 
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commonalities might include 1) similar structure 2) an output of one model that might match the 

input of another model, 3) a connection between a data element and the inputs for a particular 

model, or 4) a connection between two or more data elements contained within the network. 

Upon enumeration of appropriate matches, the ACL makes a connection and the DMP 

coordinates operation in parallel across the separate computing platforms.  We anticipate the use 

of graph theory, linguistics, and discrete mathematics to refine the conceptual framework for M 

and Semantic Modeling. 

The basic premise is that models and data are similar to building blocks where a precise 

semantic definition aids in making connections.  As a practical matter, we are currently examining 

the use of models and data contained in computer spreadsheets as a means of demonstrating 

the initial feasibility of M and Semantic Modeling.  After prototype testing, M will become a 

standard set of languages and protocols.  

It is important to note that M substantially differs from the Semantic Web.  The goal of M 

is to build an interoperable environment specifically for models and data that depends on a 

common dictionary to define words used for semantic definitions, but not complete ontologies that 

attempt to categorize knowledge elements.  The relative, distributed approach of M is in contrast 

to the Resource Definition Format Schema (RDFS) put forth by the Semantic Web, which 

includes a syntactical convention and a “schema, which defines basic ontological modeling 

primitives on top of RDF [16, p. 9].”  

In summary, Figure 2 shows the interaction of the major components of M. 
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Figure 2 - Proposed Distributed system using DML, DMP, ACL and ACP 
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An Example from Logistics 

Researchers at the 2001 Logistics Educators Conference presented an interesting article 

about the implication of advanced planning and scheduling systems (APS) on supply chain 

performance [10].  The article also contained an appraisal of changes needed in academic 

curriculums to ensure students receive proper education about the role of APS in supply chain 

management.  Based on these comments, we decided to investigate the literature of finite 

capacity scheduling (FCS), an important sub-segment of APS, to find an initial example for 

demonstrating the aspects of Semantic Modeling. 

In general, there are many solution methods for FCS.  A non-exhaustive list includes; 

mathematical programming, simulation, heuristics, genetic algorithms, neural networks, theory of 

constraints and expert systems.  Of this list, the first three are frequently found in practice with the 

most common being heuristics. About 80% of commercial scheduling packages use heuristic 

solution approaches [30].   

A detailed analysis reveals that each model for FCS exhibits primal properties based on 

the solution method or algorithms employed [37].  Table 1 summarizes the capabilities of each 

model in its pure application without modification. 
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Table 1 - Comparison of Different Scheduling Approaches 

Attribute Math Programming Simulation Heuristic 

Hold Time  X X 

Queue Time  X X 

Customer Service  X  

Forecast Bias  X  

Set-up Cost X  X 

Holding Cost X  X 

Overtime Cost X  X 

Capacity X  X 

Production Lot Size X  X 

Production Sequence X  X 

Customer Due Date X X X 

Family Structure X   

 

          X = Functional 

 

Understanding that each model class for FCS listed in Table 1, math programming, 

simulation, or heuristics, does not fully address all attributes commonly found in commercial FCS 

problems is important in supporting the belief that future advances will come from combining 

existing models in new ways to address a wider range of attributes. 

 A recent article provides substantial background about FCS from the perspective of 

practical implementation, including several references to a group of models that provide different 

FCS capabilities [38].  Essentially the entire group deals with the same scheduling problem.  This 

body of research provides insight for a simple example that highlights how elements from 

different models can combine to produce new models with better performance, thus 
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demonstrating the importance to practitioners and researchers of developing a computer 

language and protocols to facilitate this process with some degree of automation. 

The example set forth below deals with various types of models used to schedule 

production for manufacturing lines common to the consumer goods industry.  With high demands 

for customer service, it is important for consumer goods companies to schedule the production of 

end items with proper consideration given to the risk of being out of stock and the capacity 

constraints that might limit production in times of peak demand.  Based on statements made in 

the literature, all of these models were implemented at the same consumer goods company 

during a span of fifteen years.  The following provides a description of each model: 

  

MODEL A - Deterministic Simulation [36] – With bias adjusted safety stocks that use 

customer service levels as an input, production planning occurs for each item independently.  All 

items run on a production line are summed to give a total capacity load.  This model initially 

assumes infinite capacity is available for production and does not consider set-up or inventory 

carrying cost.  However, the model does provide a method for safety stock planning that 

considers dynamic forecasts and the impact of forecast bias in planning safety stock levels. 

 

MODEL B - Mathematical Programming [1] – Exploiting the fact that consumer goods 

have a family structure defined by package size, production can be planned using a two-tier 

hierarichal structure where product families are sequenced with disaggregation taking place to 

form end item schedules.  This approach provides optimal solutions based on cost and utilizes an 

innovative mathematical formulation that yields near instantaneous solutions to mixed integer 

math programming problems. 

 

MODEL C - The MODS Heuristic, Sequence Independent [2] – An approach to 

scheduling using the Modified Dixon Silver (MODS) method to calculate near optimum production 

schedules based on inventory and set-up costs, and inventory set-up time. 
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MODEL D - The MODS Heuristic, Sequence Dependent [13] – Building on the Modified 

Dixon Silver method, this approach utilizes the nearest neighbor variable origin (NNVO) heuristic 

as a second step to sequence production based on a “from-to” table of changeover costs 

between items.   

 
Relationship to Proposed System Architecture 

By looking at working models as an aggregation of interchangeable elements, the 

possibilities for identifying new combinations becomes very large.  Using our system definitions, 

the DML would describe various elements of models, such as the bias adjusted safety stock 

method used in MODEL A, that are modular and interoperable.  The ACP provides a mechanism 

for various model elements to locate each other across a network like the Internet.  Analyzing the 

examples of MODELS A, B, C, and D, it appears that the developers located model elements as 

a function of many years of study in the FCS area combined with mathematical intuition. 

In the situation where distributed modeling takes place, the DMP allows for 

communication between active models located on separate computing platforms.  For example, 

bias adjusted safety stock (MODEL A) might be calculated on one computing platform with the 

results being transferred to another platform that contains the MODS heuristic (MODEL C).  In 

this case, the DMP establishes the order to run the models and the timing of data transmissions.  

The final part of our system architecture is the ACL that establishes the formal connections based 

on the DML descriptors of model inputs, outputs and data.  The ACL is needed because the 

decisions from one model (outputs) might become data (inputs) for another model.  This is the 

case for MODEL A, which can provide safety stocks (output) as an input to MODELS B, C, and D.  

The ACL matches the outputs of one model to the appropriate inputs for another model. 

 

Establishing Semantics for Logistics Models 

The starting point for the goal of building an interoperable system based on DML, ACP, 

DMP and ACL is a semantically precise definition of a model.  Given that most model descriptions 

depend on keywords, which might have a number of different meanings, we propose an 
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alternative approach to define a model.  The intent of DML is to label models semantically in such 

a way that common elements can be machine understandable and interoperable. 

Our approach to the semantic labeling problem involves forgoing attempts to describe the 

various algorithms employed in each model.  Rather, we focus on the data (inputs), and the 

decision variables (outputs) required for each model as a unique base for machine understanding 

and the grouping of common models together.  This assumes that a special, unique relationship 

exists between a model and its data. 

As a practical matter, we believe that definition of a model in terms of data inputs will 

provide a more precise semantic as compared to definition by attempting to classify the algorithm 

used for each modular component (model).  Keyword definitions for the complex algorithms that 

comprise models are notorious for having different semantic meanings.  In addition, the keyword 

descriptions often have no meaning at all to business practitioners that do not have extensive 

formal training in logistics or management science. 

Table 2 illustrates how data inputs can become a tool for establishing semantic meaning. 
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Table 2 - Data Inputs to MODELS A, B, C, and D 

Data Input Model A Model B Model C Model D 

D1.  Beginning Inventory X X X X 

D2.  Forecast Demand (by week) X X X X 

D3.  Historical Shipments (by week) X X X X 

D4.  Historical Forecast (by week) X X X X 

D5.  Hold Time (days) X    

D6.  Queue Time (days) X    

D7.  Service Level (% in stock) X X X X 

D8.  Set-up Cost ($/changeover)  X X X 

D9.  Set-up Time (hrs/set-up)   X X 

D10.  Holding Cost ($/week)  X X X 

D11.  Capacity Limit (hrs/day)  X X X 

D12.  Family Structure 

            (end items per group) 

 X   

D13.  Overtime Cost ($/hr)   X X 

D14. Sequence Dependent Set-up Cost 

           (From–To table of change-over costs) 

   X 

 

From TABLE 2 we note that MODELS A, B, C and D all share the data inputs D1, D2, 

D3, D4, and D7.  This gives a natural way to categorize MODELS A, B, C and D into the same 

group.  This also implies that models using the same data will deal with the same initial problem 

(in this case scheduling of production lines for the consumer goods industry) and that all four 

models are interoperable with respect to the data.  Any of the four models could be applied to the 

same data set to gain the result of a production schedule.  The outcome is that by defining a 
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model in terms of its data inputs, a precise semantic results that allows assignment of the model 

to a common group. 

Further, the use of input data as a means of establishing semantics also aids in 

distinguishing differences between models in a group.  Likely, the data inputs for a group of 

models will not be identical if different solution methods (algorithms) are used.  From Table 2 we 

notice that none of the four models shares the same set of data inputs yet all of these models are 

capable of producing a schedule (output) for a manufacturing process characteristic of the 

consumer goods industry.  This offers a way to identify differences between models within the 

same group as categorized by data.  This also provides an indirect indication of the solution 

methods (algorithms) employed. 

For example, MODELS B, C, and D share the commonality of requiring a capacity limit, 

inferring that these models belong to a class of FCS systems, and perhaps are interoperable.  In 

another case, TABLE 2 shows that MODELS A, B, C, and D all have service level as a 

parameter, implying that this class of models include some aspect of safety stock.  Other safety 

stock models, not mentioned in this example, might offer alternative ways to calculate safety 

stocks using the same data requirements.  Because all of these models share the same set of 

data inputs they are interoperable with MODELS A, B, C, and D. 

The reader must keep in mind that we view models in an atomic elemental way.  Taking 

an example from chemistry, a single element like Calcium (Ca) can become part of many different 

molecules such as calcium hydroxide (CaOH) or calcium chloride (CaCl) through chemical 

reactions.  In a similar way a single model, for example bias adjusted safety stock (MODEL A), 

can be combined with MODELS B, C, and D to create entirely new model forms.  Data inputs, as 

part of DML, hold the key for developing an open architecture for models to combine 

automatically as in chemical reactions. 

To summarize, the descriptors we put forth as the basis for DML includes data inputs as 

the primary semantic for grouping models and the initial basis for machine understanding.  Model 

outputs are only important in providing a) general guidance concerning the objective of the 

modeling effort and b) some definitions of model outputs that may in turn become model inputs in 
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other situations.  We do not believe that semantic description of algorithms based on keywords 

will play a significant role in the design of DML.  One important means of classification that we 

have not mentioned involves the assumptions of the model.  The use of assumptions as a precise 

semantic of a model provides an interesting area for future research.  

 

An Example of Multiple Ontologies 

As an illustration of the fact that multiple ontologies exist with respect to the definition of a 

model and its relationship to other models, we now examine a final example involving MODELS 

A, B, C, and D. 

Depending on viewpoint, the library of models could be used in two different ways: 

 

-- From a production planner standpoint, the models could provide a computer 

generated schedule of the timing and amount of production needed at a manufacturing plant 

given a specific beginning inventory, end item demand forecast and target safety stock levels. 

 

-- From a supply chain manager standpoint, the models could provide an accurate 

projection of inventory levels in plant warehouses given a specific beginning inventory, end item 

demand forecast and target safety stock levels.  This information could be used to determine the 

overall size of the warehouse. 

 

There is evidence in the literature that this group of models has in fact been used in both 

of these ways.  This brief example shows that the same library of models has different meanings 

and different relationships depending on the viewpoint of end users.  This aspect of relative 

relationships makes the establishment of rigid ontologies difficult to achieve in practice.  Though 

we have an idea how to handle this obstacle in producing machine understandable semantics, 

there certainly needs to be more research conducted in this area before totally abandoning single 

ontology architecture. 
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It appears that the key to building multiple ontologies depends on the relationships 

between models.  When faced with systems characterized by intricate relationships, engineers 

sometimes employ graph theory to provide representations for complexity.  Using this approach, 

we believe the edges of the graph hold the answer to establishing different ontologies for the 

same group of models. 

 

The First Business Applications 

Choosing a set of prototype business applications for M and semantic modeling is a 

difficult task because the computer language and concept can apply to a wide range of industries.  

A number of early prototypes have been identified, including applications in medicine, the 

automotive industry, agriculture, the entertainment industry (video games), environmental 

science, retailing,  financial services, manufacturing planning and control systems, legal services, 

and engineering [9].  Applications in the automotive industry alone, including driver information 

systems, comprise an entire discipline.  The following gives an overview of three chosen from this 

initial group. 

 

Enterprise Resource Planning Systems (ERP) 

Simply stated, an enterprise resource planning (ERP) system identifies and plans 

“the…resources needed to take, make, ship and account for customer orders [4].”  To achieve 

these important tasks, ERP uses a variety of models and data to plan and control all the 

resources in a manufacturing or service-oriented company. 

With the established success of ERP packages in practice it is realistic to think about 

what changes in technology might happen that will further enhance ERP. Currently, most 

organizations implement packaged ERP software that contains a single model for a specific 

business process.  If the model does not exactly fit, substantial modifications are required.  

Managers often complain that this process of adaptation reduces overall organizational 

productivity. 
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One of the first prototypes of M deals with building a network of ERP models that could 

automatically match to data within organizations.  These models include forecasting, production 

planning and scheduling, lot sizing, logistical, and financials.  The ultimate goal is an intelligent 

modeling network that would partially replace packaged ERP software, providing a more flexible 

modeling environment for decision-making in business. 

Building an in intelligent modeling network as a replacement for ERP makes sense 

because ERP is at its essence a data management tool.  Therefore, it is reasonable that any 

advancement in the way that data is organized, and matched to models, will have a significant 

impact on the structure of ERP software. 

Such a system is only possible through development of open standards and protocols for 

collection, sharing, and matching data to models.  Without a system based on open standards, 

interoperability will not be possible and the economics of building suitable interfaces will 

overwhelm the economic value of the new infrastructure. 

 

Retail Operations 

Direct marketing offers an interesting case for the application of M because large 

quantities of data exist and there are many opportunities to apply models from management 

science to determine proper inventory levels.  In general, direct marketing companies have 

impressive data management systems to support data-to-day decision-making.  Retailing is a 

data rich environment.  However, so many different models could potentially apply to retail data 

that a need exists for a flexible modeling system like M. 

One of the first experiments in prototyping M involves the national catalogue and online 

retailer Lillian Vernon Corporation of Rye, New York.  The company was established in 1951 and 

markets gift, house ware items, gardening, seasonal, and children’s products.  Well known for 

offering unique merchandise with especially good values, Lillian Vernon shipped more than 3.8 

million packages in 2003, employing 3,500 people during the peak holiday season.  Over 1,700 

new products are introduced each year, and the total product line averages over 6,000 items [27]. 
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With such a large assortment of items, many with relatively short life cycles and seasonal 

sales, inventory management becomes a complex issue.  A common problem is the 

determination of the proper lot size of merchandise to order given uncertain demand.  To illustrate 

the breath of the problem, Graph 1 shows four examples of typical demand patterns for seasonal 

and ongoing merchandise. 

 

Graph 1 – Demand Patterns 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

With thousands of different demand patterns, the goal of optimizing risk in terms of 

customer service and excess inventory becomes a complex challenge in matching the right 
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model to the right data.  The operations management literature offers a number of different 

solution methods to optimize risk for retailers.  Most of these require the following common data: 

 

1.  Historical actual sales per item, per week. 

2.  Historical sales forecast per week. 

3.  Forecast at time the lot sizing decision was made 

4.  Customer Service level (actual sales compared the lot-size) 

5.  Salvage (amount remaining, if any, after conclusion of the event) 

6.  Some estimate of the cost of ordering the lot 

7.  Weighted Average Cost of Capital (Inventory Carrying Cost) 

8.  Cost of a Lost Sales 

9.  Price Breaks on Lot-Size 

10.  Transportation method/cost 

Given a potentially large set of data and demand patterns, we hope to apply the DML to 

label inputs and outputs of models, along with data elements, to match models to data rapidly 

using M.  In the case of Lillian Vernon, probably all models would operate on a single computing 

platform, so the DMP and ACP reduce to a simpler situation where model operation and 

identification of connections between models and data, all occur internally.  Likewise, the ACL will 

make connections to models only inside a closed network. 

If we can get simple applications of M, as described in the Lillian Vernon case, to work in 

a closed system with a subset of data and models, then the next step is to apply M to an open 
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system.  For example, there are a number of public sources containing important data on 

demographics and spatial income distribution.  All of this is potentially useful in predicting sales.  

Much of this data goes unused because there is no rapid way to incorporate it into existing 

modeling systems.  The application of M offers the opportunity to make full utilization of data, and 

to match the appropriate model for analysis. 

 

Agriculture 

Overall, there is a general lack of practical model use within agriculture.  Yet there have 

been a great number of agricultural models developed at Land Grant Universities that could 

potentially help growers and agribusiness do a better job of logistics, planning, and resource 

optimization.  Connecting these various models together could lead to the next wave in 

agricultural productivity. 

One particular area of agriculture, harvest risk, offers the potential of introducing models 

traditionally used in business to the problem of optimizing harvest operations.  The result, better 

utilization of harvest assets, fewer crop losses, and improved crop quality. 

Gathering the harvest represents a complex managerial problem for agricultural 

cooperatives involved in harvesting and processing operations: balancing the risk of 

overinvestment with the risk of underproduction.  The rate to harvest crops and the corresponding 

capital investment are critical strategic decisions in situations where uncertain weather conditions 

present a risk of crop loss. 

This common problem in agriculture requires the application of mathematical models to 

calculate risk.  The authors recently presented a case study of the Concord grape harvest and the 

development a mathematical model to control Harvest Risk by finding the optimal harvest and 

processing rate [3]. 

Mostly grown in the Northern United States, Concord grapes are a hardy variety known 

for exceptional flavor.  However, like all agricultural crops, grapes are susceptible to frost damage 

during fall harvesting operations.  Therefore, the goal is to harvest all of the grapes before a fall 

frost terminates operations. 
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Since it is impossible to predict in advance exactly when a frost will occur, it becomes 

important to employ various risk models to determine the best rate to process grapes. The model 

involves differentiation of a joint probability distribution that represents risks associated with the 

length of the harvest season and the size of the crop. This approach is becoming popular as a 

means of dealing with complex problems involving operational and supply chain risk.  

The case study notes that Harvest Risk is under researched in agriculture.  During the 

course of model formulation, the authors conducted an extensive literature review and found that 

there were no similar models for calculating Harvest Risk.  This prompted a search for risk 

models used outside of agriculture to address the problem of a one-time event such as 

determining the correct lot size for perishable items like newspapers.  In many ways, the Harvest 

Risk problem is similar to making purchases of highly seasonable items like fashion goods.  With 

fashion merchandise, there are risks of ordering too much or too little.  Either case can result in 

significant financial loss. 

Likewise, the grape harvest represents a one-time event where harvesting too rapidly 

implies too much investment in equipment.  Harvesting too slowly means an increased probability 

of losing crop because of a frost.  These types of tradeoffs are very important for a variety of 

business and agricultural problems. 

Looking outside a discipline to find mathematical models that might have relevant 

application is a time consuming task.  The authors have noted that their line of research for the 

Harvest Risk problem dates over eight years.  Most development and application of mathematical 

models occurs in highly specialized domains where researchers and managers have large 

amounts of specific knowledge but very little general knowledge about other disciplines.  It takes 

years to accomplish meaningful research will realistic application. 

The concept of Semantic Modeling helps to solve this problem because it allows for rapid 

application of models to data regardless of the domain where the model was originally developed.  

In essence, Semantic Modeling and M allow for the free flow of models over a network in much 

the same way that the Internet facilitates the free flow of information through interconnected web 

pages.  Simply stated, Semantic Modeling is an advanced form of connective technology.  Using 
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this technology, modelers can quickly search for models from other disciplines that might solve 

the problem at hand.   

In addition, Semantic Modeling aids in integrating various data sets.  For example, the 

Harvest Risk model relies on a point estimate of temperatures for a specific grape growing region.  

Differences in elevation and other physical and environmental factors can result in significant 

temperature variation within a small area.  When a frost hits a growing region, it is seldom evenly 

distributed. 

Semantic Modeling, like Geographical Information Systems (GIS), has the capability of 

integrating various data sets to get a detailed view of the temperature characteristics for a region.  

For example, data from the US Geological Service could be integrated into the Harvest Risk 

model to account for differences in elevation for a specific growing area.  This would give a much 

more accurate picture of what proportion of the Concord crop is susceptible to frost because of 

being located in lower elevations where cool air tends to accumulate.  Sometimes a few feet in 

elevation can make a big difference in frost damage.  Other data from the National Oceanic and 

Atmospheric Administration (NOAA) could also provide details on surface temperature variation 

within a growing region.  Combining these data sets creates a more robust model that provides 

an accurate representation of Harvest Risk on a spatial basis. 

 

Practical Challenges 
 
The history of modeling includes a tradition of individual or small team efforts to formulate 

a single comprehensive model that provides a robust solution for a particular problem.  Seldom 

are elements of other models incorporated into such efforts beyond conducting the standard 

literature review.  To introduce the system we propose in this article will require a culture shift 

originating in academic institutions that serve as the training centers for the modelers of the 

future.  Developing DML, DMP, ACL, and ACP as a formal set of languages and protocols will 

make a step forward in changing the culture of model building.  Once practitioners experience the 

power of automatically sharing models between computers, we believe there will be acceptance 
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in adopting our system.  As more model builders begin to use the languages and protocols, the 

power of the network will increase resulting in productivity gains. 

For both we are in the process of developing a search engine interface that resembles an 

Internet browser to locate model elements residing on a network.  The browser uses data inputs 

as the semantic for conducting the search.  Once the appropriate models are located, another 

computer interface provides a workspace for visualization that shows how various model 

elements might fit together to form a practical solution.  The key to the visualization is to show in 

two or three dimensions the various combinations of specified models that might be possible.  

With this type of interface, the proper matching of a model to data and the interoperability of 

models becomes clear to the user.  Ultimately, this will accelerate implementation in practice 

resulting in the mass production of models. 

To begin the process of development, we are establishing an online community to define 

the data types used by M as a means for semantic searches.  This is a tedious process, however, 

there is no other way to establish a precise semantic for models.  Previous work conducted by 

industry organizations such as the International Standards Organization (ISO) and various US 

government agencies such as the National Institute of Standards and Technology (NIST) will aid 

this effort.  The online community we are forming will also communicate various aspects of 

Semantic Modeling and the state of development of  M. 

Given that a prototype of M is achievable within the next year, there remains the question 

of what incentives will exist for model builders and practitioners to use Semantic Modeling. Our 

approach focuses on future model building and the establishment of a repository for models.  

However, the hundreds of logistical models currently in use present a problem in that these will 

need to be coded in the proper language and protocols of M.  Since many models are run using 

proprietary systems, the task of coding will be significant unless new methods of interface and 

translation are developed.  This has to be part of our efforts in developing M.   

One idea to provide an incentive for model builders to use M involves a new Internet 

payment technology [23].   With this scenario, developers could form a representation of their 

models using M and post to the Internet in machine understandable format.  Those (either 
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humans or machines) seeking to find models would do a search to locate the best model for their 

application.  When the user downloads a specific model found by semantic search, the developer 

would receive a payment determined in advance or by market forces.  In the case of simpler 

models, a smaller “micropayment” might be more appropriate given the volume of downloads.  

This would provide financial incentive for developers to select older models for coding that have 

been long forgotten by practitioners. 

We envision a new industry forming where specialized firms constantly review old 

software or journal articles for signs of models having commercial value when coded into M and 

distributed using the Internet.  In the long term, existing large companies in the business of selling 

packaged software might yield to a new generation of firms that specialize in producing a 

repository of models using M.  With this scenario practitioners benefit in that model applications 

would more closely match the problem at hand rather than the current situation where many firms 

must radically redesign organizational processes to meet the demands of commercial packaged 

software.  If nothing else, Semantic Modeling offers the possibility of assessing the true value of a 

model through the free exchange across a network. 

A final hurdle for implementation of M involves the adherence to standards.  With every 

standards setting opportunity, there is always the chance that adopters will bend standards to 

meet their own objectives.  This was the case in the development of electronic data interchange 

(EDI) standards as well as others.  Good design of the standards along with active industry 

associations to monitor adherence are the means needed to maintain integrity. 

 

The Underpinnings of Semantic Modeling 

As we conclude this overview of Semantic Modeling it is important to note that the idea of 

defining elements of models for the purpose of reuse is not new.  Previous work has concentrated 

on the use of Structured Modeling to define elements for management science techniques [19] [ 

20] and also building a system for “meta-modeling [32].”  The following provides a brief 

description: 
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“The theoretical foundation of structured modeling is formalized in Geoffrion, which 

presents a rigorous semantic framework that deliberately avoids committing to a representational 

formalism.  The framework is ‘semantic’ because it casts every model as a system of definitions 

styled to capture semantic content.  Ordinary mathematics, in contrast, typically leaves more of 

the meaning implicit.  Twenty-eight definitions and eight propositions establish the notion of 

model structure at three levels of detail (so-called elemental, generic, and modular structure), the 

essential distinction between model class and model instance, certain related concepts and 

constructs, and basic theoretical properties. This framework has points in common with certain 

ideas found in the computer science literature on knowledge representation, programming 

language design, and semantic data modeling, but is designed specifically for modeling as 

practiced in MS/OR [management science/operations research] and related fields [21].”  

 

This approach hints at the possibility of automatically combining models by using a 

Structured Modeling Language (SML).  Others also employ various representation techniques to 

aid in the formulation of linear programming (LP) models [33] [47].  These efforts became part of 

proprietary software intended to ease the difficulty of formulating Linear Programming models.  In 

all of these cases, the research occurred prior to the widespread use of the Internet and the 

existence of ample bandwidth.  M takes advantage of these relatively new developments in 

computer science. 

Other academic disciplines have also experimented with variants of Semantic Modeling 

in areas such as business process design.  In one case, academic researchers have developed a 

large library of business processes in an attempt to build new organizations and to do 

benchmarking [29].  As part of this effort, the researchers also developed a definitional language 

for organizational processes and used a schema similar to an ontology as an aid in searching the 

library. 

For many years, engineers have used something called a Bond Graphs to represent 

power flow (mechanical, electrical, hydraulic, thermal, chemical and magnetic) as a means of 

capturing the common energy structure of systems and to increase insight into engineering 
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system behavior [5].  This method of linking different energy systems together with a common 

representation is similar to our efforts in Semantic Modeling.  In addition, an interdisciplinary 

movement, initiated by the engineering community beginning in the 1960’s, sought to establish 

General Systems where models from various academic disciplines, including the social sciences, 

could be shared with the goal of achieving new applications [18].  More recently, the 

establishment of Math-Net, a global Internet-based information and communication system for 

mathematics, establishes many knowledge management structures that are similar to Semantic 

Modeling [31]. 

Finally, several other groups of researchers have developed languages meant to do 

functions similar to Semantic Modeling.  These include Simple HTML Ontology Language 

(SHOE), DARPA Agent Markup Language – Ontology (DAML-ONT), and Unified Problem-

Solving Method (UPML) [16].  However, in no case did we find any evidence of initiatives to link 

models together or to establish improved semantics for models in a similar fashion to M. 

 

Conclusion 

Semantic Modeling will play an important role in linking models from a wide number of 

different disciplines to an array of different problems in business.  Beyond the current discussion 

in this article, opportunities exist to link other abstract objects that require a precise semantic 

meaning, such as engineering designs, elements of financial reporting in a conglomerate, or 

important aspects of news feeds that might qualify as an object.  Though the authors are in early 

stages of developing M and the practice of Semantic Modeling, there appears to be great 

potential to fulfill a need in industry to improve the integration of models and data. 

The prospect of sharing, through standard languages and protocols, the collective efforts 

of modelers throughout the world is beyond enticing.  It has the potential to revolutionize nearly 

every aspect of human endeavor, as well as provide unprecedented benefit and savings across 

industry and commerce.  Yet the challenges and difficulties are extraordinary, from theoretic 

achievability to practical implementation.  Still the rewards make the journey well worth pursuing, 

which may lead to a true Intelligent Modeling Network. 
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