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Abstract

The high energy particles of the Van Allen belts coming from cosmic rays, solar storms, high altitude nuclear
explosions (HANEs) and other processes represent a significant danger to humans and spacecraft operating in
those regions, as well as an obstacle to exploration and development of space technologies. The "Radiation
Belt Remediation" (RBR) concept has been proposed as a way to solve this problem through ULF/VLF
transmissions in the magnetosphere, which will create a pitch-angle scattering of these energetic particles. A
portion of the particles would then fall into their loss cone, lowering the altitude of their mirror point to a level
where they are absorbed by the atmosphere.

The possible utilization of Whistler waves for precipitation of high-energy trapped electrons has been studied
extensively [54], and a space test of a linear antenna for this purpose is in preparation [39]. The lower frequency
EMIC band has also been studied in the context of electron precipitation [8], but much less work has been
devoted to the use of the left-hand polarized branch of EMIC waves for ion precipitation. My thesis focuses
on four interconnected research efforts in this direction, which are (1) the radiation of EMIC waves from a
spaceborne antenna, (2) their propagation along the Van Allen belts, (3) their interaction with the high-energy
particles and (4) the characterization in terms of power, frequency, voltage and current of the RBR transmitter
capable of significantly reduce the energetic radiation in the belts. This proposal summarizes the formulation
and methodology required to develop these coupled studies as well as the results obtained so far.

The radiation of this frequency band is a broad unexplored territory that should be addressed given its potential
practical importance. In my thesis, I will propose solutions to this problem and determine their feasibility.
The sheath around a space-based RBR antenna is very thick, and so its capacitance is almost the vacuum
capacitance, which is nearly independent of the frequency and proportional to the transmitter length. The
associated reactance is extremely high for the EMIC band to the point that it is not possible to use an electric
dipole to radiate these waves without the help of any other device. On the other hand, in terms of the radiation
resistance, a short antenna would be ideal, because the relevant wavelengths (those near the resonance cone)
are indeed very short; unfortunately, short antennas suffer the most from the small capacitance problem,
although even a multi-km antenna would have too much reactance at the EMIC regime. In my thesis I will
discuss two innovative ways to emit these waves; the first option involves plasma contactors at both ends of a
linear dipole, thus avoiding oscillatory charge accumulation. The second case under consideration consists of
a magnetic dipole working as an EMIC transmitter. Once the emitter’s radiation pattern has been estimated,
the propagation of the EMIC mode along the belts would involve ray-tracing of the wave power, which is
an input to the wave-particle interaction problem. This last model uses a Lagrangian formulation involving
a test particle simulation of the nonlinear equations of motion [56] to reproduce the interaction between the
distribution of energetic particles and EMIC waves. This formulation allows one to deal with coherent and
narrow-band waves, which are fundamentally different from those produced by incoherent signals. In the later
case the particles perform a random walk in velocity space, whereas during the interaction with a coherent
wave individual particles are not scattered randomly, but they stay in resonance long enough for the particle’s
pitch angle to be substantially changed through non-linear interactions. This model will take into account
the oblique propagation of coherent EMIC pulsed waves in a multi-ion plasma and their interaction with the
energetic protons and electrons in the Van Allen belts.
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Chapter 1

Introduction

1.1 Motivation

The high-energy particles of the Van Allen belts coming from cosmic rays, solar storms, High Alti-
tude Nuclear Explosions (HANEs) and other processes represent a significant danger to humans and
spacecraft operating in those regions, as well as an obstacle to exploration and development of space
technologies. The emission of ULF and VLF waves from orbiting antennae is a problem of growing
interest to the scientific, engineering and defense community, largely motivated by their potential ap-
plication for artificial modification of the high-energy particle radiation environment, both natural and
man-made. These emissions will create a pitch-angle scattering of the energetic particles, causing a
portion of them to precipitate into the atmosphere. Despite their strong effects on orbiting spacecraft
[14, 13], the total energy residing in these high-energy populations is relatively small, and this opens
up the possibility for intervention.

Since the discovery of the radiation belts by Van Allen [113], lots of effort has been dedicated to study
the source and loss mechanisms of the high-energy particles that populate the belts. The preponderant
effect of high-altitude nuclear explosions is the injection of energetic electrons [21, 85, 90], and so initial
research efforts on mitigation techniques have been directed to this component of the trapped radiation.
HANEs were carried out to study the injections of electrons in the geomagnetic field even before the
discovery of the belts; three of them were conducted under Operation Argus and were confirmed by
the satellite Explorer IV in 1958. Later, the “Starfish Prime” HANE was conducted by the US in the
central Pacific Ocean in 1962. Starfish generated an artificial belt of trapped energetic electrons over
a wide range of L-shells, and damaged three out of five satellites operating at that time.

On the other hand, it is well known that geomagnetic storms cause large-scale injections of both
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protons and electrons into the belts, which can increase the quiet-time fluxes by more than two orders
of magnitude. The naturally occurring radiation belts, which by themselves constitute a large hazard
to spacecraft over an enormous volume of space, contain both electrons and ions (protons mainly),
with similar deleterious effects.

Recent studies [1] have concluded that wave-particle interactions may dominate the losses of these
energetic particles, suggesting man-made control of the Van Allen belts. Since then, the Whistler-type
radiation (between the lower hybrid frequency and the electron gyrofrequency, typically in the tens of
kHz) has been studied extensively for precipitation of high-energy trapped electrons, and a space test
of a linear antenna for this purpose is in preparation [39]. However, Whistler waves are not capable
to interact with the very energetic trapped ions; instead, the proper radiation type would be that of
Electromagnetic Ion Cyclotron (EMIC) waves, below the ion gyrofrequency, and hence in the ELF or
ULF bands (around 100 Hz). The lower frequency EMIC band has also been studied in the context
of electron precipitation [6, 8, 40, 75, 84, 106], but much less study has been devoted to the use of the
left-hand polarized branch of EMIC waves for ion precipitation. EMIC spaceborne antennae able to
interact with both populations of charged particles is the object of concern to this study.

1.2 Scientific Background

1.2.1 The Magnetosphere

The magnetosphere is the region of space where the plasma is controlled by the geomagnetic field,
which is distorted by the plasma ejected outward from the Sun, i.e. the solar wind. The shape of the
Earth’s magnetosphere is shown in Figure 1.1. The solar wind compresses the dipole field on the sun
side and generates a tail (known as magnetotail) in the night side. The boundary created by this effect
is known as magnetopause, which is located around L ≈ 10 (L = R/RE) on the day side and stretches
to L > 60 on the tail side. Another boundary, the plasmapause, separates the “frozen in” plasma
corotating with the Earth from the convecting plasma due to the constant streaming of particles from
the solar wind. The location of the plasmapause is strongly influenced by the geomagnetic activity
and it varies between L ≈ 3 − 7. This work focuses in the inner magnetosphere (L < 7) , where
the Earth’s magnetic field can be accurately modeled as a dipole (see Chapter 3). In this region, the
bulk plasma can be considered cold and collisionless, with temperatures of Te < 1 eV and densities of
ne = 102 − 104 el/cm3.
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Figure 1.1: Schematic of the magnetosphere.

1.2.2 The Van Allen Belts and the RBR

The Van Allen radiation belts are concentrations of high-energy charged particles generated by cosmic
rays, solar storms, and other processes that are trapped in the plasmasphere by the magnetic bottle
configuration formed by the Earth’s magnetic field. High altitude nuclear explosions (HANEs) would
inject as well large amount of energetic electrons into the radiation belts. These particles bounce
rapidly back and forth between mirror points above the Earth’s atmosphere. The altitude of the
mirror point of a particle depends upon the pitch angle of their velocity vector with respect to the
magnetic field line. Only those particles with pitch angles greater than a certain level are trapped,
while particles with lower pitch angles get lost through the atmosphere because its mirror point falls
within a denser region where collisions with atmospheric species effectively remove the particles from
the magnetic bottle configuration. Prior to the Space Age, the possibility of trapped charged particles
had been investigated by Kristian Birkeland, Carl Størmer and Nicholas Christofilos. The existence of
the belt was confirmed by the Explorer 1 and Explorer 3 missions in 1958, under Dr James Van Allen
at the University of Iowa [113].

The density of this hot population is very low (< 1 el/cm3) and they concentrate into two major belts,
which are depicted in Figure 1.2: a broad inner belt at L ≈ 1 − 2 with energies up to 400 MeV for
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protons and 1 MeV for electrons [97], and an outer electron belt at L ≈ 3 − 5 with energies around
0.1-10 MeV. The belts are confined to an area which extends about 65° from the celestial equator. The
existence of a safe-gap between the inner and outer belts indicates that there are certain L-shells that
do not trap significant amount of electrons of any energy for long periods of time or, equivalently, that
there are precipitation mechanisms that are stronger there, probably due to some resonant effects. In
addition, the belts contain lesser amounts of other nuclei, such as alpha particles. There is as well the
low-energy and quasi-neutral background plasma, with much higher density but lower energy.

The radiation from the belts represents a significant danger to humans and spacecraft operating in
those regions, as well as an impediment to exploration and development of space. The high fluxes of
energetic particles in the radiation belts will rapidly damage electronic and biological systems. The
presence of the high radiation fluxes in the Van Allen belts limits long-duration manned missions to
operation below 1200 km of altitude. Shielding to protect against this radiation would be extremely
expensive and, even with hardening measures, the lifetime and reliability of space systems will be
limited by degradation caused by the trapped particles. Abel and Thorne [1] showed that wave-
particle interactions caused by VLF transmissions may dominate losses in the radiation belts. This
fact suggested that it could be possible to have practical human control on the belts to protect the
systems orbiting the Earth from natural or HANEs injections. This idea of controlled removal of high-
energy particles was named Radiation Belt Remediation (RBR) [94]. Some approaches to the RBR
use spaceborne antennas to inject ULF/VLF waves into the belts that scatter the energetic particles
and precipitate them [39, 87], which is the purpose of the present work.

Figure 1.2: Schematic of the Van Allen Belts
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1.2.3 Dynamics of the Trapped Particles

The high-energy particles trapped in the belts perform three basic motions: gyro-motion around the
magnetic lines, bouncing motion along them and drift motion around the Earth, as schematized in
Figure 1.3. When the variation of the magnetic field with position and time is sufficiently slow, there
is and adiabatic invariant associated with each of these motions, which is the action integral associated
with each of the periodicities. Each invariant is really the leading term in an asymptotic series in a
smallness parameter, but in this study we will only consider invariance to the lowest order, which is
widely used to explain the charged-particle motion in the Van Allen or artificial belts; the derivation
of the higher order terms can be found elsewhere [43]. These conservation laws lead to retention of the
particles in the field. Even though the Earth’s magnetic field is far from symmetric with respect to any
axis, it can be shown [89] that for a quiescent magnetosphere, long trapping times are to be expected.
Recently, Selesnick et al. [97] developed a theoretical model of the high-energy particles in the inner
proton belt and provided proton intensities as a function of time and the three adiabatic invariants.

Proton 
drift 

Electron 
drift 

Flux tube 

Trapped particle 
trajectory 

Mirror point 

Figure 1.3: Trapped particle motions

In a magnetic field with space and time variations small compared to the radius and period of gyration
of the particle, the particle describes approximately a circle with center moving along the line of force
and slowly drifting at right angles to that line. The motion along the local �B field is given by

�
dpII
dt

�
= −µ

γ

∂B

∂s
+ qEII (1.1)

where B and E are magnetic and electric fields, pII and p⊥ are the momentum components parallel
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and perpendicular to the external magnetic field, α = atan (p⊥/pII) is the particle’s pitch angle, γ is
the relativistic factor, s is the distance along the line of force and µ is the magnetic moment given by

µ =
p2⊥

2mB
(1.2)

The drifting motion that moves the guiding center to a neighboring line is given by

�vg =
n̂

B
×
�
− �E +

µ

γq
∇B +

p2II
γqm

∂n̂

∂s

�
(1.3)

where n̂ is the unit vector along the Earth’s magnetic field vector. The first term in the right side of
the equation above is the �E × �B drift, which is in the same direction for both electrons and protons.
The second term is the grad-B drift due to the variation of the magnetic field over a gyroperiod, and
the third term corresponds to the curvature drift due to the centrifugal force over a particle with
parallel velocity vII . This equation is valid if its right hand side is small compared to the velocity of
the particle. Grad-B and curvature drifts give an azimuthal current, with electrons moving eastward
and positive ions drifting westward. In addition, in the absence of azimuthal symmetry, gradients and
curvature components in the azimuthal direction could give drifts in the radial direction.

The magnetic moment µ introduced in Eq. 1.2 constitutes the first adiabatic invariant. The magnetic
moment is a conserved quantity in the inner magnetosphere because the high-energy particles have
a gyroradius that is much smaller than the variation length-scale of the magnetic field. Invariance
of µ implies that the particle will bounce back at the point where the Earth’s magnetic field equals
BTP = p2/ (2µm), which corresponds to v�TP = 0. By conservation of energy p2 = p2⊥+p2II is constant
(p2 = 2mE), and at any point B0 along a line we have that B0 = p2⊥0/ (2µm), thus dividing by BTP

we get

B0

BTP
=

p2⊥0

p2
=

p2⊥0

p20
= sin2α0 (1.4)

This proves that the turning point is independent of momentum and charge of the particle, and only
dependent on the pitch angle at a given point along the line, like the equator. In addition, if there is
no electric field, the kinetic energy is a constant of the motion and the particle always reflects at the
same magnitude of the magnetic field. Eq. 1.2 can be rewritten as follows

p2⊥
B

=
p2sin2α

B
= constant (1.5)

which allows to compute the pitch angle at any position of the trajectory, provided B is known at that
position. In terms of the equatorial values, the pitch angle can be expressed as follows
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sinα (s) =

�
B (s)

Beq
sinαeq (1.6)

where s is the distance along the line of force.

If we define Ba as the magnetic field intensity at the border of the sensible atmosphere (∼100 km),
particles with α < αlc = 1/sin

��
B/Ba

�
will be removed from the trapped configuration by collisions

in the atmosphere. The pitch angle αlc is called bounce loss cone pitch angle.

Taking into account the asymmetry of the magnetic field, these statements do not lead to the conclusion
that a particle drifting around the Earth will return to the starting line of force. However, it can be
shown [89] that the time average of this drift conserves the second or longitudinal invariant J , which
is given by

J =

˛
pIIds (1.7)

where ds is the element of length of the line of force, and the integral is over a complete oscillation
along that line. The second adiabatic invariant of the guiding center motion is associated with the
bouncing motion between two mirror points in a magnetic line, and it is only constant provided that
the magnetospheric magnetic field and the drift velocity �vg vary on time-scales much longer than the
bouncing period. Since the bounce time for MeV protons and electrons is a few seconds at most, this
is not a particularly demanding constraint. At each longitude there is only one field line between
mirror points having the required J , thus in a static field it is true that the particle remains in the
same B-shell as long as the second invariant is conserved. In other words, if the kinetic energy and the
magnetic moment are constant, the invariance of J prevents charged particles from moving radially in
or out of the belts as they rotate around the Earth, which helps to explain their persistence.

However, to study the time-dependent field we need to introduce the third or flux invariant Φ, which is
the flux of �B inside the invariant surface enclosed by the drift path. This invariant is associated with
the precession of particles around the Earth, and its rigorous derivation has been proven by Northrop
[88]. Φ is only constant provided that the Earth’s magnetic field varies on time-scales much longer
than the drift period. Since the drift period for MeV protons and electrons is around an hour, this is
only likely to be the case when the magnetosphere is relatively quiescent.

According to adiabatic theory and the lowest-order invariants, the energetic particles in the radiation
belts would remain indefinitely in the geomagnetic field and continuously precess about their invari-
ant surfaces. Figures 1.4 and 1.5 show omnidirectional fluxes of the trapped protons and electrons,
respectively. The AP-8 model by NASA [86] allows the computation of these fluxes for specified en-
ergies, L-shells and magnetic field strengths. However, solar wind can produce disturbances that are
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sufficiently fast to affect the adiabatic invariants. During magnetic storms, particles will diffuse from
one invariant surface to another and may eventually get lost away from the earth or down into the
atmosphere. In addition, precipitation induced by wave particle interactions is one of the major loss
processes for the radiation belt particles [1]. We must note that if the particle is not trapped between
mirrors, the longitudinal motion is not periodic, which means that there is not even a second nor a
third adiabatic invariants, but only the magnetic moment exists.

Figure 1.4: Radial distribution of AP8MIN omnidirectional fluxes of protons in the equatorial plane
with energies between 0.1 and 400 MeV. [64]
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Figure 1.5: Integral, omnidirectional fluxes of electrons in the equatorial plane with energies between
0.1 and 7 MeV. [115]
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1.2.4 Electromagnetic Ion Cyclotron Waves

Electromagnetic Ion Cyclotron (EMIC) waves are plasma waves that propagate below the proton
gyrofrequency Ωp, which is given by

ω < Ωp =
eB0

mp
(1.8)

where e is the electron charge, B0 is the external magnetic field and mp is the proton mass. The
subscripts p and e denote protons and electrons, respectively.

In this study we use the theory of cold plasma wave propagation as a first approximation. Although the
bulk plasma in the magnetosphere is in the thermal range (0.1-10 eV), the topological characteristics
of the dispersion relation are not strongly influenced by the ion temperature, but it only leads to
small modifications of the phase and group velocities of the wave. Assuming cold plasma waves, the
dispersion relationship can be expressed as follows [104]

An4 −Bn2 + C = 0 (1.9)

where n = c
����k
��� /ω is the index of refraction, �k is the wavenumber vector, c is the speed of light and

A = Ssin2θ + Pcos2θ (1.10)

B = RLsin2θ + PS
�
1 + cos2θ

�
(1.11)

C = PRL (1.12)

where θ is the angle between the external magnetic field and the wave normal direction, and the wave
coefficients are given by

R = 1−
�

l

ω2
pl

ω2

ω

ω + Ωl
(1.13)

L = 1−
�

l

ω2
pl

ω2

ω

ω − Ωl
(1.14)

P = 1−
�

l

ω2
pl

ω2
(1.15)
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S =
R+ L

2
(1.16)

D =
R− L

2
(1.17)

the summations are over all species including electrons. The plasma frequency ωpl, and the cyclotron
frequency Ωl are defined as follows

ωpl =

�
q2l nl

ml�0
(1.18)

Ωl =
qlB0

ml
(1.19)

where nl, ml and ql = Zle are the density, mass and charge of the l-species, respectively. Rearranging
Eq. 1.9 we get

n2 =
2PRL

(RL− PS) sin2θ + 2PS ±
�
(RL− PS)2 sin4θ + 4P 2D2cos2θ

(1.20)

The sums in Eqs. 1.13 to 1.15 are much larger than one because the frequencies under consideration are
such that ω/ |Ωe| << ω2

pe/Ω
2
e. With this approximation and normalizing with ω2

pe/Ω
2
e, the coefficients

can be expressed as [6, 62]

R = − 1

MY

�
1

MY − 1
+
�

i

γiZi

βiY/Zi + 1

�
(1.21)

L = − 1

MY

�
1

MY + 1
+

�

i

γiZi

βiY/Zi − 1

�
(1.22)

P = −
�

1

MY

�2
�
1 +M

�

i

γiZ2
i

βi

�
(1.23)

S =
R+ L

2
(1.24)

D =
R− L

2
(1.25)
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where the summations are over all ion species and γi = ni/ne, Zi = qi/e, M = me/mp, βi = mi/mp

and Y = ω/Ωp. The overbars will be dropped from now on. With these assumptions, the cold plasma
dispersion relationship can be expressed as follows

n2 =
ω2
pe

Ω2
e

Ψ−1 (1.26)

where

Ψ =
(RL− PS) sin2θ + 2PS ±

�
(RL− PS)2 sin4θ + 4P 2D2cos2θ

2PRL
(1.27)

The sign of Ψ determines two branches of the wave mode, which can be left (L-mode) or right (R-
mode) hand polarized. Waves only propagate for Ψ > 0. To follow one branch, the sign of Ψ must be
changed whenever crossing a cyclotron frequency, or in other words, whenever L → ∞.

From Eq. 1.9 it can be observed that resonances occur whenever n → ∞, which corresponds to A = 0,
or

tan2θres = −P/S (1.28)

A very good estimation of these locations is given by

Yresi =

�
Zi

βi

��
1 +

M

2

γiZ2
i

βi
tan2θ

�
(1.29)

For the particular case of perpendicular propagation (θ = 90◦) these resonances correspond to the bi-
ion frequencies (S = 0), which are mixed resonances between two ion species. At frequencies above the
bi-ion frequency, EMIC waves exhibit a resonance cone that prevents them from getting perpendicular
to the geomagnetic field, thus wave reflection cannot occur until they propagate to higher latitudes
and the local bi-ion frequency increases above the wave frequency [109]. At the bi-ion frequency the
wave-normal angle equals θ = 90◦, the parallel group velocity is zero and the wave is reflected [91].
For parallel propagation (θ = 0), resonances happen at the cyclotron frequencies of each ion species
(L → ∞, S → ∞).

Cutoffs occur whenever n → 0, which corresponds to RPL = 0. At the cutoff frequency, reflection of
the L-mode occurs and it does not propagate between the cutoff and the resonance frequency of each
ion species. A very good estimation of the cutoff frequencies is given by

Ycfi =
1

4
(1 + 3γi) (1.30)

17



We will now analyze the dispersion of the EMIC band in a H+ − He+ − O+ plasma. The disper-
sion characteristics in a H+ − He+ plasma have been studied by several authors [91, 123], and the
propagation of EMIC waves in a H+ −He+ −O+ plasma was later studied by Albert [6] and Ludlow
[77]. Compared to a proton-electron plasma, the dispersion and propagation characteristics of these
waves are dramatically modified in the presence of other heavy ions (O+ and He+), which give rise
to polarization reversals and spectral slots as we will show next. In a multi-ion plasma it can happen
that D = 0, which corresponds to crossover frequencies. At the crossover frequencies a particular
branch changes from R to L modes through linear polarization, and vice versa. In other words, left
and right polarizations of obliquely propagating EMIC waves in a multi-ion plasma are coupled. In the
case of parallel propagation, both polarizations are decoupled and the branches intersect each other at
the crossover frequencies, but they don’t exchange polarization. The following expression gives a very
good estimation of the crossover frequencies

Ycri =
1

4

�
1 + 15γi (1.31)

Figure 1.6 shows the simplest form of the dispersion in an electron-proton plasma for a wave-normal
angle of θ = 45◦ and varying frequency. We clearly observe the resonance of the guided left-hand
branch at Y = 1. On the other hand, the unguided right-hand mode remains unnaffected by the
proton gyrofrequency and propagates though it.
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Figure 1.6: Dispersion relation in an electron-proton plasma for θ = 45◦.

Consider now the more complicated case of an H+−He+−O+ plasma with γH+ = 0.77, γHe+ = 0.20

and γO+ = 0.03. Figure 1.7 presents the dispersion relation for a wave propagating at θ = 45◦

with varying frequency. These dispersion curves are very different compared to the electron-proton
case. The left branches resonate at the frequencies given by Eq. 1.28 (ωresO+ and ωresHe+

), and
they do not propagate through the stop bands generated between the resonant and cutoff frequencies
(ωcfO+ and ωcfHe+

) of each ion species. At the cutoff frequencies a new L branch appears, and both
solutions exchange labels at the crossover frequencies. It is important to notice that mode-conversion
allows tunneling of these waves through the critical region for the L-mode, which would explain the
observations of EMIC waves from ground [34, 47].
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Figure 1.7: Dispersion relation for γH+ = 0.77, γHe+ = 0.20, γO+ = 0.03 and θ = 45◦.

Figure 1.8 shows the dispersion relation for perpendicular propagation. For θ = 90◦ the expression
simplifies to X and O-modes [104], which are given by

O −mode : n =
ωpe

|Ωe|
√
P (1.32)

X −mode : n =
ωpe

|Ωe|

�
RL

S
(1.33)

However, in our range of frequencies P < 0, which means that only the X-mode propagates. As
described above, the resonances for perpendicular propagation happen at the bi-ion frequencies, which
are controlled by the concentration of heavy species.
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Figure 1.8: Dispersion relation for γH+ = 0.77, γHe+ = 0.20, γO+ = 0.03 and θ = 90◦.

Finally, Figure 1.9 shows the case of parallel propagation. In this situation, the left and right branches
are decoupled and the resonances happen at the cyclotron frequencies of the different ion species.
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1.2.5 Wave-Particle Interaction Processes

Consider a charged particle trapped in the belts. In the absence of waves, the particle performs an
adiabatic motion. Neglecting the longitudinal drift, the relativistic equations of motion of the particle
are given by

�̇p =
�p

γm
× �B0 (1.34)

When we introduce an electromagnetic wave propagating obliquely with respect to the geomagnetic
field, its effect adds to the adiabatic motion as follows

�̇p = q

�
�Ew +

�p

γm
×

�
�Bw + �B0

��
(1.35)

where q contains the charge of the particle and Ew and Bw are the electric and magnetic fields of
the wave, respectively. The non-linear equations of motion for (pII , p⊥, η) can be obtained from the
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expression above, where η is the phase angle between the perpendicular component of the momentum
and the left-hand component of the perpendicular magnetic field of the wave.

In order for the wave to introduce cumulative change of energy or momentum with the particle the
wave vectors as seen by the particle must be stationary for a significant length of time, or in other
words the Doppler shifted frequency as seen by the particle must equal its cyclotron frequency or a
multiple of it

ω − �k·�v = l
Ω

γ
(1.36)

where ω is the wave frequency, Ω is the cyclotron frequency defined in Eq. 1.19, �k is the wavenumber
vector, �v is the particle’s velocity vector, γ is the relativistic factor and l is the harmonic number.
This equation is the cyclotron resonance condition. Cyclotron interaction requires that protons move
in the opposite direction to the L-mode waves (l = 1, EMIC), i.e. �k·�v < 0, causing an upward shift
in the frequency. On the other hand, electrons must overtake the wave to reverse the apparent sense
of polarization to R-mode and with a velocity sufficient to Doppler shift the wave frequency to the
relativistic electron gyrofrequency.

As an example, Figure 1.2.5 presents numerical and experimental results of the effect of man-made
wave-particle interactions compared to other natural sources of scattering [1]. It can be observed that
forced VLF emissions significantly reduce the precipitation lifetime of energetic particles (for L < 3).

Figure 1.10: Precipitation lifetime for 500 keV electrons scattering due to Coulomb collisions
(C), Coulomb and plasmaspheric hiss (C/H), Coulomb, plasmaspheric hiss and lightning-generated
Whistlers (C/H/W), and with all scattering mechanisms included (C/H/W/VLF). [1]
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1.3 Thesis Statement and Objectives

This study aims at characterizing the ability of Electromagnetic Ion Cyclotron (EMIC) waves to
precipitate the energetic protons and electrons trapped in the Van Allen belts, and to translate these
findings into engineering specifications of a spaceborne RBR system able to significantly reduce this
energetic radiation. In order to fulfill this goal, the following objectives have been defined:

• Determine the type of antenna able to radiate EMIC waves in the magnetospheric plasma. This is
a largely unexplored territory that should be addressed, given its potential practical importance.

• Characterize the radiation impedance and radiation pattern of this antenna in the far-field region.

• Study the cold plasma wave-propagation of the EMIC band radiated from the proposed antennae.
In order to do that we will need to modify previously developed ray-tracing codes, which are
able to handle Whistler waves.

• Characterize the interaction of the previous waves with the energetic population of particles in the
belts. The waves are considered monochromatic and propagating at an angle to the geomagnetic
field. Similar studies have been previously developed for Whistlers interacting with electrons,
but no attention has been paid to the lower frequency and its interaction with both high-energy
protons and electrons.

– Study the scattering of a single particle. This analysis will determine the region in velocity
space that includes all particles that can resonantly interact with the waves, which is an
input to the distribution function.

– Study the scattering of the magnetospheric energetic distribution using a test particle
method.

• Characterize the feasibility in terms of power levels, frequencies, voltages, currents and mass of
a potential spaceborne RBR antennae capable of significantly reduce the energetic radiation in
the belts.

• Estimate precipitated fluxes and compare them with the values of typical background precipita-
tion.
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Chapter 2

Literature Review and Contributions

The main publications and findings relevant to my research are summarized next. They are classified
into three groups, which correspond to the models being developed: radiation of ULF/VLF waves,
their propagation and the study of wave-particle interactions. Existing engineering applications are
discussed next, and the expected contributions from my thesis are summarized at the end of this
section.

2.1 Radiation of ULF/VLF Waves

Prominent among the at least partially unsolved problems related to RBR is that of radiation of
ULF/VLF waves from a space antenna, specially the non-linear effects occurring in the neighborhood
of a kV transmitter in the presence of the background magnetized plasma. The impedance of an electric
dipole transmitting in the VLF regime in a magnetoplasma has been determined in the absence of the
plasma sheath [15, 118, 119, 120], and its current distribution has been analyzed under the same
assumption [17, 28]. More specifically, the quasi-electrostatic approximation of Balmain [15] for the
far-field is valid for any antenna orientation with respect to the Earth’s magnetic field lines, and it
basically neglects the electric field due to time variations of the perturbed magnetic field. Additional
methods have been developed for the linear propagation part of the problem [31, 107]. In particular, we
have in hand full-wave calculation methods for both Whistler and EMIC waves, and we have calibrated
them by comparison to previous work [72, 120, 103] and to Balmain’s approximation. One important
conclusion is that Balmain’s method has wider validity than generally recognized, because the radiation
field is dominated by the near-resonance cone area, and this is precisely where the approximation is
most accurate (whether or not the antenna is short). The Balmain approximation states that the
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free-space wavenumber is small compared to the actual wavenumber, or equivalently, that the index
of refraction is large. For many plasma waves like EMIC waves, resonances occur where the index of
refraction approaches infinity for some special directions; it is in the vicinity of these directions that
most of the radiation power propagates, thus the quasi-electrostatic approximation can be expected
to have a wide range of validity [118]. However, for an electrical dipole antenna, the plasma involves
the formation of a thick oscillatory sheath [27, 100, 112], the concentration of power around resonance
cones, with potential for wave ducting [102], and the effects of this highly perturbed plasma region on
the radiation impedance and on the self-consistent current distribution along the antenna.

The emission of the very low EMIC band entails additional complexity. The sheath around a space-
based RBR antenna is very thick, and so its capacitance is almost the vacuum capacitance, which is
nearly independent of the frequency and proportional to the transmitter length. If the frequency is
in the Whistler band, the capacitive reactance is tolerable for antenna length of the order of 100 m
or more. However, for the EMIC band, the associated reactance is extremely high even for a multi-
km transmitter, to the point that it is not possible to use an electric dipole to radiate these waves
without the help of any other device. On the other hand, in terms of the radiation resistance, a short
antenna would be ideal, because the relevant wavelengths (those near the resonance cone) are indeed
very short; unfortunately, short antennas suffer the most from the small capacitance problem, although
even a multi-km antenna would have too much reactance at the EMIC regime. Non-capacitive antenna
types, like loop antennae, need to be evaluated in this context, as well as electrostatic antennae that
are capable of charge ejection to avoid accumulation during the oscillations. Except for linear far-
field analyses of loop antennae [121, 117], the unrealized Soviet Active mission (Intercosmos 24) that
failed to deploy a VLF loop antenna with the objective to understand its radiation properties and
triggered particle precipitation [87], and DC bipolar plasma contactor experiments using reversible
hollow cathodes [48], this is also a largely unexplored territory that should be addressed, given its
potential practical importance.

2.2 Propagation of ULF/VLF Waves

The propagation of Whistler and EMIC waves has been studied through observations and ray-tracing
simulations. Observations of EMIC waves from ground and space have been reported in different
studies [10, 9, 33, 35, 36, 76] most frequently and most intense during geomagentic storms. The fact
that they are observed on the ground indicate that they may mode-convert and tunnel through the
bounce point [95]. In addition, ray-tracing codes have been developed to study the propagation of
these waves and their correlation with observations. These codes use the eikonal approximation of
geometrical optics [22] to follow the wave group velocity for given magnetic field and plasma density
models. It has been shown [110] that the propagation vector tends to become oblique due to the
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curvature of the Earth’s magnetic field, but that the group velocity vector remains mostly aligned to
the ambient field except in the vicinity of the bi-ion frequency, which is a mixed resonance between
two ion species. At frequencies above the bi-ion frequency, EMIC waves exhibit a resonance cone
that prevents them from getting perpendicular to the geomagnetic field, thus wave reflection cannot
occur until they propagate to higher latitudes and the local bi-ion frequency increases above the wave
frequency [109]. At the bi-ion frequency the wave-normal angle equals θ = 90◦, the parallel group
velocity is zero and the wave is reflected [91], thus becoming trapped in the magnetosphere. This
is analogous to the reflection of Whisters at the lower hybrid frequency [111]. This reflection and
propagation is controlled by the concentration of heavy ions (especially He+), which greatly influence
the bi-ion frequency. Rauch and Roux [91] developed a three-dimensional ray tracing code for ULF
waves propagating in an He+-rich plasma; in the presence of this heavy ion, the dispersion relation
of ULF waves splits into three branches [123]. Below each ion gyrofrequency the left-polarized mode
propagates and is guided along the magnetic lines. For finite wave normal angles a crossover frequency
exists between two cyclotron frequencies, where the polarization changes from left to right, while
for field aligned waves both polarizations are decoupled. At 90◦ there is an additional resonance at
the bi-ion frequency, which occurs between two cyclotron frequencies. Rauch and Roux showed that
depending on the branch, left polarized waves can be guided along the field lines or unguided and
compressional-like modes. Guided left-modes remain guided until the point where reflection occurs,
where the wave frequency equals the local bi-ion hybrid frequency (and the wavenumber vector becomes
perpendicular), but the wave may reach the ionosphere before this condition is met. Gomberoff and
Neira [41] added a third cold ion species (O+) and showed that it can affect the growth rate below the
He+ cyclotron frequency. Their publications considered waves propagating parallel to the magnetic
field. Further studies [32, 77] added a finite perpendicular wavenumber, which means that Landau
damping effects can take place due to the finite parallel electric field. Horne and Thorne [44] introduced
the HOTRAY ray-tracing code to compute the propagation, growth and absorption of EMIC waves.
More recently, complex studies have been presented that couple natural generation of EMIC, ray-
tracing and wave-particle interactions [68, 70].

2.3 Wave-Particle Interaction

It has been observed that the precipitation of energetic particles from the Van Allen belts is strongly
mediated by interactions with ULF/VLF waves. Evidence shows that naturally occurring Whistler
band waves can precipitate energetic electrons [1, 24, 25, 58, 82] and EMIC waves can precipitate both
energetic protons [33, 122] and electrons [75, 83, 84, 95]. There is evidence [49, 54, 71] that even the
relatively small fraction of VLF power that leaks into the ionosphere from ground emission by a few
high-power transmitters can have a strong-to-dominant effect on this precipitation, and hence on the
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equilibrium population of trapped high-energy particles.

This has renewed interest in the wave-particle interaction between ULF/VLF waves and the high-
energy particles of the radiation belts, which has been addressed by many authors in the past and
keeps on being a hot topic. Three approaches have been used to study the problem. The main
references and findings for each of these methods are summarized next.

One of the most common ways to deal with the problem consists of solving the pitch-angle diffusion
equation for the distribution function of energetic particles, which involves the calculation of diffusion
coefficients. Kennel and Petschek [65] showed that pitch-angle diffusion due to wave-particle inter-
actions could be a dominant loss mechanism for energetic electrons, and Kennel and Engelmann [66]
were the first to derive the general quasi-linear pitch-angle diffusion equation. Das [30] studied a
wave pulse propagating through a plasma described by a Kennel and Petschek distribution function
and Ashour-Abdalla [12] continued with the study of the effect of the modification of the distribution
function on the Whister waves themselves using linear theory in the description of the particle’s tra-
jectories. Later, based on Kennel and Engelmann’s formulation, Lyons et al. [80, 81, 78, 79] derived
general expressions for the particle quasi-linear diffusion coefficients in both pitch angle and energy
in an electron-proton medium valid for cyclotron resonance with any wave mode and distribution of
wave energy, and particularized them to the interaction of Whisters and Ion Cyclotron waves with
high-energy electrons and protons. Albert [3] introduced relativistic effects to the quasi-linear analysis
of the interactions of either electrons or protons with either oblique Whister or ion cyclotron waves
in an hydrogen plasma, and in a later publication [6] he studied the diffusion coefficients for oblique
EMIC waves interacting with electrons in a multispecies plasma. Jordanova et al. [62, 63, 60, 61] intro-
duced the effect of heavy ion species in the calculation of quasi-linear diffusion coefficients of incoherent
EMIC waves interacting with protons. However, all these studies arbitrarily assigned wave polariza-
tion and spectral characteristics. Khazanov et al. addressed this issue in the development of a new
self-consistent model of the interacting protons and electrons with naturally generated ion cyclotron
waves; he first considered parallel propagation [69] and the effect of oblique waves was introduced in the
following publications [68, 67]. Lotoaniu et al. [76] modeled the electron pitch-angle scattering due to
the field-aligned EMIC waves observed by the CRRES spacecraft using multi-ion quasi-linear diffusion
coefficients, and later, Li et al. [74] examined the pitch-angle scattering of electrons by field-aligned
EMIC and hiss waves during the main and recovery phases of a storm. For the Whister regime, Abel
and Thorne [1] calculated the precipitated fluxes and diffusion coefficients of energetic electrons due
to natural phenomena and Whister emissions in a plasma with different ion species, and Horne and
Thorne [45] introduced ray-tracing to the analysis. Inan et al. [54] used power scaling from Abel and
Thorne’s results to compare scattering of electrons due to Whister emissions from spaceborne versus
ground transmitters. The more recent studies of Glauert and Horne [40] and Albert [7] developed
relativistic computer codes that efficiently calculated the quasi-linear diffusion coefficients and solved
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the interaction between oblique EMIC/Whister waves and electrons, and Summers [105] developed
exact closed-form analytical expressions from classical quasi-linear diffusion theory for the diffusion
coefficients for resonant interaction with field-aligned electromagnetic waves that can be evaluated
using negligible CPU time.

Another way of approaching the problem consists of solving the non-linear equations of motion of the
high-energy particles interacting with the waves. A test particle simulation is a widely used method to
solve these equations. Compared to other approaches, this formulation allows one to deal with coherent
and narrow-band waves, which are fundamentally different from those produced by incoherent signals.
In the later case the particles perform a random walk in velocity space, whereas during the interaction
with a coherent wave individual particles are not scattered randomly, but they stay in resonance
long enough for the particle’s pitch angle to be substantially changed through non-linear interactions.
This method was initially proposed by Inan [50, 56], who described the gyroresonance interaction
between coherent field-aligned Whister waves and energetic electrons in the case of continuous VLF
wave interaction with the particle’s distribution. This model was further extended to include the effect
of temporal variation of the precipitated flux as a result of the interaction of short-duration VLF
waves with electrons [23, 55], which was used in the calculation of the spatial distribution of electron
precipitation caused by VLF signals from ground-based transmitters [57]. Chang and Inan [24, 26, 25]
introduced relativistic effects to the formulation, and [51] used this approach to study gyroresonant
pitch-angle scattering of energetic electrons by Whister waves for coherent versus incoherent waves,
and the results were compared with those from the classical diffusion treatment. The gyroaveraged
equations for obliquely propagating Whisters were initially introduced for the Laundau resonance by
[59], and extended to higher order resonances by [16, 53, 93, ?, 108]. Recently, Bortnik et al. [20]
introduced ray-tracing to study the linear interactions between precipitating radiation-belt electrons
driven by lightning-generated Whisters, and Kulkarni et al. [73] incorporated ray-tracing [52] as well
as Landau damping [18] effects to model the effect of space based VLF transmitters to the energetic
electron precipitation. It must be mentioned that all these publications use the test particle approach
to deal with Whister waves interacting with electrons, but no attention has been paid to the lower
frequency band and its interaction with the high-energy particles.

The last approach to the problem uses a test particle simulation to solve the two-dimensional resonance-
averaged Hamiltonian that describes the wave-particle interaction. Shklyar [99, 98] was the first to
use this method to study the non-relativistic proton interaction with an oblique electrostatic VLF
wave. He considered a strong inhomogeneity, which led to a random walk for the particle canonical
momentum. Ginet and Heinemann [38] and Ginet and Albert [37] used this formulation to study the
relativistic case of a test particle interacting with a small amplitude electromagnetic wave, but they
did not include the passage through the resonance because the external magnetic field was assumed
constant. This issue was addressed by Albert [2, 4, 5], who included the spatial dependence of the
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resonance condition for a small monochromatic VLF wave interacting with relativistic test electrons.
These publications showed that the type of behavior depends on the ratio (R) of the phase oscillation
period at resonance to the time scale for passage through the resonance. For R>1 the interaction
results in pitch angle and energy diffusion, but for R<1 phase bunching occurs, which translates to
pitch-angle and energy change with well-defined signs and independent of the initial phase between
the wave and the particle. In addition, Albert showed that phase trapping can occur when R<1 and
that ratio is decreasing at resonance. For the EMIC band, Albert [8] used this formulation to study
the non-linear interaction with relativistic electrons; however, interaction with energetic protons was
not considered.

2.4 Engineering Applications

Many civil and military missions have tried to characterize the Van Allen belts and wave-particle
interactions for years, but none has engineered and launched the RBR ideas yet. The Dynamics
Explorer (DE) launched on 1981, Combined Release and Radiation Effects Satellite (CRRES) launched
in 1990, Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) launched on 2000 or the
Radiation Belt Storm Probes (RBSP) to be launched on 2012 are examples of the first mentioned
type. The only effort so far to test the Radiation Belt Remediation concept comes from the Air Force
Research Laboratory (AFRL). AFRL’s Demonstration and Science Experiments (DSX) is scheduled to
be launched next October 2012 from Vandenberg Air Force Base, CA. The satellite features 14 payloads,
grouped under three main experiments: the Wave Particle Interaction Experiment (WPIx), the Space
Weather Experiment (SWx) and the Space Environmental Effects Experiment (SFx) [29, 101, 96, 39].
The WPIx entails a direct implementation of the Remediation ideas through the radiation of Whister
waves from an 80 meter-long antenna and the characterization of their feasibility to reduce space
radiation. One of the payloads required by this experiment is the Loss Cone Imager (LCI) [114],
which is an electron loss-cone particle detector that will provide a 3D measurement of the energetic
particle distributions. The High Sensitivity Telescope (HST) is a separate solid state detector telescope
required in order to obtain fluxes of energetic electrons along the field lines. Where DSX is testing the
efficacy of Whistler waves to alter the high-energy electrons in the radiation belts, the results of my
thesis will serve to derive specifications for a potential RBR space-based system able to test the much
lower EMIC band and its performance in precipitating not only the energetic electrons, but as well
the even more harmful population of protons.
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2.5 Thesis Contributions

My thesis aims at studying the radiation of coherent and narrow-band EMIC waves from a spaceborne
transmitter, their propagation along the belts and their interaction with both high-energy protons and
electrons. Numerous contributions arise from this study, which can be grouped in four groups:

• The radiation of this frequency band is a broad unexplored territory that should be addressed
given its potential practical importance. In my thesis I will determine the type of antenna able to
radiate EMIC waves in the magnetospheric plasma by addressing the solutions proposed above
and determining their feasibility.

• Once the emitter’s radiation pattern has been estimated, I plan to make use of the Stanford
ray-tracing code to propagate the waves along the radiation belts, which would require adapting
the implementation to my specific case.

• The interaction between these ray-paths and energetic particles will be analyzed next. In order
to do that I am developing a test-particle simulation that solves the non-linear equations of
motion. As mentioned above, this formulation is of especial interest to us because it allows one
to deal with the non-linearities that may arise from interacting with coherent and narrow-band
EMIC waves, as well as to easily introduce a short duration wave pulse (which would probably
be the transmitter’s operating mode). This analysis has two parts: (1) the study of a single
sheet of particles in order to determine the region in velocity where they can resonantly interact
with the waves and (2) the study of the scattering of the magnetospheric energetic distribution.
These analyses have been previously developed for Whister waves resonating with electrons, but
no attention has been paid to the lower frequency band and its interaction with high-energy
particles.

• Finally, I will translate these results to engineering specifications of a space-based RBR system
able of significantly reduce the concentration of energetic particles in the belts, and I will com-
pare its performance with sources of natural precipitation. As mentioned above, the AFRL’s
Demonstration and Science Experiments (DSX) will deal with the whistler band and its inter-
action with electrons, but no system able to radiate EMIC waves and scatter protons has ever
been proposed.
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Chapter 3

Approach

3.1 Algorithm Overview

Four models constitute the simulation of the interaction between energetic particles and EMIC waves:

• Magnetospheric models

• Antenna radiation model

• Propagation model

• Wave-particle interaction model

The magnetospheric models of plasma density, composition and magnetic field are inputs to the rest of
the code. The antenna radiation model generates inputs to the propagation model, which determines
the characteristics of EMIC waves along the magnetic lines required for wave-particle interaction
calculations. The magnetic lines are discretized in latitude, and for every time and latitude step the
properties of the waves originated at the source antenna (radiation model) are updated using ray-
tracing (propagation model). These properties are used to solve the non-linear equations of motion
of test energetic particles from given distribution function interacting with the wave (wave-particle
interaction model). The process is repeated for every time step and every latitude and the precipitated
flux is calculated as a result of this iteration. This procedure is illustrated in Figure 3.1.

It must be noted that part of the complexity of this analysis resides in finding the right combination of
antenna source location (antenna operations), wave characteristics (antenna design) and target parti-
cles (range of energies, pitch angles, etc.) that would provide the best result in terms of precipitation.
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This iteration links with the translation to engineering specifications of a spaceborne system able to
perform this mission.

For every t 

For every ! 

For every resonance 

For every test particle 
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•  Engineering implications 
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Figure 3.1: Algorithm schematic

3.2 Magnetospheric Models

Wave-particle interactions of interest to RBR happen within the inner mangetosphere, which covers
the region up to L = 6 and between ±66◦ of geomagnetic latitudes. Within this region, a dipole model
represents a good approximation of the Earth’s magnetic field, with dipole axis tilted with respect to
the rotation axis by 11.5◦. The strength of the magnetic field given by this model can be found as a
function of the geocentric distance and the geomagnetic latitude as follows

B0 (r,λ) = B0

�
RE

r

�3 �
1 + 3sin2λ (3.1)

where r and λ are the geocentric radial distance and the geomagnetic latitude, respectively. RE =

6370 km is the mean radius of the Earth and B0 = 3.12·10−5 T .

In the dipole model, the equation of a field line is given by

r cos2λE = REcos
2λ (3.2)
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where λE is the latitude of the point where the field line intercepts the Earth’s surface. The definition
of the L-shell parameter comes from this equation, which identifies a given field line

L =
req
RE

=
1

cos2λE
(3.3)

In the inner magnetosphere, the background cold plasma can be represented using a diffusive equilib-
rium model [11]. Under these conditions, the variation of the electron density along the magnetic lines
can be represented as follows

Ne (L, λ) = N1

��

j

ξje−z/Hj (3.4)

where

z = r1 −
r21
r

− ωE

2g1

�
r2cos2λ− r21cos

2λ1

�
(3.5)

Hj =
kT

mjg1
(3.6)

where ξ is the fraction of each ionic species, ωE is the rate of rotation of the Earth, g is the gravity, k
is the Boltzman’s constant, T is the temperature and m is the particles mass. The subscript i refers
to the different ionic species (H+, He+, O+) and the subscript 1 to the reference level at 1000 km of
altitude. Figure 3.2 [46] presents model and data densities and temperatures of different ion species at
L = 1.5−2.5 as of November, 1981. The profiles correspond to the FLIP model while the markers refer
to DE 1/2 data. For a given altitude, we observe that there is not much difference in the parameters
from shell to shell.
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Fig. 10. Four FLIP altitudinal profiles for L = 1.5, 2, 2.5, and 3 flux tubes in the dusk-evening sector compared with DE I/2 data 
for the DE I pass of 1656-1728 UT on November 6, 1981 (see Figure 5). 

than the model in panels A and B, whereas panel D displays 
observed ion densities and temperatures at the plasmaspheric 
altitudes which are much higher than the model calculations. 

4. SUMMARY AND DISCUSSION 

We have presented DE 1/2 data on the plasma coupling 
between the ionosphere and plasmasphere, and have performed 
model calculations to compare altitudinal profiles of densities and 
temperatures along these flux tubes with the observations. Our 
salient findings are as follows: 

I. In some cases, there is substantial evidence to show that the 
light ion latitudinal density profiles in the upper ionosphere 
resemble those in the plasmasphere, even though the dominant O + 
density profile in the ionosphere is typically much smoother and 
flatter. 

2. There is strong evidence that, within the plasmasphere, the 
O + density profile variations correlate with the ion and electron 
temperature latitudinal variations in both the plasmasphere and 
ionosphere, but have very little correlation with the comparatively 

smooth ionospheric O + density profile. These relationships are 
seen most prominently in connection with plasmaspheric heavy 
ion density enhancements, such as in Figures 2, 6, and 7. 

3. The He +/H + density ratio is typically much greater than unity 
in the upper ionosphere sampled by DE 2 during sunspot 
maximum, but is around 0.2 in the plasmasphere data taken by 
DE 1. (The FLIP model reproduces these features and indicates 
that the zone of He +/H + density ratio exceeding unity lies between 
about 500 and 1500 km altitude.) 

4. The latitudinal variations of ionospheric O + temperature and 
plasmaspheric H + temperature are broadly similar in that both 
show general increases with latitude and occasional correlated 
peaks in the outer plasmasphere, although the plasmaspheric 
temperatures are typically a factor of 3 or more larger than the 
ionospheric temperatures. However, as noted earlier, in some 
cases, such as Figures 5, 6, and 8, part of the apparent latitudinal 
variations in the ionospheric temperatures may be due to alti- 
tudinal variations as indicated by the strong temperature gradients 
in the upper ionospheric regions exhibited in the model calcu- 
lations. 

Figure 3.2: Altitudinal profile of ion densities and temperatures for L=1.5-2.5 [46]

3.3 The Radiation Model

This model aims at identifying a spaceborne antennae able to radiate waves in the EMIC band and to
characterize its radiation impedance and radiation pattern.

The sheath around a space-based EMIC antenna is very thick, and so the antenna capacitance is almost
the vacuum capacitance, which is very small and dominates. The associated reactance is extremely
high for EMIC waves to the point that it is not possible to use an electric dipole to radiate these waves
without the help of any other device. The radiation resistance of an electric dipole in a magnetoplasma
perpendicular to the Earth’s magnetic field is given by [15]

Rrad =
2 |p|

πω�0SLa

�
Ln

�
La

2ra

�
− 1− Ln

��
1 + p2

2

��
(3.7)

where La is the antenna length, ra is its radius, p2 = S/P and P and S have been defined in Eqs. 1.15
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and 1.16, respectively.

The antenna capacitance (slightly modified by the sheath) is given by [100]

Xantenna =
1

πωLa�0

�
Ln

�
rsh
ra

− 1

2

��
j =⇒ Cantenna =

1

jωXantenna
=

πLa�0

Ln
�

rsh
ra

− 1
2

� (3.8)

which is mostly the vacuum capacitance

Cvacuum =
πLa�0

Ln
�

La
2ra

� (3.9)

where rsh is the sheath’s radius, which can be estimated using Song’s formulation [100]. From these
expressions we observe that a short antenna would be ideal in terms of radiation resistance, because
the relevant wavelengths (those near the resonance cone) are indeed very short; unfortunately, short
antennas suffer the most from the small capacitance problem, although even a multi-km antenna would
have too much reactance at the EMIC regime.

In order to address this problem two possible solutions have been identified. The first option involves
plasma contactors at both ends of a linear dipole, thus avoiding oscillatory charge accumulation respon-
sible for the huge capacitive impedance. The second case under consideration consists of a magnetic
loop dipole working as an EMIC transmitter. Wang and Bell [19, 116] calculated the radiation resis-
tance of a small filamentary loop antenna in a cold magnetoplasma. Figure 3.3 shows this resistance
versus the frequency normalized with the proton gyrofrequency. The two plots are for different normal-
ized loop radius (r0 = ωcer/c) and for a plasma to electron cyclotron frequency of ωpe/ωce = 10. To
illustrate the difficulty of radiating EMIC waves with this antenna imagine that we require a radiation
resistance of Rrad = 10−5 Ω in the EMIC range. According to this plot and assuming operation in
L = 2 (fce = 110 kHz), we would need a loop radius of r = 218m, which increases with increasing
radiation resistance. If we aim at emitting 100 W of power, the input current to the antenna should
be I = 4.5 kA. This design implies a huge semiconductor magnetic loop dipole, which seems indeed
not feasible.

Our future efforts in this area will focus on studying variations in the structure of a magnetic loop
that could increase the radiation resistance with respect to that of a single loop, like multiple smaller
loops or coil antennae.
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Fig. 3. Loop radiation  resistance as function of frequency in 
multi-ion plasma. Four-specie plasma is assumed: electrons, 
protons (70 percent.), Hei (20 percent), and O+ + (10 percent). 

the approximat,e  solutions (4) and ( l l) ,  both of which 
will be quite  accurate for ro 5 0.05. Equation (4) can be 
used to evaluate R a.t. the relative  minimum which occurs 
on t.he high-frequency side of fLH, while (11) can  be 
used to determine the peak  value. It is found that  the 
peak  value  varies  approximately as ~ ~ f o / f ~ ~ ,  while t.he 
minimum  value varies a.pproximately  as ya( f0/fHe)'; t,hus 
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proton  gyrofrequency.  Two  curves a,re plotted, one for 
T~ = 0.5 and one for r0 = 0.01; in each case it is assumed 
t.hat, fo/fHe = 10. The plasma. is assumed t.0 consist of 
electrom  and  three  ions:  atomic hydrogen,  atomic  helium, 
and  atomic oxygen. The composition of t.he plasma  is 
assumed to be 70-percent H+, 20-percent. He+,  and 10- 
percent Of +. The hydrogen and helium percenlages are 
in line n-it.h those that can  be  found in  the topside iono- 
sphere (-1000 km) at night. The doubly ionized at,omic 
oxygen is  included  for  numerical convenience and  not  on 
t,he basis of any model of the ionosphere. The effect.s on 
R due  to  the presence of multiple ions are clearly visible 
in  both curves of Fig. 3, but particularly so in  the curve 
for  the smaller  radius ro = 0.01. 
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the multiple-ion hybrid-resonance frequencies  (points  la- 
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Figure 3.3: Loop radiation resistance as function of frequency in multi-ion plasma [19]

3.4 The Propagation Model

To describe the propagation of EMIC waves in the Earth’s magnetosphere it is important to consider
the variation of the geomagnetic field and the plasma density with location in space. Unlike the
case of propagation in an homogeneous and isotropic medium where the wave-normal angle (phase
velocity) lies in the direction of propagation of the wave energy (group velocity) , the magnetosphere
is inhomogeneous and anisotropic and these two directions do not coincide in general. The trajectory
of the wave energy is called ray path, and it is always perpendicular to the refracting index surface.

If the properties of the medium vary slowly within one wavelength we can use the geometric optics
approximation to determine the entire trajectory of the ray path (wave energy). Geometric optics
assumes that, within a given slab, the properties of the medium are locally constant and change slowly
as the ray propagates to the next slab. This can be interpreted as successive applications of Snell’s
Law, i.e., µicosχi = µi+1cosχi+1 as in Figure 3.4, where µ is the refractive index, and neglects partial
reflections between slabs.
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Figure 3.4: Snell’s Law interpretation of ray tracing equations

The ray tracing equations were first derived by Haselgrove, 1955 [42] and they are a set of closed first
order differential equations that can be integrated numerically. Although the original formulation was
three dimensional, it is common to consider the 2D case and only trace rays in the meridional plane.
The 2D differential equations are given by

dr

dt
=

1

µ2

�
ρr − µ

∂µ

∂ρr

�
(3.10)

dϕ

dt
=

1

rµ2

�
ρϕ − µ

∂µ

∂ρϕ

�
(3.11)

dρr
dt

=
1

µ

∂µ

∂r
+ ρϕ

dϕ

dt
(3.12)

dρϕ
dt

=
1

r

�
1

µ

∂µ

∂ϕ
− ρϕ

dr

dt

�
(3.13)

where r and ϕ are the geocentric distance and colatitude respectively, ρr and ρϕ are the radial and
colatitude components of the refractive index vector (parallel to �k with length µ) and t is the integration
variable which has units of distance (t = phase time × speed of light). We must note here that the
properties of the medium appear only through the refractive index µ and its components ρr and ρϕ.

Given a set of initial values of ray position and wave-normal vector coming from the EMIC radiation
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analysis, the integration of the ray tracing equations determines the variation of the these quantities
as a function of distance.

3.5 The Wave-Particle Interaction Model

3.5.1 Non-linear Equations of Motion

Consider a test proton trapped in the belts under the influence of an EMIC wave with a wave vector
�k in the x-z plane, which is obliquely propagating with an angle ψ with respect to the -z axis. The
Earth’s magnetic field �B0 is directed along the z-axis. The situation is represented in Figure 3.5. The
wave fields can be written in the form

�Bw = Bw
x cosΦ êx +Bw

y sinΦ êy −Bw
z cosΦ êz (3.14)

�Ew = −Ew
x sinΦ êx + Ew

y cosΦ êy − Ew
z sinΦ êz (3.15)

where Φ is the wave phase defined as follows

Φ =

ˆ
ωdt−

ˆ
�k· �dr (3.16)

where ω is the wave frequency, �k is the wavenumber vector and the integral is evaluated along the ray
direction.
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Figure 3.5: Schematic of the wave-particle interaction
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The magnitude of the wave polarization ratios can be found from Maxwell’s equations and are given
by

Ew
x

Ew
y

=
S − n2

D
(3.17)

Ew
z

Ew
y

=

�
S − n2

�
n2sinθcosθ

D (n2sin2θ − P )
(3.18)

Bw
x

Bw
y

= −
D

�
n2sin2θ − P

�

P (S − n2)
(3.19)

Bw
z

Bw
y

= −tanθ
D

�
n2sin2θ − P

�

P (S − n2)
(3.20)

where n is the refractive index defined in Eq. 1.26 and P, S and D have been defined in Eqs. 1.23 to
1.25.

The wave fields given above can be expressed as a sum of right and left circularly polarized components

�Bw = �BR + �BL − �ezB
w
z cosΦ (3.21)

where

�BR =
Bw

x +Bw
y

2
(�excosΦ+ �eysinΦ) (3.22)

�BL =
Bw

x −Bw
y

2
(�excosΦ− �eysinΦ) (3.23)

At a fixed point in space, �BR rotates counterclockwise about �B0 with angular velocity ω, while �BL

rotates clockwise.

The Earth’s magnetic field is assumed to be locally parallel to the z-axis and vary slowly along it as
follows

�B0 (�r) = �B0z (z) + �B0⊥ (x, y, z) (3.24)

where �B0⊥ for a dipole model can be evaluated using a Taylor expansion in x and y

40



�B0⊥ (x, y, z) = − (êxcosξ + êysinξ) (x cosξ + y êysinξ)
∂B0z

∂z
(3.25)

where ξ is the angle between the magnetic meridional plane and the x-z plane.

We must mention here that all these equations including the dispersion relation in Section 1.2.4 are
derived for an homogeneous medium. However, since the spatial variations of the plasma density and
Earth’s magnetic field are small over the distance of the order of the wavelength, at any given point we
can assume that the wave has the same characteristics as those of a wave traveling in an homogeneous
medium with the same refractive index. This constitutes the slowly varying approximation, which is
commonly known as WKB approximation.

According to the resonance condition given in Eq. 1.36, protons must travel in the opposite direction
to the waves, causing an upward Doppler shift on the frequency. Substituting these expressions into
the Lorentz force equation (Eq. 1.35) we get the following scalar equations of motion of the traveling
particle

ṗx = −qEw
x sinΦ+

q

mpγ

�
py (−Bw

z cosΦ+B0z)− pz
�
Bw

y sinΦ+B0⊥y

��
(3.26)

ṗy = qEw
y cosΦ+

q

mpγ
[−px (−Bw

z cosΦ+B0z) + pz (B
w
x cosΦ+B0⊥x)] (3.27)

ṗz = −qEw
z sinΦ+

q

mpγ

�
px

�
Bw

y sinΦ+B0⊥y

�
− py (B

w
x cosΦ+B0⊥x)

�
(3.28)

which can be expressed in terms of parallel and perpendicular momentum to the Earth’s magnetic
field. Since the resonant interaction between a test proton and EMIC waves happens when the particle
gyration is in phase with the left-hand elliptically polarized component of the wave, the angle in
between �BL and �p⊥ (ϕ) is the most appropriate third component to use in the derivation of the
equations of motion. This angle is represented in Figure 3.6.
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Figure 3.6: Phase geometry of the interaction process

Taking into account that

px = p⊥cosθ (3.29)

py = p⊥sinθ (3.30)

θ = ϕ− Φ (3.31)

Φ̇ = ω − �v·�k = ω + vxkx + vzkz (3.32)

the scalar equations of motion can be expressed as follows

ϕ̇ = θ̇ + Φ̇ = −ωcp

γ
+ ω + vxkx + vzkz +

C1

γ
(3.33)

ṗz = −qEw
z sinΦ− 1

γ
ω1p⊥sin (ϕ− 2Φ)− 1

γ
ω2p⊥sinϕ+ C2 (3.34)

ṗ⊥ = ω1

�
pz
γ

+R1mp

�
sin (ϕ− 2Φ) + ω2

�
pz
γ

−R2mp

�
sinϕ+ C3 (3.35)

where mp and ωcp are the mass and cyclotron frequency of protons and
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ω1 =
q

mp

Bw
x +Bw

y

2
, ω2 =

q

mp

Bw
x −Bw

y

2
(3.36)

R1 =
Ew

x + Ew
y

Bw
x +Bw

y

, R2 =
Ew

x − Ew
y

Bw
x −Bw

y

(3.37)

C1 =
q

mp

pz
p⊥

[B0⊥xcos (ϕ− Φ) +B0⊥ysin (ϕ− Φ)] (3.38)

C2 =
q

mpγ
p⊥ [B0⊥ycos (ϕ− Φ)−B0⊥xsin (ϕ− Φ)] (3.39)

C3 =
q

mpγ
pz [B0⊥xsin (ϕ− Φ)−B0⊥ycos (ϕ− Φ)] (3.40)

In must be noted that in the equation for ϕ̇ only the first order terms have been kept (we have neglected
the effect of the wave-field on the equation for ϕ̇). These equations can be simplified by taking
the average over the particle gyroperiod. This approximation can be done if the gyroperiod of the
proton is short compared to the time scale of the wave particle interaction. This approximation seems
very reasonable and will be checked when solving the wave-particle interaction problem numerically.
Following Jasna’s formulation [92], we introduce three new variables

χ =

ˆ
kxdx ⇒ χ̇ = kxvx (3.41)

ϕ = η + χ ⇒ ϕ̇ = η̇ + χ̇ (3.42)

ϕ̇ = −ωcp

γ
+ ω + vxkx + vzkz ⇒ ϕ = −ωcp

γ
t+ Φ+ Φ0 − ϕ0 (3.43)

Φ =
ωcp

γ
t+ θ0 + ϕ = σ + ϕ = σ + η + χ (3.44)

σ =
ωcp

γ
t+ θ0 , θ0 = ϕ0 − Φ0 (3.45)

and substituting into Eqs. 3.33 to 3.35, we can rewrite the equations of motion as follows
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η̇ = −ωcp

γ
+ ω + vzkz +

C1

γ
(3.46)

ṗz = ω2
τ0

1

kz
[−α1sin (η + χ)− γα2sin (σ + η + χ) + sin (2σ + η + χ)] + C2 (3.47)

ṗ⊥ = −ω1

�
pz
γ

+R1mp

�
sin (2σ + η + χ) + ω2

�
pz
γ

−R2mp

�
sin (η + χ) + C3 (3.48)

where

ω2
τ0 =

ω1kzp⊥
γ

, α1 =
ω2

ω1
, α2 =

qEw
z

ω1p⊥
(3.49)

Using the fact that

χ =

ˆ
kxdx = kxv⊥

ˆ
cos (ϕ− Φ) dt = kxv⊥

ˆ
cos (σ) dt = β sinσ (3.50)

where β = γkxv⊥/ωc, and taking into account that

eiβsinσ =
m=∞�

m=−∞
Jm (β) eimσ (3.51)

the gyroaveraged equations of motion can be written as follows

η̇ = −ωcp

γ
+ ω + vzkz +

C1

γ
(3.52)

ṗz = ω2
τ0

1

kz
[−α1J0 (β) + γα2J1 (β) + J2 (β)] sinη + C2 (3.53)

ṗ⊥ =

�
−ω1

�
pz
γ

+R1mp

�
J2 (β) + ω2

�
pz
γ

−R2mp

�
J0 (β)

�
sinη + C3 (3.54)

where Jν (β) are the Bessel functions of order ν and argument β and

C1 = 0 (3.55)
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C2 = − 1

γmp

p2⊥
2ωc

∂ωc

∂z
(3.56)

C3 =
1

γmp

p⊥pz
2ωc

∂ωc

∂z
(3.57)

From these equations we can see that the usefulness of η arises from the fact that η ≈ η and it can be
interpreted as the value of ϕ averaged over one gyroperiod.

3.5.2 Interaction with Individual Test Particles

When integrated over time, the equations of motion derived above determine the velocity space trajec-
tories of individual test particles. This is the starting point of our study, which concerns the interaction
between single particles and EMIC waves.

Previous studies of interaction between Whistlers and electrons [50] showed that the scattering is
strongly dependent on initial Larmor phase, thus we expect a similar behavior for EMIC-proton inter-
action. For this reason, we will study protons at the edge of the loss cone, with different energies and
distributed uniformly over initial phase.

In order to find the total scattering, the field line is discretized in latitude and the equations of motion
are integrated along that path. This procedure is repeated for each test particle. Using the adiabatic
motion relations, the integrated pitch angle and parallel velocity at each point along the path can be
referred to the equator and compared to the initial equatorial values in order to find the total scattering
and energy change of the particle.

The main result of this study is the region in velocity and pitch angle space that includes all particles
that can resonantly interact with the radiated waves and that could be scattered into the loss cone.
This information will be used as an input to the analysis of the full distribution of particles detailed
in the next section.

3.5.3 Interaction with a Full Distribution of Particles

The test particles’ study illustrates the dynamics of the interaction and provides information about
the velocity and pitch angle space that includes all resonant particles. However, the analysis of the full
distribution is required to assess the effects of EMIC waves on the population of energetic particles in
terms of precipitated fluxes and lifetimes.

The trapped population of energetic particles along a geomagnetic field line can be represented by a
distribution function at the equator f (E,α) in part/

�
(m/s)3 m3

�
. However, experimental data are
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often given in terms of the differential energy flux spectrum ΦE in part/
�
m2s sr J

�
. We can relate

these two quantities using conservation of particles as follows

ΦE (E,α) dAdΩ dE dt = f (E,α) v2 dv dΩ vdt dA (3.58)

where dΩ is the element of solid angle and v is the magnitude of the velocity of a particle with energy
E. Noting that dE = mγ3

Ev dv, where γE is the relativistic factor associated with E, we find the
following relation

f (E,α) = ΦE (E,α)
mγ3

E

v2
(3.59)

The differential precipitated flux Φ in part/
�
m2s J

�
can be obtained by integrating the wave-perturbed

ΦE over the solid angle representing the loss cone, which is given by dΩ = sinα dα dφ. The parallel
flux includes cosα to project along the �B0 tube. In addition, the result needs to be multiplied by
BTP /Beq, which accounts for the reduction of the flux tube cross section; using Eq. 3.1 it can be
shown that BTP /Beq =

√
1 + 3sin2λTP /cos6λTP , where λTP is the latitude at 100 km. The integral

can be expressed as follows

Φ (E) = 2π

√
1 + 3sin2λTP

cos6λTP

ˆ αlc

0
ΦE (E,α) cosα sinα dα (3.60)

and the number flux of precipitated particles N in part/
�
m2s

�
would be

N =

ˆ
E
Φ (E) dE (3.61)

and the associated energy flux Q in J/
�
m2s

�

Q =

ˆ
E
E Φ (E) dE (3.62)

We must note that by changing the limits of integration of N and Q we can explore the energy
dependence of these two quantities. In addition, for the case of a traveling pulse (instead of a steady
state case), all these quantities would be dependent on the time after pulse transmission.

The full distribution is simulated by a large number of individual test particles. For the high-energy
population trapped in every flux tube, the distribution can be specified with its equatorial value
feq (vII0eq,α0eq). From now on, we will drop the subscript eq. For a given field line and wave, only
a portion of the total population is scattered by the wave. Therefore, we only need to consider that
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portion of the distribution. These bounds are the result of the analysis of individual test particle
trajectories. After the non-perturbed distribution is specified, each test particle is allowed to go
through a complete interaction by solving the non-linear equations of motion between two points
along a given field line. At the end of the interaction, each test particle would have acquired a new
parallel velocity and pitch-angle, which can be identified with a mesh point (vIIF ,αF ) at the equator.
This means that all the particles represented by this test particle have acquired parallel velocities and
pitch angles between vIIF ±(∆vII/2) and αF ±(∆α/2) . Finally, in order to conserve the total number
density of particles in the system, the distribution function at (vII0,α0) and at (vIIF ,αF ) needs to be
modified as follows

fnew (vII0,α0) = fold (vII0,α0)−
1

nφ
fold (vII0,α0) (3.63)

fnew (vIIF ,αF ) = fold (vIIF ,αF ) +
1

nφ
fold (vII0,α0)

v2II0
sinα0
cos3α0

v2IIF
sinαF
cos3αF

(3.64)

where nφ is the number of particles per cell uniformly distributed in phase angle. The perturbed
distribution is obtained by using nφ test particles per mesh point and repeating the procedure for
every mesh point.

47



Chapter 4

Results to Date

Together with the formulation and conclusions presented in Chapters 1 and 3, my work to date con-
sisted of the development of a wave-particle interaction code. My strategy starts by reproducing
previous work of whistlers interacting with electrons, which allows one to validate the approach and
methodology. Once the different aspects of this interaction have been checked with previous publica-
tions I can safely start changing the wave dispersion, propagation and target particles to address our
problem. So far I have reproduced most of the work relative to whistlers (without ray-tracing of the
waves) interacting with electrons using a formulation based on non-linear equations of motion, an I
have started introducing the new EMIC regime and proton interaction. Some of the results obtained
so far are presented next.

4.1 Whistlers and Electrons

My first step was to reproduce the very first test particle formulation from Inan, 1978 [56]. In his
work, Inan studied the non-linear, non-relativistic cyclotron resonant interaction between electrons
with coherent and ducted Whistler waves in steady state. He developed a test particle simulation
to solve the non-linear equations of motion and calculated the precipitated energy fluxes due to the
interaction with a full distribution of energetic particles. My first implementation reproduced these
results, which are represented in Figures 4.1 and 4.2. The first plot gives the final net scattering at
L = 4 (neq = 400 el/cm3) of a single resonant sheet of electrons uniformly distributed in Larmor phase
φ, with an initial equatorial pitch angle of αeq0 = 10◦ and moving away from the equator. The wave
is characterized by Bweq = 20 pT and f = 5 kHz, and the velocity of the particles is such that the
interaction starts at the equator, which allows to clearly present the initial phase dependence. The
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results are obtained by integrating the full equations of motions for each of the test electrons. In this
picture we can observe that the interaction is non-linear and the scattering is larger at φ0 ≈ 0◦ due to
a trapping process that occurs at preferential phases where most of the cumulative interaction takes
place (phase trapping). Non-linear effects appear when the wave forces are the dominant factor in
controlling the phase rather than the inhomogeneity of the geomagnetic field, which begins to happen
for wave amplitudes greater than Bweq = 3 pT .
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Figure 4.1: Total scattering versus initial phase for equatorially resonant electrons with αeq0 = 10◦,
wave intensity of Bw = 20 pT and f = 5 kHz

Figure 4.2 shows the equatorial distribution of particles integrated over parallel velocities between 1
to 2 keV. The distribution before (blue) and after (red) the interaction with a Bweq = 30 pT wave is
presented. Particles are considered to be precipitated if their equatorial pitch angle after the interaction
is smaller than the equatorial loss cone angle. Only the part of the distribution able to interact with
this wave has been considered, which is uniform in pitch angle and has a sharp cutoff at the loss
cone. We observe that as a result of the interaction, particles have been scattered into the loss cone.
The energy flux of precipitated particles can be calculated according to Section 3.5.3, which gives
Q = 0.2 J/

�
m2s

�
for Bweq = 30 pT , in accordance with Inan’s results.
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Figure 4.2: Non-perturbed and perturbed particle distribution versus equatorial pitch angle for Bw =
30 pT and f = 5 kHz

The next step in the implementation was to include the temporal variation of the precipitated flux
as a result of the interaction of short-duration Whistler pulses with energetic electrons [55] instead of
considering steady state. Figure 4.3 shows the precipitated energy flux versus time after transmission
of the wave injected at 1000 km of altitude at L = 4 for Bweq = 5 pT at the equator and f = 6.83 kHz.
The responses were calculated for pulse-front locations between −16◦ and 44◦ of latitude. It can be
observed that the total length of the precipitated pulse is about 4 seconds, and the flux peaks at 3.5
seconds. This maximum is the result of a convergence effect due to the responses’ overlap at different
pulse locations (thus different energies of interacting particles and different interaction lengths). Figure
4.4 shows the energy of the particles that corresponds to that flux versus time after transmission (each
segment represents a step in the pulse location).
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Figure 4.3: Precipitated energy flux versus time after the injection of the wave for Bw = 5 pT and
f = 6.83 kHz
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Figure 4.4: Energy of the particles that constitue the flux of Figure 4.3
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The next analysis incorporated relativistic effects to the previous formulation. This work was developed
in the past by Chang, 1983 [24] for the steady state case. The same author addressed the transient
case in 1985 [26]. It must be noted here that relativistic effects are important when dealing with the
energetic population of electrons trapped in the belts. However, these corrections would not be required
when targeting energetic protons because their energy can be larger than the ones of electrons but
their velocities are non-relativistic. Figure 4.5 presents the energy spectrum of near-loss-cone quasi-
relativistic electrons for the steady state case at L = 2 (neq = 800 el/cm3), for a wave intensity of
Bweq = 7.5 pT and f = 5.46 kHz. The interaction takes into account two single passes, one at each side
of the equator, and the number of lobes and width depends of the distance between these resonances.
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Figure 4.5: Energy spectrum of precipitating particles

Figures 4.6 to 4.8 reproduce Chang’s results for relativistic electrons interacting with a 0.5 seconds
Whistler pulse which enters the magnetosphere at 1000 km of altitude and propagates along L = 4

(neq = 400 el/cm3). The wave magnetic field intensity and frequency at the equator are taken to be
Bweq = 5 pT and f = 2.5 kHz. As the input pulse propagates toward the equator, it first interacts with
higher energy electrons because the resonant electron energy decreases when approaching the equator
(as indicated by the resonance condition in Eq. 1.28). These electrons arrive first to the precipitation
region near the wave injection point, and equatorial scattered particles arrive later. As the pulse
travels past the equator, it interacts again with higher energy electrons and, although interacting with
the wave at later times, they can overtake these electrons scattered earlier by the wave close to the
equator. This explanation matches the results presented in Figure 4.6, where the dynamic spectra of
the precipitated energy flux is presented versus the particles’ energy and the time after transmission.
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Figures 4.7 and 4.8 present the integration of this spectra over energy and time, respectively.
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Figure 4.6: Dynamic spectra of the wave induced flux for Bw = 5 pT and E0 = 100 keV
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Figure 4.7: Transient precipitated energy flux for Bw = 5 pT and E0 = 100 keV
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Figure 4.8: Spectrum of precipitating electrons for Bw = 5 pT and E0 = 100 keV

The effect of obliquely propagating Whistlers on electrons was introduced next. Figures 4.9 to 4.11
reproduce the work by Ristic [92, ?], which modeled the interaction between Whistlers propagating
at a wave-normal angle of ψ = 60◦, f = 15.792 kHz and constant power flux of S = 8.1 pW/m2

and electrons with energies around 100 eV at L = 3. Figure 4.9 presents the scattering (upper plot)
and parallel velocity change (lower plot) of a single sheet of particles as a function of latitude due to
that wave. The sheet corresponds to test electrons with the same initial velocity and pitch angle, and
uniformly distributed in Larmor phase (each line corresponds to a different phase). We can observe that
the scattering is strongly dependent on initial phase, and for the given parameters the rms scattering
of the sheet has a value of ∆αeq|rms = 1.04◦. For the same wave parameters, Figure 4.10 presents
the perturbed distribution function referred to the equator after the interaction with the wave; we can
observe that some particles have precipitated inside the loss cone, which is located at αlceq = 8.62◦.
Finally, Figure 4.11 presents the differential precipitated flux Φ(E) for the same case. The number
flux of precipitated particles can be found by integrating Φ(E) over energies around 100 eV; taking
∆E = 0.2 eV , we get N = 35·104 el/

�
cm2s

�
.
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Figure 4.9: Scattering and parallel velocity of a sheet of electrons interacting with Whistlers with
ψ = 60◦, f = 15.792 kHz and S = 8.1 pW/m2 at L = 3
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Figure 4.11: Differential precipitated flux of electrons due to a ψ = 60◦, f = 15.792 kHz and S =
8.1 pW/m2 Whistler wave at L = 3

4.2 EMIC and Protons

The analyses above relative to whistler-electron interaction allowed me to validate the methodology
being developed. Although the whistler-electron picture is still not complete, I have most of the
ingredients to start analyzing the case of EMIC-protons. Next, I present my first steps in this direction,
which address the implementation of the dispersion relation presented in Section 1.2.4 and the analysis
of the resonance condition of protons and the EMIC wave band. This is an ongoing study that will
result in the compatible range of frequencies, particles’ energies and shells of operation input to the
wave-particle interaction analysis. Figure 4.12 presents a specific case for L = 2. The resonant energy
required for cyclotron interaction with MeV protons is plotted as a function of resonant latitude and
frequency. We observe that the required energy of the target particles increases with latitude and
decreases with frequency, which means that compared to resonance at higher latitudes, interaction at
the equator (longer resonance times, higher scattering) for a fixed target’s energy would require lower
frequencies.

56



Figure 4.12: Resonant energy of protons for EMIC interaction versus resonant latitude and frequency

Similar to Inan’s studies for the whistler-electron case [50], we have analyzed the interaction of parallel
propagating EMIC waves and a single sheet of protons uniformly distributed in Larmor phase. Figure
4.13 represents the RMS scattering referred to the equator versus the wave power flux for equatorial
interaction between protons at the edge of the loss cone and parallel propagating EMIC waves at
L = 1.5. This analysis is useful because it shows the importance of the wave field term compared to
the basic geomagnetic field in the variation of the phase η defined in Eq. 3.42. This wave term has
been neglected in our derivation of the equations of motion for interaction with oblique EMIC waves
(Eq. 3.52), but it has been included in this study of parallel propagation following the formulation
in [50]. According to these results and for the given parameters, the wave field is proportional to the
scattering for power fluxes ≤ 10−4W/m2; in the literature this regime is called “linear mode”, where
the wave term in the equation for η̇ can be neglected. This linear mode is equivalent to assume that
the wave effects are so small that the variation of η is very close to what it would have been without
wave.
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Figure 4.13: RMS pitch-angle scattering versus power flux for parallel EMIC-proton resonant interac-
tion at the equator (L = 1.5)

According to these results and neglecting the wave term in the phase equation, Figure 4.14 presents
the pitch-angle scattering referred to the equator versus latitude of a single equatorially (L = 1.5)
resonant sheet of protons interacting with an oblique EMIC wave with a wave-normal angle of ψ = 80◦

and power flux of 8.1−6W/m2. These protons have their velocity vector at the equator along the
edge of the loss cone and are uniformly distributed in Larmor phase (each curve corresponds to a
different phase). The RMS scattering for this case equals ∆αRMS |eq = 0.06◦, which is one order of
magnitude smaller than the scattering obtained for field aligned waves (∆αRMS |eq = 0.5◦) as shown
in Figure 4.13. Finally, Figure 4.15 presents the maximum scattering of each of these protons in the
sheet versus their initial Larmor phase. In this Figure we can perfectly observe the sinusoidal behavior
of the scattering characteristic of this linear behavior. When neglecting the wave term from the phase
equation, the variation in time of the parallel and perpendicular momentum (Eqs. 3.53 and 3.54)
depend sinusoidally on the phase, where η is now non dependent on the wave field.
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Figure 4.14: Total pitch-angle scattering versus latitude for a oblique EMIC wave interacting with
equatorially resonant protons (L = 1.5)
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Figure 4.15: Maximum pitch-angle scattering versus initial Larmor phase for a oblique EMIC wave
interacting with equatorially resonant protons (L = 1.5)
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Chapter 5

Future Work and Proposed Schedule

The future tasks described along this proposal and their planning are summarized in Figure 5.1:
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Figure 5.1: Tasks’ planning
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