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Motivation

Experimental data are crucial for developing and refining models:

parameter inference

prediction

model selection

“Optimally”-chosen experiments lead to substantial savings

(Sources: left—Argonne National Labs; right—www.weather.com)
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Challenges

Optimal experimental design (OED):

open-loop design:

theory for linear models well developed [Atkinson 92]

analytical results not available for nonlinear designs, and numerical

approaches often rely on linearization, Gaussian approximation,

and “best guess” parameters [Box 59, Ford 89, Chaloner 95, Chu 08]

general design framework free of these assumptions [Müller 98]

difficult to solve numerically [Ryan 03, van den Berg 03, Terejanu 12]

open-loop is sub-optimal for multiple experiments!

closed-loop design:

mostly greedy approach (sub-optimal) [Cavagnaro 12, Solonen 12]

dynamic programming truly optimal (POMDP formulation [Chong 09] )

but computationally feasible for only “simple” applications

[Brockwell 03, Christen 03, Wathen 06, Müller 07]
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Scope and Objective

Scope:

Optimal closed-loop design via dynamic programming for

nonlinear and computationally intensive (PDE-based) models

continuous design and data spaces of multiple dimensions

the purpose of parameter inference, using an information measure

in the objective

Objective:

develop numerical tools that find the optimal closed-loop design via

dynamic programming in a computationally feasible manner
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Formulations and Numerical Methods

Experimental Goal

Interested in experiments whose data are valuable for parameter

inference, taking a Bayesian design approach

posterior
︷ ︸︸ ︷

f (θ|y , d) =

likelihood
︷ ︸︸ ︷

f (y |θ, d)
prior

︷ ︸︸ ︷

f (θ|d)
f (y |d)
︸ ︷︷ ︸

evidence

θ — parameters of interest

y — noisy measurements or data

d — design variables or controls
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Formulations and Numerical Methods

Closed-Loop Dynamic Programming Formulation

State: posterior PDFs xk = f (θ|Ik ) where Ik = {d0, y0, . . . , dk−1, yk−1}
Control: dk = µk (xk ) ∈ U ⊆ R

nu ; π = {µ0, µ1, . . . , µN−1} is a policy

Noise: yk ∈ R
nw distributed according to likelihood f (yk |θ, dk )

System: Bayes’ Theorem xk+1 = F(xk , dk , yk ) =
f (yk |θ, dk )xk

f (yk |dk , Ik )

System

xk+1 = F(xk , dk , yk )

Controller (policy)

µk

State xkControl dk

Noise yk
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Formulations and Numerical Methods

Closed-Loop Dynamic Programming Formulation

Finite-horizon, discrete-time, perfect state information

Value functions (Bellman equation):

Jk (xk ) = max
dk

E [gk (xk , dk , yk ) + Jk+1 (F(xk , dk , yk ))]

JN(xN) =

∫

H
xN ln

[
xN

x0

]

dθ

for k = 0, . . . ,N − 1; policy implicitly in arg-max d∗
k = µk (xk )

Objective: expected total reward

Ey0,...,yN−1

[

JN (xN) +

N−1∑

k=0

gk (xk , µk (xk ), yk )

]
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Formulations and Numerical Methods

Numerical Tools

Evaluating terminal reward (information gain):

need to evaluate the expectation of Kullback-Leibler divergence

possible numerical approaches: Laplace approximation, binning,

quadrature, kernel density estimation—can have large errors or

poor scaling with dimension [Long 12, Guest 09, Sebastiani 97, Khan 07]

we use a doubly-nested Monte Carlo estimator [Ryan 03]
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Formulations and Numerical Methods

Numerical Tools

Stochastic optimization:

need to optimize value of noisy Monte Carlo estimator

Stochastic approximation (e.g. Robbins-Monro [Robbins 51] ):

steepest-descent-like using an unbiased gradient estimator,

difficult to select stepsize

Sample average approximation [Shapiro 91, Kleywegt 02] :

fix random variables at a seed, optimize resulting deterministic

instance

� Work-to-date: developed gradient expressions for stochastic approximation and sample

average approximation, conducted empirical performance studies on open-loop design problems

[Huan 13b, Huan 13a]
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Formulations and Numerical Methods

Numerical Tools

Polynomial chaos (surrogate model): [Wiener 38, Ghanem 91, Le Maître 10]

Replace forward model with polynomial expansions:

G(ξ) ≈
p

∑

|i|1=0

GiΨi(ξ1, ξ2, . . . , ξn)

coefs Gi, basis random variables ξj , orthogonal polynomials Ψi

non-intrusive approach to compute expansion coefficients via

sparse pseudo-spectral approximation [Conrad 13]

� Work-to-date: open-loop design using polynomial approximation of the forward model, over

the product space of the uncertain parameters and the design variables [Huan 13b, Huan 13a]

Two remaining issues (future work):

1 how to numerically represent the states xk = f (θ|Ik )?
2 how to deal with the “combinatorial explosion” and lack of

analytical solutions in the dynamic programming framework?
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Formulations and Numerical Methods

Open-Loop and Greedy Designs

For comparisons, we will also consider other design approaches

Open-loop design:

No feedback of data, clump all experiments in a batch and perform

one-stage closed-loop design

Experiment 0

Experiment 1

...

Experiment N − 1

Controller

(optimizer)

Data y0

y1

yN−1

Design d0

d1

dN−1

Greedy policy:

Update after each experiment and then perform open-loop design for

the next experiment only
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Proof-of-Concept Example

Linear-Gaussian Model

yk = dkθ + ǫk

prior: θ ∼ N (s0, σ
2
0) = N (7, 32)

noise: ǫk
iid∼ N (0, σ2

ǫ )

linear-Gaussian problem: conjugate family, posteriors (i.e., all

states) will be Gaussian:

xk+1 =
(

sk+1, σ
2
k+1

)

=





yk/dk

σ2
ǫ
/d2

k

+ sk

σ2
k

1
σ2
ǫ
/d2

k

+ 1
σ2

k

,
1

1
σ2
ǫ
/d2

k

+ 1
σ2

k





control: dk ∈ [1, 10]

stage cost quadratic in control: gk = −0.01d2
k

two experiments (N = 2)
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Proof-of-Concept Example

Linear-Gaussian Example: σ2
ǫ,k = 1

σ2
ǫ,k = 1 (constant)
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Proof-of-Concept Example

Linear-Gaussian Example: σ2
ǫ,k = 1

σ2
ǫ,k = 1 (constant)

2 3 4 5 6
0

1000

2000

3000

4000

Total reward

C
ou

nt

2 3 4 5 6
0

1000

2000

3000

4000

Total reward

C
ou

nt

2 3 4 5 6
0

1000

2000

3000

4000

Total reward

C
ou

nt

open-loop greedy dynamic programming

(mean 2.54) (mean 2.55) (mean 2.57)

Xun Huan (MIT) Thesis Proposal Defense, Cambridge, MA February 13, 2013 17 / 27



Proof-of-Concept Example

Linear-Gaussian Example: σ2
ǫ,k = (

√
7

5
dsk−6.5

k )2

σ2
ǫ,k = (

√
7

5 d
sk−6.5
k )2 (non-constant)

0 5 10 15 20
0

1000

2000

3000

4000

Total Reward

C
ou

nt

0 5 10 15 20
0

1000

2000

3000

4000

Total Reward

C
ou

nt

0 5 10 15 20
0

1000

2000

3000

4000

Total Reward

C
ou

nt

open-loop greedy dynamic programming

(mean 3.68) (mean 2.78) (mean 4.94)

Xun Huan (MIT) Thesis Proposal Defense, Cambridge, MA February 13, 2013 18 / 27



Future Work

Outline

1 Formulations and Numerical Methods

2 Proof-of-Concept Example

3 Future Work

Xun Huan (MIT) Thesis Proposal Defense, Cambridge, MA February 13, 2013 19 / 27



Future Work

State Representation

Two remaining issues (future work):

1 how to numerically represent the states xk = f (θ|Ik )?
2 how to deal with the “combinatorial explosion” and lack of

analytical solutions in the dynamic programming framework?

State representation:

state variables xk are general (non-Gaussian) PDFs

Gaussian mixture model

sequential Monte Carlo (particle filtering) [Ristic 04]

exponential family principle component analysis [Roy 05]

random variable mapping G where [Moselhy 12]

θ|y1:k , d1:k = G(θ|y1:k−1, d1:k−1)

will select an existing method that works well
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Future Work

Approximate Dynamic Programming

Approximate Dynamic Programming [Bertsekas 96, Sutton 98, Powell 07]

Problem simplifications:

open-loop, greedy, myopic, open-loop feedback control,

rolling-horizon, discretization and aggregation [Bertsekas 00]

Value function approximation:

parameterized linear architecture

J̃k (xk ) =
∑

i

rk ,izk ,i(xk )

zk ,i features, selection crucial and heavily relies on heuristics

rk ,i weights, trained via regression, sampling, quadrature, etc

one-step lookahead policy: perform a step of dynamic

programming before using the approximation function

rollout algorithm: one-step lookahead with approximation being

from a heuristic policy, equivalent to one step of policy iteration
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Future Work

Approximate Dynamic Programming

One-step lookahead backward induction:

J̃N(xN) = ΠJN(xN)

J̃k (xk ) = Πmax
dk

E[gk (xk , dk , yk ) + J̃k+1 (F(xk , dk , yk ))]

potential exponential error buildup

Π can use e.g. regression, but what state measure to use?

� Work-to-date: one-step lookahead backward induction used for linear-Gaussian model

Forward trajectory simulation: [Powell 07]

simulates trajectories from current approx functions (exploitation)

update approximation from trajectories (e.g., temporal differencing

[Sutton 88] )

flexibility in stopping or continuing refinement
issue: exploration vs. exploitation

heuristic exploration techniques (e.g., ǫ-greedy [Singh 00] )

reflect uncertainty of states (e.g., assign density on their values)
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Future Work

Approximate Dynamic Programming

Iterative forward-backward sweeps:

obtain sample paths, construct approximation functions using

backward induction based on these state measure approximations

iterative “batching” allows the use of more efficient techniques

such as quadrature

can use prior knowledge on state space to form the initial set of

value function approximations

Sequential Bayesian inference structure:

reacheable state space can be narrowed down based on the

problem structure

depends on a good choice of state representation

example: linear-Gaussian variance state component follows

σ2
k+1 =

1
1

σ2
ǫ
/d2

k

+ 1
σ2

k
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Future Work

Approximate Dynamic Programming

Q-factors: [Watkins 89, Watkins 92]

Qk (xk , dk ) ≡ E [gk (xk , dk , yk ) + Jk+1 (F(xk , dk , yk ))]

Bellman equation:

Qk (xk , dk ) = E

[

gk (xk , dk , yk ) + max
dk+1

Qk+1 (F(xk , dk , yk ), dk+1)

]

model-free operation once Qk are available

µ∗
k (xk ) = arg max

dk

Qk (xk , dk )

Q-factor approximation with Q̂k , may optimize analytically

sparse quadrature may now be used for E, jointly over θ and an

design-independent version of yk

ΠÊ now unbiased (c.f. Πmax Ê is biased)

drawback: input of Qk has dimension dim(xk ) + dim(dk )
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Future Work

Horizon Changes

Intended stopping rule: (upon satisfactory information gain)

Jk (xk ) =

{

max
{

maxdk
E [gk (xk , dk , yk ) + Jk+1 (xk+1)],

∫

H
ln
[

xk
x0

]

xk dθ
}

if xk 6= T

0 if xk = T

JN(xN) =

{

∫

H
ln
[

xN
x0

]

xN dθ if xN 6= T

0 if xN = T

T is the absorbing terminal state

Unexpected changes to the number of experiments:

redo dynamic programming for new horizon from current state

formulations robust to horizon change

form stopping problem if probabilities of horizon changes are known

“greedification”

incremental information gain

Jk (xk ) = max
dk

{

E

[∫

H

ln

[
xk+1

xk

]

xk+1 dθ + Jk+1(xk+1)

]}

, JN = 0
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Future Work

Applications

Combustion kinetics:

choose initial temperature and concentrations to infer reaction

kinetic parameters from ignition delay time measurements

experiments with fixed form and stationary parameters

Diffusion-convection source inversion:

choose concentration measurement locations and times under

distance penalties to infer source location and other parameters

source and parameters may be time-dependent

experiments with varying form and stationary or non-stationary

parameters
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Future Work

Proposed Schedule

Completed

09/08–08/11 • open-loop design for multiple experiments
• gradient-free stochastic optimization methods (SPSA and NM)
• combustion application [Huan 13b]

06/11–05/12 • gradient-based stochastic optimization methods (RM and SAA-BFGS)
• diffusion source-inversion application [Huan 13a]

11/11–01/13 • closed-loop DP design formulation
• analytical solutions and numerical ADP results for linear-Gaussian cases

Future

02/13–06/13 ADP:
• additional literature review
• implement existing techniques (e.g., Q-factors)
• create new efficient and accurate techniques for experimental design

07/13–09/13 state representation:
• compare and choose methods to represent the states (PDFs)
• possible candidates: GMM, SMC, random variable mapping

10/13–01/14 • combine tools together, run cases on the application problems
• explore horizon-change and stopping problem

02/14–06/14 • write and defend thesis
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Future Work

Linear-Gaussian Example: σ2
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Future Work
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