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Abstract

Experimental data play an essential role in developing and refining models of physical sys-
tems. Not all experimental results are equally useful, and some experiments can be much more
valuable than others. Well-chosen experiments can thus lead to substantial resource savings.
Optimal experimental design seeks to quantify and maximize the value of experimental data.

Common current practice for designing multiple experiments consists of suboptimal ap-
proaches: open-loop design that chooses all experiments simultaneously, and greedy design that
optimally selects the next experiment without accounting for the future. In this thesis, we de-
velop a rigorous formulation in a closed-loop dynamic programming (DP) framework that yields
the true optimal sequence of experiments under the uncertainty of their results. The frame-
work is suitable for nonlinear models and for the experimental purpose of Bayesian parameter
inference. Furthermore, we develop a set of numerical tools that solve the DP design prob-
lem with particular attention to approximation methods for computationally intensive models.
These tools include various methods of approximate dynamic programming, as well as numer-
ical techniques such as polynomial surrogates and stochastic optimization that accelerate the
computations.

In this thesis, the superiority of the DP design is demonstrated in a simple linear-Gaussian
model problem. Future work will apply the DP design framework to a realistic application
problem involving optimal sensor placement in a convection-diffusion field.
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1 Introduction

Experimental data play an essential role in developing and refining models of physical systems.
For example, data may be used to update knowledge of parameters in a model or to discriminate
among competing models. Whether obtained through field observations or laboratory experiments,
however, data may be difficult and expensive to acquire. Even controlled experiments can be time-
consuming or delicate to perform. In this context, maximizing the value of experimental data—
designing experiments to be “optimal” by some appropriate measure—can dramatically accelerate
the modeling process. Experimental design thus encompasses questions of where and when to
measure, which variables to interrogate, and what experimental conditions to employ.

The concept of experimental design has existed for a long time. Traditional experimental design
methods, such as factorial and composite designs, are largely used as heuristics for exploring the
relationship between input factors and response variables. Optimal experimental design, on the
other hand, uses a model to guide the choice of experiments for a particular purpose, such as
parameter inference, prediction, or model discrimination. Here are a few practical examples.

Combustion Kinetics Combustion phenomena, such as the ignition of a hydrogen-air mixture,
are often modeled by a chemical mechanism composed of many elementary reactions. Parameters
governing the rates of these reactions, know as kinetic rate parameters, are usually inferred from
experimental measurements such as ignition delay times [1, 2]. These kinetic parameters have large
uncertainties even today [3, 4, 5, 6], and more data are needed to reduce them. The experiments
are often prepared and conducted using, for example, shock tubes. Targeting a particular kinetic
parameter, one may repeat the same experiment multiple times under different temperatures and
pressures, with different initial concentrations of reactants, and selecting different output quantities
to observe (e.g., selected species concentrations) at different times. Optimal experimental design
provides guidance to these choices. Such a design involves nonlinear models and targets inference
of stationary (time-independent) parameters [7].

Optimal Sensor Placement The United States government has initiated a number of terrorism
prevention measures since the events of 9/11. The BioWatch program [8] focuses on the prevention
and response to scenarios where a biological pathogen is released in a city. One of the main
goals is to find and intercept the (possibly mobile) contaminant source and eliminate it as soon as
possible. Often too dangerous to send personnel into the contamination zone, a limited number
of measurements may be available from remote-controlled robotic vehicles. It is crucial for the
sequence of measurements to yield the most information on the location of the source. The author
has investigated a stationary version (static source location) of the problem in [9], and will explore
more elaborate scenarios, including mobile source location, in this thesis project (see Section 7.3.4).

Weather Balloons High-altitude weather balloons are deployed by the National Weather Ser-
vice (NWS) on a daily basis from about 100 locations across the U.S. to obtain temperature,
pressure, and other atmospheric measurements for inputs to numerical weather prediction mod-
els [10]. The measuring device, known as a radiosonde, typically costs hundreds of dollars, and
is usually lost after deployment. Adding labor, tracking, transportation, and storage costs, NWS
spends tens of million of dollars to “buy” these data every year. However, if the location and timing
of deployments are chosen such that the data collected are most informative for making weather
predictions, deployment frequency can potentially be reduced drastically, leading to substantial
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savings. This is an example of optimal experimental design for the purpose of reducing uncertainty
in model-based predictions.

We are interested in the design of multiple experiments. In practice, these experiments can be
pursued via two approaches:

• Open-loop: All the experiments must be selected concurrently, and we either do not have
or cannot use the results from any of the experiments we are conducting (i.e., no feedback).
This approach may be necessary due to practical constraints such as a schedule that require
all experiments to be performed at the same time. This approach is also known as batch
design.

• Closed-loop: The experiments may be conducted in sequence, allowing the new data to be
used to plan the upcoming experiments (i.e., with feedback). This approach is more general
than the open-loop approach, and is thus guaranteed to yield better or at least equally good
designs. This approach is also known as sequential design.

In this thesis, we focus on the most general design formulation—closed-loop design—using a dy-
namic programming (DP) formulation. Our interest lies in physically realistic and typically non-
linear models. These models are almost always computationally intensive, and due to nonlinearity,
Gaussian assumptions are not appropriate. This proposal is structured as follows. Section 2 states
the thesis objectives, and Section 3 provides an overview of previous work done in various fields
relevant to this project. Rigorous formulation of selected design approaches—namely open-loop,
greedy, and DP designs—are presented in Section 4, with the key contribution being optimal ex-
perimental design under the DP framework. The numerical methods for solving these problems
are described in Section 5, along with results from the author’s past work. Section 6 highlights a
detailed investigation of the different experimental design approaches applied to a linear-Gaussian
model problem. Also included are preliminary results from the DP design, which are both motivat-
ing and insightful. Finally, the proposal ends with a discussion of future work and thesis timeline
in Sections 7 and 8, respectively.

2 Thesis Objectives

This thesis project has two primary objectives:

1. to rigorously formulate the optimal closed-loop experimental design problem, for the purpose
of Bayesian parameter inference, using a dynamic programming approach; and

2. to develop the numerical tools that find the optimal experimental conditions in a computa-
tionally feasible manner.

These objectives, along with proposed solutions, are described in the upcoming sections.
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3 Literature Review

3.1 Optimal Experimental Design

3.1.1 Open-Loop Design

The problem of optimally designing experiments has received much attention in the statistics com-
munity and in many science and engineering applications. When observables depend linearly on
parameters of interest, common solution criteria for the optimal experimental design problem are
written as functionals of the information matrix [11]. These criteria include the well-known ‘al-
phabetic optimality’ conditions, e.g., A-optimality to minimize the average variance of parameter
estimates, or G-optimality to minimize the maximum variance of model predictions. Bayesian ana-
logues of alphabetic optimality, reflecting prior and posterior uncertainty in the model parameters,
can be derived from a decision-theoretic point of view [12]. For instance, Bayesian D-optimality can
be obtained from a utility function containing Shannon information while Bayesian A-optimality
may be derived from a squared error loss. In the case of linear-Gaussian models, the criteria
of Bayesian alphabetic optimality reduce to mathematical forms that parallel their non-Bayesian
counterparts [12].

For nonlinear models, however, exact evaluation of optimal design criteria is much more chal-
lenging. More tractable design criteria can be obtained by imposing additional assumptions, effec-
tively changing the form of the objective; these assumptions include linearizations of the forward
model, Gaussian approximations of the posterior distribution, and additional assumptions on the
marginal distribution of the data [13, 12]. In the Bayesian setting, such assumptions lead to design
criteria that may be understood as approximations of an expected utility. Most of these involve
prior expectations of the Fisher information matrix [14]. Cruder “locally optimal” approximations
require selecting a “best guess” value of the unknown model parameters and maximizing some func-
tional of the Fisher information evaluated at this point [15]. None of these approximations, though,
is suitable when the parameter distribution is broad or when it departs significantly from normal-
ity [16]. A more general design framework, free of these limiting assumptions, is preferred [17, 18].

More rigorous information theoretic criteria have been proposed throughout the literature. The
seminal paper of Lindley [19] suggests using expected gain in Shannon information, from prior to
posterior, as a measure of the information provided by an experiment; the same objective can be
justified from a decision theoretic perspective [20, 21]. Sebastiani and Wynn [22] propose selecting
experiments for which the marginal distribution of the data has maximum Shannon entropy; this
may be understood as a special case of Lindley’s criterion. Maximum entropy sampling (MES)
has seen use in applications ranging from astronomy [23] to geophysics [24], and is well suited to
nonlinear models. Reverting to Lindley’s criterion, Ryan [25] introduces a Monte Carlo estimator
of expected information gain to design experiments for a model of material fatigue. Terejanu et
al. [26] use a kernel estimator of mutual information (equivalent to expected information gain) to
identify parameters in chemical kinetic model. The latter two studies evaluate their criteria on
every element of a finite set of possible designs (on the order of ten designs in these examples),
and thus sidestep the challenge of optimizing the design criterion over general design spaces. And
both report significant limitations due to computation expense; [25] concludes that “full blown
search” over the design space is infeasible, and that two order-of-magnitude gains in computational
efficiency would be required even to discriminate among the enumerated designs.

The application of optimization methods to experimental design has thus favored simpler de-
sign objectives. The chemical engineering community, for example, has tended to use linearized
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and locally optimal [27] design criteria or other objectives [28] for which deterministic optimization
strategies are suitable. But in the broader context of decision theoretic design formulations, sam-
pling is required. [29] proposes a curve fitting scheme wherein the expected utility was fit with a
regression model, using Monte Carlo samples over the design space. This scheme relies on problem-
specific intuition about the character of the expected utility surface. Clyde et al. [30] explore the
joint design, parameter, and data space with a Markov chain Monte Carlo (MCMC) sampler; this
strategy combines integration with optimization, such that the marginal distribution of sampled
designs is proportional to the expected utility. This idea is extended with simulated annealing
in [31] to achieve more efficient maximization of the expected utility. [30, 31] use expected utilities
as design criteria but do not pursue information theoretic design metrics. Indeed, direct optimiza-
tion of information theoretic metrics has seen much less development. Building on the enumeration
approaches of [24, 25, 26] and the one-dimensional design space considered in [23], [18] iteratively
finds MES designs in multi-dimensional spaces by greedily choosing one component of the design
vector at a time. Hamada et al. [32] also find “near-optimal” designs for linear and nonlinear regres-
sion problems by maximizing expected information gain via genetic algorithms. Guestrin, Krause
and others [33, 34] find near-optimal placement of sensors in a discretized domain by iteratively
solving greedy subproblems, taking advantage of the submodularity of mutual information. More
recently, the author has made several contributions addressing the coupling of rigorous informa-
tion theoretic design criteria, complex physics-based models, and efficient optimization strategies
on nonlinear experimental design from a Bayesian perspective [35, 7].

3.1.2 Closed-Loop Design

In comparison to open-loop, closed-loop or sequential experimental design has seen much less de-
velopment. One of the difficulties is a practical one, as addressing such a problem would require
substantial computational resources. Only recently with advances in computing power and nu-
merical techniques have we begun to see attempts in tackling sequential experimental design. For
example, Cavagnaro et al. [36] address sequential design for the purpose of model discrimination
based on mutual information and using sequential Monte Carlo techniques, while Solonen et al. [37]
propose a framework using a variance-based utility and importance sampling for inference. The
need for sequential experiments has been acknowledged by many authors. However, majority of
the proposed solutions revolve around the suboptimal greedy design.

The truly optimal design method lies within the DP framework [38]. While the method is not yet
popular in the experimental design community compared to the more intuitive and simple greedy
approach, it is starting to gain traction with many authors beginning to acknowledge its optimality
even when suboptimal methods are used [39, 40]. Due to its notorious computational requirements,
few attempts have been made to implement a DP framework for design. Most of these cases require
simplifications from knowledge of the problem (e.g., sufficient statistics) combined with numerical
approximation techniques (e.g., grid search and Monte Carlo simulations), and even then have only
attempts been made to solve simple stopping problems with binary decisions [41, 42, 43].

DP is a well studied subject in the controls, operations research, and artificial intelligence
communities. Many opportunities exist, and should be capitalized, by borrowing and integrating
the techniques from these fields into the sequential experimental design context [44].
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3.2 Stochastic Optimization

The optimal experimental design framework involves the maximization of a noisy objective function.
This is addressed by stochastic optimization techniques.

There are many approaches for solving continuous optimization problems with stochastic ob-
jectives. While some do not require the direct evaluation of gradients (e.g., Nelder-Mead [45],
Kiefer-Wolfowitz [46], and simultaneous perturbation stochastic approximation [47]), other algo-
rithms can use gradient evaluations to great advantage. Broadly, these algorithms involve either
stochastic approximation (SA) [48] or sample average approximation (SAA) [49], where the latter
approach must also invoke a gradient-based deterministic optimization algorithm. Hybrids of the
two approaches are possible as well.

The Robbins-Monro algorithm [50] is one of the earliest and most widely used SA methods,
and has become a prototype for many subsequent algorithms. It involves an iterative update that
resembles steepest descent, except that it uses stochastic gradient information. SAA (a.k.a. the
retrospective method [51] and the sample-path method [52]) is a more recent approach, with the-
oretical analysis initially appearing in the 1990s [49, 52, 53]. Convergence rates and stochastic
bounds, although useful, do not necessarily reflect empirical performance under finite computa-
tional resources and imperfect numerical optimization schemes. To the best of our knowledge,
extensive numerical testing of SAA has focused on stochastic programming problems with spe-
cial structure (e.g., linear programs with discrete design variables) [54, 55, 56, 57, 58]. While
numerical improvements to SAA have seen continual development (e.g., estimators of optimality
gap [59, 60] and sample size adaptation [61, 62]), the practical behavior of SAA in more general
optimization settings is largely unexplored. A detailed numerical assessment of SAA in a nonlinear
continuous-variable design setting has been performed by the author [9].

3.3 Approximating Computationally Intensive Models

The experimental design problem often involves an underlying physical process governed by a set
of partial differential equations (PDEs), known as the “forward model”. The numerical methods
involve solving the forward model repeatedly, making the overall process computationally expen-
sive. To make these calculations tractable, one would like to replace the forward model with a
cheaper “surrogate” model that is accurate over the entire regions of the model input parameters.

Surrogates can be generally categorized into three classes [63, 64]: data-fit models, reduced-
order models, and hierarchical models. Data-fit models capture the input-output relationship of a
model from available data points, and assume regularity by imposing interpolation or regression.
Given the data points, it matters not how the original model functions, and it may be treated
as a black box. One classical example is the Gaussian process [65, 66], while polynomial chaos
(PC) expansion is another example that is also a spectral method [67, 68, 69, 70, 71, 72, 73, 74].
The latter builds a subspace from a set of orthogonal polynomial basis functions, and exploits
the regularity in the dependence of model outputs on uncertain input parameters. Reduced-order
models are based on a projection of the output space onto a smaller, lower dimensional subspace.
One example is the proper orthogonal decomposition (POD), where a set of “snapshots” of the
model outputs are used to construct a basis for the subspace [75, 76, 77]. Finally, hierarchical
models are those where simplifications are performed based on the underlying physics. Techniques
based on grid-coarsening, simplification of mechanics, addition of assumptions, are of this type,
and are often the basis of multi-fidelity analysis [78].
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3.4 Dynamic Programming and Approximate Dynamic Programming

Dynamic programming (DP) is an algorithm that provides a solution to the general problem of
optimal decision making under uncertainty. Central to DP is the famous Bellman’s equation [79],
describing the relationship between cost or reward incurred immediately with the expected cost
or reward of the uncertain future. DP has been used extensively in many major fields, including
controls, operations research, and artificial intelligence, each with its own set of vocabulary and
notation; we adopt mostly the conventions from the controls field in our work.

While the DP formulation is able to describe a very general set of problems, it is difficult to
solve due to the “curse of dimensionality”. Typically, only special classes of problems with specific
structures, such as those with linear system and quadratic cost [80], have analytical solutions.
Despite the extensive theoretical development of DP [81], its use in real-life applications is still
at a conceptual level [82] as solutions are only possible through numerical approximations, and
even then is a daunting task. As a result, substantial research has been devoted in making these
numerical methods both practical and accurate, and this field is known as approximate dynamic
programming (ADP) (a.k.a. neuro-dynamic programming and reinforcement learning) [83, 84, 85].

One source of “curse of dimensionality” is due to an often very large number of discrete states
and controls, or if these variables are continuous. One approach to mitigate this overwhelming
number of possible scenarios is to discretize [86] and aggregate [87] the states and controls. These
techniques, however, are often applied to Markov decision processes where a system model is simply
a transition matrix or function [88].

When a system model is available, the focus of ADP is usually on approximating the value
functions (a.k.a. cost-to-go functions) in order to mitigate the exponential growth of scenarios.
Value functions are often projected to a lower-dimensional subspace spanned by a set of “features”
via a linear architecture. The construction and selection of features often rely on experience and
insights into the problem. Once the features are fixed, one can then compute the coefficients
of the approximation functions via algorithms such as backward induction or sample paths. In
the former, projections are made through, for example, quadrature or Monte Carlo, based on the
approximation function of the previous stage. Due to the recursive reliance on approximations,
backward induction can lead to an exponential growth in the approximation error [89]. Sample
paths (scenarios) are simulated in the latter approach, and they exploit the current approximation
to explore the state space [83]. The approximation functions are then updated by algorithms
such as recursive least squares [90], Kalman filter [91], and temporal differencing (TD) [92]. TD
schemes in particular have received considerable attention and is supported by deep theoretical
background [93, 84] and has seen substantial success in applications [94]. Exploitation alone in
the sample path method can be dangerous as it may cycle only visited states; balance exploitation
with exploration remains an important issue in ADP algorithms [95].

Another route of simplification is to form the problem using post-decision states [96, 97], which
can be advantageous as it allows a model-free (i.e., without the need of the original system equation)
formulation. Q-factors are a special type of post-decision state, and constructing approximation
functions on Q-factors is known as Q-learning, perhaps the most widely used technique in rein-
forcement learning [98, 99].
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4 Optimal Design Formulations

We are interested in designing multiple (N) experiments. The goal of these experiments is assumed
to infer a finite number of model parameters of interest. Parameter inference is of course an integral
part of calibrating models from experimental data [65]. The expected utility framework developed
here can be generalized to other experimental goals as well.

We will formulate our experimental design criterion in a Bayesian setting. Bayesian statistics
offers a foundation for inference from noisy, indirect, and incomplete data; a mechanism for incorpo-
rating physical constraints and heterogeneous sources of information; and a complete assessment of
uncertainty in parameters, models, and predictions. The Bayesian approach also provides natural
links to decision theory [100], a framework we will exploit in this work.

The Bayesian paradigm [101] treats unknown parameters as random variables; we will focus
on the case of continuous parameters and variables. Let (Ω,F ,P) be a probability space, where
Ω is a sample space, F is a σ-field, and P is a probability measure on (Ω,F). Let the vector of
real-valued random variables1 θ : Ω → R

nθ denote the uncertain parameters of interest, i.e., the
parameters to be conditioned on experimental data. θ is associated with a measure µ on R

nθ ,
such that µ(A) = P

(

θ−1 (A)
)

for A ∈ R
nθ . We then define f(θ) = dµ/dθ to be the density of θ

with respect to Lebesgue measure. For the present purposes, we will assume that such a density
always exists. Similarly we treat the data from the kth experiment (k = 0, . . . , N − 1): yk, as an
R
ny -valued random variable endowed with an appropriate density. dk ∈ R

nd denotes the design
variables or experimental conditions for the kth experiment. Hence nθ is the number of uncertain
parameters, and ny and nd are the number of observations and design variables for each experiment,
respectively. For simplicity, we assume ny and nd to be independent of k, but this certainly needs
not be the case in this formulation. If one performs an experiment under conditions d and observes
a realization of the data y, then the change in one’s state of knowledge about the model parameters
is given by Bayes’ rule:

f(θ|y, d, I) = f(y|θ, d, I)f(θ|d, I)
f(y|d, I) =

f(y|θ, d)f(θ|I)
f(y|d, I) . (1)

For simplicity of notation, we shall use f(·) to represent all density functions; which specific distri-
bution it corresponds to is reflected by its arguments (e.g., formally, f(θ|y, d, I) is fθ|y,d,I(θ|y, d, I)).
Here, I is the information vector representing all background information, including previous ex-
perimental design choices and measurements, if any. f(θ|d, I) is the prior density, f(y|θ, d, I) is the
likelihood function, f(θ|y, d, I) is the posterior density, and f(y|d, I) is the evidence. The second
equality is due to the following reasonable assumptions:

• data from the current experiment are independent from the background information when
conditioned on the uncertain parameters and the current experimental conditions—and so
f(y|θ, d, I) = f(y|θ, d); and

• knowing the design of an experiment without knowing its data does not affect our belief
(i.e., the prior should not change based on what experiment we choose to do)—therefore
f(θ|d, I) = f(θ|I).

1For simplicity, we will use lower case to represent both the random variable and its realizations in this work.
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Figure 1: Open-loop design.

4.1 Open-Loop

The open-loop approach involves designing all N experiments concurrently. In other words, no
results (data) from any of the experiments would be available in helping designing any other
experiments—hence, there is no feedback of information (see Figure 1). This formulation then
requires a single objective function to be optimized.

In forming the objective function, we take a decision theoretic approach [100]. We start with
a utility function u(d, y, θ) that reflects the collective usefulness of the N experiments under con-
ditions d = {d0, . . . , dN−1}, given a particular set of the corresponding experimental outcomes
y = {y0, . . . , yN−1} and particular value of the parameters θ. As we have only a distribution for
the data y (parameterized by d) that may be observed, and a distribution of the parameters θ (the
prior), we are interested in maximizing information gain on average, by taking the expectation.
We then arrive at the expected utility U(d):

U(d) =

∫

Y

∫

H
u(d, y, θ) f(θ, y|d) dθ dy =

∫

Y

∫

H
u(d, y, θ) f(θ|y, d)f(y|d) dθ dy, (2)

where H is the support of f(θ), and Y is the support of f(y|d). Note that we have omitted the
conditioning on I for each density term for simplicity.

Our choice of utility function u is rooted in information theory. Following [19, 20], we set
u(d, y, θ) to be

u(d, y, θ) ≡
∫

H
f(θ̃|y, d) ln

[

f(θ̃|y, d)
f(θ̃)

]

dθ̃ + g (f(·), d, y) . (3)

The first term reflects the information gain in the experiment. This term involves an “internal” in-
tegration over the parameter space (θ̃ is a dummy variable representing the parameters), therefore
it is not a function of the parameters θ. It is equal to the relative entropy, or Kullback-Leibler (KL)
divergence, from the posterior after all N experiments have been performed, to the prior before
any experiment is performed. We choose to use the KL divergence for several reasons. First, the
KL divergence is a special case of a wide range of divergence measures that satisfy the minimal
set of requirements to be a valid measure of information on a set of experiments [102]. These
requirements are based on the sufficient ordering (or “always at least as informative” ordering)
of experiments, and are developed rigorously from likelihood ratio statistics, in a general setting
without specifically targeting decision theoretic or Bayesian perspectives. Thus, the various mea-
sures satisfying these requirements, although different, do the job of reflecting information content
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of experiments. Second, the KL gives an intuitive indicator of the information gain in the sense
of Shannon information [103]. Since the KL reflects the difference between two distributions, a
large KL divergence from posterior to prior implies that the data y decrease entropy in θ by a
large amount, and hence those data are more informative for parameter inference. Indeed, the
KL divergence reflects the difference in information carried by two distributions in units of nats
[103, 104], and also the expected information gain is equivalent to the mutual information between
the parameters θ and the data y, given the experimental designs d. Third, such a formulation for
general nonlinear models (nonlinear in the uncertain parameters) is consistent with linear experi-
mental design theory based on the Fisher information matrix [11] in the sense that when a linear
model is used, it simplifies to the linear D-optimality design. Finally, the use of information mea-
sure contrasts with a loss function in that, while the former does not target a particular task (such
as estimation) in the context of a decision problem, it provides a general guidance of information
gain that performs well for a wide range of tasks albeit not best for any particular task.

The second term is a reward functional, such as one that reflects the financial cost of the
experiments, which can depend on data and designs, and our current state of belief about the
parameters (i.e., the prior density function). The expected utility is thus

U(d) =

∫

Y

∫

H
u(d, y, θ)f(θ|y, d) dθ f(y|d) dy

=

∫

Y

∫

H

{

∫

H′

f(θ̃|y, d) ln
[

f(θ̃|y, d)
f(θ̃)

]

dθ̃ + g(f(·), d, y)
}

f(θ|y, d) dθ f(y|d) dy

=

∫

Y

{

∫

H′

f(θ̃|y, d) ln
[

f(θ̃|y, d)
f(θ̃)

]

dθ̃ + g(f(·), d, y)
}

f(y|d) dy. (4)

To simplify notation, θ̃ in Equation (4) is replaced by θ, yielding

U(d) =

∫

Y

{
∫

H
ln

[

f(θ|y, d)
f(θ)

]

f(θ|y, d) dθ + g(f(·), d, y)
}

f(y|d) dy. (5)

= E [DKL (f(·|y, d)||f(·)) + g(f(·), d, y)] ,

where again for simplicity, we use E to represent all expectation operators; which specific distri-
bution it corresponds to is reflected by its arguments (e.g., formally, the E in the above equation
is Ey|d). The expected utility U is therefore a combination of the expected information gain in θ
(first term) plus expected experimental rewards (second term).

Finally, the expected utility must be maximized over the design space D to find the optimal
experimental design

d∗ = argmax
d∈D

U(d). (6)

From hereon, we will simply write maxd instead of maxd∈D for all maximization operators, with
the understanding that the design variable is from its corresponding design space.

4.2 Closed-Loop

The closed-loop approach involves designing and performing the experiments in sequence, such that
one postpones the design of each experiment as late as possible, taking advantage of the feedback of
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System
xk+1 = F(xk, dk, yk)

Controller (policy)
µk

State xkControl dk

Noise yk

Figure 2: Closed-loop design.

information from previous experiments. Mathematically, the designs can now depend on available
observed values of random variables. More generally, it is convenient to define a state variable xk
that captures all the information of the system necessary in making future decisions. In this case,
it is natural to let the state be the PDF conditioned on all background information:

xk = f(θ|Ik). (7)

In particular, the information vector Ik also contains all previous experiments and results {d0, y0, . . . , dk−1, yk−1}.
This conditional PDF fully describes our most current state of knowledge about the uncertain pa-
rameters. The state evolves according to the system equation, which is simply Bayes’ rule from
Equation (1):

xk+1 = F(xk, dk, yk) =
f(yk|θ, dk)xk
f(yk|dk, Ik)

. (8)

We are then interested in finding the optimal decision rule (or policy) π ≡ {µ0(x0), µ1(x1), . . . , µN−1(xN−1)}
consisting a set of functions µk(xk) = dk telling us what design conditions to use depending on
what the current system state is. The concept of the closed-loop design is illustrated in Figure 2.

The policy is optimal with respect to some underlying objective. Taking the same information-
theoretic approach, we would like to ultimately maximize

Jπ(x0) =

∫

Y

{

∫

H
ln

[

xN
x0

]

xN dθ +
N−1
∑

k=0

gk (xk, µk(xk), yk)

}

f(y|x0, π) dy. (9)

where xk, k = 1, . . . , N subject to the system equation (Equation (8)), and gk(·) is the rewards
function for the kth experiment. This objective is the same as the open-loop expected utility from
Equation (5), except policy functions µ now replace design variables d.

4.2.1 Greedy

The greedy approach addresses the closed-loop formulation by solving a sequence of open-loop sub-
problems. Intuitively, it optimizes for the next experiment only, without taking into account the
expected future gains (or even knowing how many future experiments are there) as a consequence
of the decision at hand. Yet, it is still a closed-loop formulation since data from all previous
experiments are taken into account.
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The greedy policy is obtained from

µk(xk) = argmax
dk

E

[
∫

H
ln

[

xk+1

xk

]

xk+1 dθ + gk(xk, dk, yk)

]

, (10)

where xk, k = 1, . . . , N subject to the system equation (Equation (8)). There are a couple of
advantages of the greedy approach. First, as we shall see after we introduce the Bellman equation
in dynamic programming approach, the greedy formulation contains no recursion and thus one
fewer source to the “curse of dimensionality”. Second, the “ignorance” of future can sometimes
be a blessing, for example, if the total number of experiments is unknown. However, the greedy
method is, afterall, a simplification to the full objective function (Equation (9)), and is therefore a
suboptimal policy.

4.2.2 Dynamic Programming

The dynamic programming (DP) formulation of the closed-loop approach is based on the idea of
breaking the quantity in Equation (9) into a sequence of “tail” sub-problems. The centerpiece
of this formulation is the Bellman equation that describe the maximization of the expected total
future rewards in each of the sub-problems:

JN (xN ) =

∫

H
ln

[

xN
x0

]

xN dθ (11)

Jk(xk) = max
dk

E [gk(xk, dk, yk) + Jk+1 (F(xk, dk, yk))] (12)

for k = 0, . . . , N − 1. The Jk functions are thus known as the “reward-to-go” or “value” functions.
The optimal policy is simply the arg-max: µk(xk) = d∗k.

The Bellman’s equation (11) and (12) optimize Equation (9) exactly and provides the optimal
policy [81]. However, they have a recursive structure that involves nested maximization and ex-
pectation. This leads to an exponential growth in computation with the number of stages N (the
“curse of dimensionality”). Analytic solution is almost always impossible to obtain except for a
few simple class of problems. Numerical methods will be discussed in the next section.

5 Numerical Methods

We now describe the numerical methods used to solve the problems formulated in Section 4.
Majority of the tools described in this section have been implemented by the author as past work,
with the exception of the state representation in greedy and DP designs, and all but the “one-step
lookahead backward induction” part of Section 5.2.2. Specific results from author’s previous work
will be labeled under “Work-To-Date” blocks. The methods not yet investigated are part of future
work of this thesis project.

5.1 Open-Loop

Several pieces of numerical tools will be use for the open-loop approach. First, a Monte Carlo
estimator is formed to approximate the expected utility. Second, stochastic optimization algorithms
are used to efficiently finding the optimal designs. Third, polynomial chaos surrogates replace
the forward model to help accelerate the computation and also make available gradients for the
optimization process.

14



5.1.1 Expected Utility Estimator

Typically, the expected utility in Equation (5) has no closed form, even if the underlying forward
model is replaced by a simpler surrogate (such as polynomials); it can only be approximated
numerically. The posterior may be approximated using Laplace approximation [105], but the
error can be high when the true distribution departs substantially from Gaussianity. Methods
based on discretization in the parameter space, such as binning of samples [18] and tensor-product
quadrature [106, 32] become impractical for no more than 3 or 4 dimensions. Kernel density
estimation (KDE) [107] and k-nearest neighbor [26] methods build global functions from localized
distributions (usually Gaussian) around samples. These methods can potentially achieve good
performance, but are very sensitive to parameter tuning (such as the Gaussian bandwidth) and are
not practical for high dimensions. Nonparametric methods such as particle representations used
in [39] also suffers from dimensionality difficulties. Monte Carlo [21, 25] estimates, on the other
hand, are simple and can handle much higher dimensions than other methods, and is the selected
method in this thesis.

Following Ryan [25], U(d) is first re-expressed as

U(d) =

∫

Y

∫

H
ln

[

f(θ|y, d)
f(θ)

]

f(θ|y, d) dθ f(y|d) dy

=

∫

Y

∫

H
ln

[

f(y|θ, d)
f(y|d)

]

f(y|θ, d) f(θ) dθ dy

=

∫

Y

∫

H
{ln [f(y|θ, d)]− ln [f(y|d)]} f(y|θ, d) f(θ) dθ dy, (13)

where the second equality is due to the application of Bayes’ theorem to the quantities both
inside and outside the logarithm. In the special case where the Shannon entropy of f(y, θ|d) is
independent of the design variables d, the first term in Equation (13) becomes constant for all
designs [108] and can be dropped from the objective function. Maximizing the remaining term—
which is the entropy of f(y|d)—is then equivalent to the maximum entropy sampling approach
of Sebastiani and Wynn [22]. Here we retain the more general formulation of Equation (13) in
order to accommodate, for example, likelihood functions containing a measurement error whose
magnitude depends on y or d. Using Monte Carlo sampling to estimate the integrals, we obtain a
doubly-nested Monte Carlo estimator [25]

U(d) ≈ ÛN,M (d, θs, ys) ≡
1

N

N
∑

i=1







ln
[

f(y(i)|θ(i), d)
]

− ln





1

M

M
∑

j=1

f(y(i)|θ̃(i,j), d)











, (14)

where θs ≡
{

θ(i)
}

∪
{

θ̃(i,j)
}

, i = 1 . . . N , j = 1 . . .M , are i.i.d. samples from the prior f ; and

ys ≡
{

y(i)
}

, i = 1 . . . N , are independent samples from the likelihoods f(·|θ(i), d). The variance of
this estimator is approximately A(d)/N+B(d)/NM and its bias is (to leading order) C(d)/M [25],
where A, B, and C are terms that depend only on the distributions at hand. While the estimator
ÛN,M is biased for finite M , it is asymptotically unbiased.

5.1.2 Stochastic Optimization

Maximizing U via a grid search over D is clearly impractical, since the number of grid points grows
exponentially with dimension. Since only a Monte Carlo estimate ÛN,M of the objective function
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is available, another näıve approach would be to use a large sample size (N,M) at each d and then
apply a deterministic optimization algorithm, but this is still too expensive. (And even with large
sample sizes, ÛN,M is effectively non-smooth.) Instead, we would like to use only a few Monte
Carlo samples to evaluate the objective at any given d, and thus we need algorithms suited to
noisy objective functions. In particular, we focus on algorithms for continuous design spaces.

Stochastic Approximation

(a) Robbins-Monro: The main variation of stochastic approximation is the Robbins-Monro (RM)
algorithm [50], which has the iterative update:

xj+1 = xj − aj ĝ(xj). (15)

Here ĝ(xj) is an unbiased gradient estimator. The gain sequence aj should satisfy the following
properties

∞
∑

j=0

aj = ∞ and
∞
∑

j=0

a2j <∞. (16)

One natural choice is the harmonic step size sequence aj = β/j, where β is some appropriate scaling
constant. With various technical assumptions on ĝ and g, it can be shown that RM converges to
the exact solution almost surely [48].

Choosing the sequence aj is often viewed as the Achilles’ heel of RM, as the algorithm’s per-
formance can be very sensitive to step size. We acknowledge this fact and do not downplay the
difficulty of choosing an appropriate gain sequence, but there exist logical approaches to selecting
aj that yield reasonable performance. More sophisticated strategies, such as search-then-converge
learning rate schedules [109], adaptive stochastic step size rules [110], and iterate averaging meth-
ods [111, 48], have been developed and successfully demonstrated in applications.

(b) Kiefer-Wolfowitz : Kiefer-Wolfowitz (KW) stochastic approximation [46] is a special case of
RM where the estimator ĝ(xj) is approximated using finite difference. Under certain regularity
conditions, it is guaranteed to converge. The main drawback of KW is the potentially estimator
high variance as well as high computational cost due to the need of 2nd objective evaluations.

(c) Simultaneous Perturbation Stochastic Approximation: Motivated to mitigate the 2nd objec-
tive evaluations from KW, Spall proposed the simultaneous perturbation stochastic approximation
(SPSA) [47, 112]. The key of this method is that it approximates gradient with only two random
perturbations instead of 2nd , regardless of the problem’s dimension. An intuitive justification for
SPSA is that error in the gradient “averages out” over a large number of iterations [47]. Conver-
gence proofs with varying conditions and assumptions can be found in [113, 114, 115]. Randomness
introduced through the noisy objective ÛN,M and the finite-difference-like perturbations allows for
a global convergence property [116].

Sample Average Approximation

The central idea of SAA is to reduce the stochastic optimization problem to a deterministic
problem, by fixing the noise throughout the entire optimization process. If the noise is design-
dependent, it is first transformed to a design-independent random variable, which can always
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possible in practice since the random numbers in any computation are fundamentally generated
from uniform random (or really pseudo-random) numbers. The noise variables at different d then
share a common distribution, and a common set of realizations is employed at all values of the
design variable.

SAA approximates the true optimization problem under a particular set of realizations of the
noise random variable. The same set of realizations is used for different values of d during the
optimization process, thus making the minimization problem deterministic. (One can view this
approach as an application of common random numbers.) A deterministic optimization algorithm
can then be chosen to find the optimum of the deterministic problem as an approximation to the
true optimum. Under certain assumptions on the objective function and the design space, the
optimal design and objective estimates in SAA generally converge to their respective true values in
distribution at a rate of 1/

√
N [49, 53]. Stochastic bounds are available to construct an estimate

to the optimality gap (difference between the true optimal value and the optimal from the SAA
instance) [59, 60]. One could use the optimality gap estimator and its variance to decide whether
more runs are required, or which approximate optimal designs are most trustworthy.

At this point, we have reduced the stochastic optimization problem to a series of deterministic
optimization problems; a suitable deterministic optimization algorithm is still needed to solve them.
One popular candidate is the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [117]. BFGS is
a gradient-based method for solving deterministic nonlinear optimization problems, widely used
for its robustness, ease of implementation, and efficiency. It is a quasi-Newton method, iteratively
updating an approximation to the (inverse) Hessian matrix from objective and gradient evaluations
at each stage. BFGS is shown to converge super-linearly to a local minimum if a quadratic Taylor
expansion exists near that minimum [117]. The limited memory BFGS (L-BFGS) [117] method
can also be used when the design dimension becomes very large (e.g., more than 104), such that
the dense inverse Hessian cannot be stored explicitly.

Other Methods

(a) Nelder-Mead : The Nelder-Mead (NM) nonlinear simplex algorithm [45] is a gradient-free
method that has been well studied and is widely used for deterministic optimization. The de-
tails of the algorithm are thus omitted from this discussion but can be found, e.g., in [45, 118, 119].
This algorithm has a natural advantage in dealing with noisy objective functions because it re-
quires only a relative ordering of function values, rather than the magnitudes of differences (as in
estimating gradients). Minor modifications to the algorithm parameters can improve optimization
performance for noisy functions [118]. Constraints in NM are handled simply by projecting from
the infeasible point to the nearest feasible point.

� Work-To-Date: The author has made extensive empirical study on several stochastic opti-
mization algorithms: SPSA and NM in a hydrogen-oxygen autoignition kinetic parameter infer-
ence problem [7], and RM and SAA-BFGS in an optimal sensor placement challenge for diffusion
source inversion [9]. Figure 3 presents results from the second application, which indicates better
performance from algorithms that take advantage of available gradient information.

We note that the gradient information used in RM and SAA-BFGS are not the exact gradient of
U(d). Such computation is generally not possible given that we only have a Monte Carlo estimator
of U(d). Instead, we make use of infinitesimal perturbation analysis [120, 121, 122] to interchange
the integration and differentiation operators in order to take advantage of the gradients of the
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Figure 3: Mean squared error versus computational time of SPSA, NM, RM, and SAA-BFGS
algorithms applied to an optimal sensor placement problem in a 2D scalar diffusion field for the
purpose of inferring the source location. Methods that make use of gradient information, namely,
RM and SAA-BFGS, achieve lower error levels. More details can be found in [9].

Monte Carlo realizations. However, even then the differentiation of the Monte Carlo estimator can
be expensive as it would involve either finite difference of the forward model (typically simulation
of a physical process governed by PDEs) or its adjoint problem. We thus build a surrogate for the
forward model, using polynomial chaos (described below). The analytical gradient of the estimator
based on the surrogate can then be derived and evaluated extremely cheaply. This is what is used
in RM and SAA-BFGS. More details can be found in [9]. �

5.1.3 Polynomial Chaos Approximation

Even with an effective Monte Carlo estimator of the expected utility and efficient algorithms for
stochastic optimization, the complex physical model (often systems of PDEs) embedded in Equa-
tion (14) still must be evaluated repeatedly, over many values of the model parameters and design
variables. It is then useful to replace these forward models with surrogates that are computa-
tionally cheaper. Mathematical models of the experiment G(θ, d) enter the inference and design
formulation through the likelihood function f(y|θ, d), for example, in an additive fashion

y = G(θ, d) + ǫ, (17)

where ǫ is the noise random variable with some known distribution. To make these calculations
tractable, one would like to replace the forward model with a cheaper “surrogate” model that is
accurate over the entire prior support H and the entire design space D.

While many model surrogacy options exist (Section 3.3), we decide to use polynomial chaos
approximation. Polynomial chaos has seen extensive use in a range of engineering applications
(e.g., [123, 5, 124, 125]) including parameter estimation and inverse problems (e.g., [126, 127, 128]).
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More recently, it has also been used in open-loop optimal Bayesian experimental design [35, 7], with
excellent accuracy and multiple order-of-magnitude speedups over direct evaluations of forward
model.

Any random variable v with finite variance can be represented by an infinite series

v =
∞
∑

|i|=0

aiΨi(ξ1, ξ2, . . .), (18)

where i = (i1, i2, . . .) , ij ∈ N0, is an infinite-dimensional multi-index; |i| = i1 + i2 + . . . is the l1
norm; ai ∈ R are the expansion coefficients; ξi are independent random variables; and

Ψi(ξ1, ξ2, . . .) =
∞
∏

j=1

ψij (ξj) (19)

are multivariate polynomial basis functions [69]. Here ψij is an orthogonal polynomial of order ij
in the variable ξj , where orthogonality is with respect to the density of ξj ,

E [ψm(ξ)ψn(ξ)] =

∫

Ξ
ψm(ξ)ψn(ξ)f(ξ) dξ = δm,nE

[

ψ2
m(ξ)

]

, (20)

and Ξ is the support of f(ξ). The expansion (18) is convergent in the mean-square sense [129].
For computational purposes, the infinite sum in (18) must be truncated to some finite stochastic
dimension ns and a finite number of polynomial terms. A common choice is the “total-order”
truncation |i| ≤ p, but other truncations that retain fewer cross terms, a larger number of cross
terms, or anisotropy among the dimensions are certainly possible [74].

In the optimal Bayesian experimental design context, the model outputs depend on both the
parameters and the design variables. Constructing a new polynomial expansion at each value of
d encountered during optimization is generally impractical. Instead, we can construct a single
PC expansion for each component of G, depending jointly on θ and d [7]. To proceed, we assign
one stochastic dimension to each component of θ and one to each component of d. Further,
we assume an affine transformation between each component of d and the corresponding ξi; any
realization of d can thus be uniquely associated with a vector of realizations ξi. Since the design
variables will usually be supported on a bounded domain (e.g., inside some hyper-rectangle), the
corresponding ξi are endowed with uniform distributions. The associated univariate ψi are thus
Legendre polynomials. These distributions effectively define a uniform weight function over the
design space D that governs where the L2-convergent PC expansions should be most accurate.

Constructing the PC expansion involves computing the coefficients ai. This computation gener-
ally can proceed via two alternative approaches, intrusive and non-intrusive. The intrusive approach
results in a new system of equations that is larger than the original deterministic system, but it
needs be solved only once. The difficulty of this latter step depends strongly on the character
of the original equations, however, and may be prohibitive for arbitrary nonlinear systems. The
non-intrusive approach computes the expansion coefficients by directly projecting the quantity of
interest (e.g., the model outputs) onto the basis functions Ψi. One advantage of this method is that
the deterministic solver can be reused and treated as a black box. The deterministic problem then
needs to be solved many times, but typically at carefully chosen parameter and design values. The
non-intrusive approach also offers flexibility in choosing arbitrary functionals of the state trajectory
as observables; these functionals may depend smoothly on ξ even when the state itself has a less
regular dependence. Here, we will employ a non-intrusive approach.
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Applying orthogonality, the PC coefficients are simply

Gc,i =
E [Gc(θ(ξ), d(ξ))Ψi(ξ)]

E
[

Ψ2
i
(ξ)
] =

∫

ΞGc(θ(ξ), d(ξ))Ψi(ξ)f(ξ) dξ
∫

ΞΨ2
i
(ξ)f(ξ) dξ

, (21)

whereGc,i is the coefficient of Ψi for the cth component of the model outputs. Analytical expressions
are available for the denominators E

[

Ψ2
i
(ξ)
]

, but the numerators must be evaluated numerically.
When the evaluations of the integrand (and hence the forward model) are expensive and ns is large,
an efficient method for numerical integration in high dimensions is essential.

To evaluate the numerators in (21), we employ Smolyak sparse quadrature based on one-
dimensional Clenshaw-Curtis quadrature rules [130]. Care must be taken to avoid significant
aliasing errors when using sparse quadrature to construct polynomial approximations, however.
Indeed, it is advantageous to recast the approximation as a Smolyak sum of constituent full-
tensor polynomial approximations, each associated with a tensor-product quadrature rule that is
appropriate to its polynomials [131, 74]. This type of approximation may be constructed adaptively,
thus taking advantage of weak coupling and anisotropy in the dependence of G on θ and d. More
details can be found in [74].

At this point, we may substitute the polynomial approximation of G into the likelihood function
f(y|θ, d), which in turn enters the expected information gain estimator (14). This enables fast
evaluation of the expected information gain.

As mentioned earlier, another important contribution of polynomial chaos surrogate is the
simple polynomial structure provides easy access to gradient information that can be used for
gradient-based stochastic optimization methods such as RM and SAA-BFGS. Details can be found
in [9].

� Work-To-Date: From [7], Figure 4 shows the comparison of the expected utility contours in
a hydrogen-oxygen autoignition kinetic parameter inference problem, using the full ODE model
and PC surrogate. The inference problem is solved at a number of experimental conditions, and
the resulting posteriors are shown in Figure 5. Results indicate PC surrogates can achieve high
accuracy for both optimal experimental design and parameter inference problems. �

5.2 Closed-Loop

5.2.1 Greedy

The numerical methods used in the greedy approach are almost exactly the same as those from
the open-loop formulation, since greedy design involves a sequence of multiple open-loop sub-
problems. But there is one important difference. In the open-loop approach, the prior is usually
easily represented or approximated by some parametric form of distribution such as uniform or
Gaussian. The posterior from inference is then usually represented by samples, from methods such
as MCMC. In the greedy approach, the next experiment uses the previous experiment’s posterior as
its prior. In particular, we need to sample from this new prior for the next experiment’s inference.
We do not want to bound by the available MCMC samples, since the number of such samples is
limited, and we would not explore certain regions of the parameter space. It would be better if
we can approximately represent the distribution in a manner using those samples, such that we
can sample from this approximate distribution. Some example include Gaussian mixture model
fitting [132], particle representation such as sequential Monte Carlo [133], and random variable
mapping [134]. Please refer to Section 7.2.2 for a more detailed discussion.
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(a) Full ODE model
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(b) PC surrogate

Figure 4: Estimated expected utility contours in a single-experiment hydrogen-oxygen autoignition
setting, where the ignition delay time is used to infer two uncertain kinetic parameters. The design
variables are the initial temperature and equivalence ratio φ. The contours are constructed using the
full ODE model and the PC surrogate with total order p = 12 and 106 isotropic sparse quadrature
evaluations. The contours have good agreement, and captures all key features of the surface. The
smoother PC surface is a result of a much higher Monte Carlo size being used since the surrogate
is much cheaper to evaluate. Inference problems are then solved at experimental conditions A, B,
and C to validate the experimental design procedure, with the posteriors shown in Figure 5. More
details can be found in [7].

5.2.2 (Approximate) Dynamic Programming

The Bellman equation from the DP formulation (Section 4.2.2) cannot be solved analytically except
for a few special classes of problems such as linear-quadratic DP problems. In general, they
must be solved numerically. The numerical techniques for solving the DP formulation are known
as approximate dynamic programming (ADP) methods. For contrasting with the other optimal
experimental design approaches, we will use ADP and DP interchangeably, where whether it is
analytical DP or numerical ADP should be clear from context.

The ADP methods can be categorized into three groups:

1. problem simplification,

2. value function approximation, and

3. other techniques.

Problem Simplification

One approach of ADP is to simplify the DP formulation into something more manageable.
Open-loop and greedy designs are of this type, as the former eliminates feedback and the latter
ignores future costs. We now discuss other ways to simplify the DP problem to varying degrees.

(a) Myopic Design: In a myopic design, Equation (12) only retains the stage cost gk and ignores all
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(a) Design A full ODE model
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(b) Design B full ODE model
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(c) Design C full ODE model
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(d) Design A PC surrogate
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(e) Design B PC surrogate
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(f) Design C PC surrogate

Figure 5: Contours of posterior density of the kinetic parameters, showing the results of inference
with data obtained at three different experimental conditions (designs A, B, and C). The top row
figures are posteriors constructed using the full ODE model, while the bottom row are those via the
PC surrogate with p = 12, nquad = 106; they show excellent agreement. Note that these results are
under a particular realization of the uncertain parameters, but the experimental design framework
optimizes for the expected information gain, over the entire (prior) distribution of the parameters.
It might appear that the optimal design minimized the variance of the posterior from these figures,
but in fact the formulation we used utilizes the expected KL divergence as the objective. A small
expected KL usually also leads to a small expected variance in the posterior in practice. More
details can be found in [7].

future costs. This design is similar to greedy design in concept, but in our current formulation of
the optimal experimental design problem (Equations (11) and (12)), myopic design would not be
able to capture any information gain until the very last experiment, since our information measure
is included only in the terminal cost. In fact, our greedy design corresponds to the myopic design
of a different formulation that involves incremental information gain. This formulation is discussed
in Section 7.1.3.

(b) Rolling Horizon: The rolling horizon method uses a shorter horizon of length M < N . As
experiments are performed, it solves a new DP problem of horizon M from the new time. The full
N -stage DP problem is effectively broken down into a series of smaller, more manageable M -stage
DP problems. However, too small of an M might not capture enough future influences, while too
large of an M might still be too expensive to solve.

(c) Certainty Equivalent Control : Certainty equivalent control simplifies the DP formulation by
fixing the random variables yk at “typical” values ȳk such that a stochastic DP problem is turned
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into a deterministic one:

J̃k(xk) = max
dk

gk(xk, dk, ȳk) + J̃k+1 (F(xk, dk, ȳk)) , (22)

where J̃k is the optimal cost of the corresponding deterministic problem. Both open-loop and
closed-loop formulations yield the same optimal designs for a deterministic problem. This approx-
imation can then be solved via either online (sequential) or offline (batch) approaches. A variation
of this technique involves leaving some uncertain quantities as stochastic and fixing some design
variables (usually later stages) with a heuristic policy. The resulting value functions J̃k can also be
used for value function approximation in the fully-stochastic problem. The main (and often fatal)
disadvantage of this method is that since gk and Jk+1 are almost always nonlinear functions in
yk, the expectation of these functions are not the same as (and in fact can be very different than)
the functions applied to the expectation of yk. These errors can quickly grow with the number of
stages.

(d) Open-Loop Feedback Control : Open-loop feedback control involves performing open-loop design
on all remaining experiments in a sequence of experiments, while only carrying out the immediately
next experiment. Upon completing experiment k, we update the state to xk+1 = F(xk, dk, yk), and
solve the open-loop tail problem

max
dk+1,...,dN−1

E

[

JN (xN ) +
N−1
∑

i=k+1

gk (xk, dk, yk)

]

(23)

subject to xi+1 = F(xi, di, yi), i = k + 1, . . . , N − 1. Once the solution dk+1, . . . , dN−1 is obtained,
we conduct the next experiment at dk+1 only and repeat the process. The open-loop feedback
control is proven to be at least as good as an optimal open-loop policy. Variations include carrying
out batches of designs at a time, and mixing open-loop and closed-loop designs (partial open-loop
feedback control).

(e) State Aggregation: State aggregation [87] involves grouping states that share similar properties
or features, and forming a new problem based on the smaller or lower-dimensional aggregated state
space. One special case of aggregation for a continuous state space is simply a discretization of the
state space.

The formulation typically involves defining the following.

• Aggregation and disaggregation transition probability functions under a given control. These
functions must satisfy the probability axioms.

• System equation and stage costs for the aggregation problem.

The main difficulties of this method are its heavy reliance on heuristics and understanding of
the original problem in defining the transition probability functions, and the computation of the
aggregation system equation and stage costs.

Value Function Approximation

The methods discussed in this subsection center around approximating the value functions
Jk. Observing Equation (12), the main difficulty of DP lies within the recursive nature of the Jk
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functions. If they can be decoupled, then the exponential grow of cost with respect to N can be
reduced to linear growth. This can be achieved by replacing Jk with approximations J̃k where J̃k
can be readily evaluated without the need of computing Jk+1 or J̃k+1.

There are several options in representing J̃k in a continuous state space.

1. Use tabular storage of Jk values at a set of discretization points of the state space. However,
the storage requirement grows exponentially with the dimension of the state space, and
linearly with horizon.

2. More popularly, parametric functions are used. For example, a linear approximation archi-
tecture has the form

J̃k(xk) =
∑

i

rk,izk,i(xk), (24)

where rk,i is the ith coefficient or weight of J̃k, and zk,i is the ith feature or basis function of the
state xk. The two main tasks are to select the features and to train the weights. The choice of
features is a very important and difficult task. While there exists algorithms for selecting the
best features from a pool of candidates, it is much harder to extract or create new features
from data [135]. The feature functions are often picked based on experience, trial-and-error,
and knowledge of the problem structure. Many different options exist for training the weights.
A simple and popular method is the least-squares regression (e.g., [136]), effectively solving
the optimization problem of

min
rk

‖ Jk(xk,s)− Zk(xk,s)rk ‖2 (25)

where xk,s is a set of sample points (e.g., from Monte Carlo or quadrature), Zk(xk,s) is the
matrix containing all the feature functions evaluated at xk,s, and rk is the vector of unknown
coefficients. Such an (usually) over-determined system can be easily solved using existing
linear algebra routines, for example, via singular value decomposition [136, 137].

3. Take value functions from a related, simpler problem (e.g., using certainty equivalent control,
or from simplified constraints or dynamics). However, this also needs to be expressed in a
readily-evaluatable form such as tabular storage or parametric form.

We shall denote Π the approximation operator, such that J̃k = ΠJk. For example, Π can be a
projection operator.

(a) Limited Lookahead : The idea of the limited lookahead method is simply to replace the value
functions with approximations. The one-step lookahead policy is obtained by solving

max
dk

E

[

gk(xk, dk, yk) + J̃k+1 (F(xk, dk, yk))
]

(26)

where J̃k+1 is approximation to the true value function Jk+1. In other words, one step of DP is
performed before an approximation function is used. Similarly, a two-step lookahead policy involves
an additional step

J̃k+1(xk+1) = max
dk+1

E

[

gk+1(xk+1, dk+1, yk+1) + J̃k+2 (F(xk+1, dk+1, yk+1))
]

(27)
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where J̃k+2 is now the approximation to the true value function Jk+2. Two steps of DP are
performed before using an approximation. An ℓ-step lookahead policy extends similarly. However,
it is in general not true that a higher ℓ being better.

In the special case where J̃k are the value functions of a suboptimal policy applied to the same
problem, it is known as the rollout algorithm.

(b) Rollout Algorithm: Here J̃k are the value functions of some suboptimal policy, called a base
heuristic. It can be shown that [81], if for all xk and k,

max
dk

E

[

gk(xk, dk, yk) + J̃k+1 (F(xk, dk, yk))
]

≥ J̃k(xk), (28)

then the value functions J̄k corresponding to a one-step lookahead policy based on J̃k satisfy for
all xk and k

J̄k(xk) ≥ max
dk

E

[

gk(xk, dk, yk) + J̃k+1 (F(xk, dk, yk))
]

. (29)

If we update our policy iteratively in a “rollout” fashion where µ̄k is the base heuristics, then

J̃k = E

[

gk(xk, µ̄k(xk), yk) + J̃k+1 (F(xk, µ̄k(xk), yk))
]

≤ max
dk

E

[

gk(xk, dk, yk) + J̃k+1 (F(xk, dk, yk))
]

,

and the conditions for Equation (28) is satisfied. Hence, rollout policy achieves no worse cost
than its base heuristics! In fact, the rollout algorithm is just a single step of policy iteration. If
conducted repeatedly, it is guaranteed to converge to the optimal policy under finite number of
steps [81].

The choice of base heuristic is quite flexible and can be any valid policy. The two main diffi-
culties of rollout are: evaluating J̃k from the base heuristic may be computationally intensive, and
representing J̃k in a parametric fashion may be inaccurate.

(c) One-step Lookahead Backward Induction: A straightforward way to build the value function
approximations is to use backward induction based on one-step lookahead. The approximation
functions are then

J̃N (xN ) = ΠJN (xN ) (30)

J̃k(xk) = Πmax
dk

E[gk(xk, dk, yk) + J̃k+1 (F(xk, dk, yk))]. (31)

Note that J̃k is built based on the previous approximation function J̃k+1. Consequently, the
approximation error can quickly aggregate, and in fact potentially at an exponential rate [89].
Once the approximation functions are constructed, the optimal policy can then be approximated
by solving

µ̃k(xk) = argmax
dk

E[gk(xk, dk, yk) + J̃k+1 (F(xk, dk, yk))]. (32)
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� Work-To-Date: The DP numerical results presented in Section 6 are based on the one-step
lookahead backward induction. In particular, we use a linear architecture where the feature vectors
are polynomials of the state components. The maximization of the expectation is evaluated using
stochastic optimization methods described in Section 5.1.2. The projection onto the approximation
subspace is done using least-square regression with Monte Carlo samples from the prior. �

(d) Forward Trajectory Simulation: Another way to construct the approximation functions is to
use simulated forward trajectories (sample paths). One simple algorithm provided by Powell [83]
is shown in Algorithm 1. The method for updating the (continuous) approximation function can
be done by using, for example, recursive least squares [90], Kalman filtering [91], and temporal
differencing [92].

Algorithm 1: ADP algorithm based on iteratively updating value function approximations
from forward trajectory simulation. [83].

Initialize {J̃0
k}, perhaps via choices of coefficients {rk,i};

Choose an initial state x10;
n = 1;
for n = 1, . . . , T do

Choose sample path {ynk};
for k = 0, . . . , N do

Solve J̃n
k (xk) = maxdk E

[

gk(xk, dk, yk) + J̃n−1
k+1 (F(xk, dk, yk))

]

and let dnk be the value

of dk that solves the maximization problem;

Update J̃n−1
k (xk) using J̃

n
k (xk) ;

end

end

There are several advantages of this construction. First, the forward simulations are cheap to
conduct, since Equation (32) only needs to be evaluated at one xk as we know the realization of
yk observed. Second, there is an automatic exploration of the state space, where the sample paths
would visit states that are more likely to occur according to the approximation functions. This
phenomenon is known as exploitation. In contrast, the backward induction method has no such
information, and the sample points used in regression may cover large regions of the state space
that are rarely or never visited. Third, this approach is more flexible in stopping the algorithm, as
at any point it will be able to provide a full set of approximation functions. Backward-induction, on
the other hand, will only able to provide a full set of approximation functions when it has reached
k = 0 and thus completed all required computations. Similarly, forward simulation allows further
refinement of the approximation functions should the designer find them unsatisfactory, while this
cannot be easily achieved with backward induction.

The biggest drawback of this approach is the issue of exploration versus exploitation. As stated
earlier, one of the advantages of this method is the exploitation of the approximation functions.
However, the sample paths might enter a cycle where the states being visited merely reinforce
and amplify the good and bad regions according to the current approximation functions, and the
approximations may not converge to the true value functions. Thus, it is crucial to reach a balance
between exploitation and exploration by introducing additional and occasional visits to states that
appear unlikely to be visited. More discussion can be found in Section 7.2.1.
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Other Techniques

(a) Post-Decision State and Q-Factors: In the traditional DP formulation, the next state evolves
according to the system equation xk+1 = F(xk, dk, yk). It can be beneficial to split the system
equation into two stages

xpk = FA(xk, dk) (33)

xk+1 = FB(x
p
k, yk) = FB(FA(xk, dk), yk), (34)

where xpk is the post-decision state of stage k. If this formulation is possible, then we can construct
an approximation to the expectation of the value function taking the post-decision state as the
argument

J̃p
k (x

p
k) ≈ E

[

Jk
(

FB(x
p
k, yk)

)]

. (35)

The advantage of the post-decision state is that it separates the noise variable yk from the arguments
of the system equation, and so we are able to build an approximation function that includes the
expectation operator. In the traditional formulation, J̃k(xk) does not have explicit yk dependence,
and so incorporating the expectation within the approximation function would be impossible.
Another advantage is that once the approximation functions J̃p

k are constructed, we no longer need
the system equation F , and only require FA. This is the so-called “model-free” approach.

Is it always possible to split F into FA and FB. A neat split may very well depend on the
structure and nature of the problem. Generally for any model, one can always let FA(xk, dk) =
{xk, dk} be a simple concatenation between the state and decision variables. This special case is
known as the method of Q-factors, described with detail in Section 7.2.1.

6 Example: Linear-Gaussian Model

In this section, we investigate the optimal experimental design problem for a simple linear-Gaussian
model where analytical results are possible to obtain under certain situations. This exercise serves
two purposes: (1) to validate numerical results against analytical solutions; and (2) to provide
motivation for potential substantial gains in using the closed-loop DP design.

Consider the following 1D linear-Gaussian model

yk = dkθ + ǫk, (36)

where k is the experiment index, yk are the noisy measurements, dk ∈ [1, 10] are the design variables,
θ is the uncertain parameter we would like to infer, and ǫk ∼ N (0, σ2ǫ,k) are zero-mean Gaussian

noise variables. Given a prior of θ ∼ N (s0, σ
2
0), then all subsequent conditional distributions

(posteriors) will also be Gaussian due to conjugacy. We shall let the state of the DP formulation
to be the mean and variance of these distributions: xk = (sk, σ

2
k). The system equation is then a

simple application of Bayes’ Theorem:

xk+1 = (sk+1, σ
2
k+1) = F(xk, dk, yk) =

(

ykdkσ
2
k + skσ

2
ǫ,k

d2kσ
2
k + σ2ǫ,k

,
σ2kσ

2
ǫ,k

d2kσ
2
k + σ2ǫ,k

)

. (37)

Specifically, let there be a total of N = 2 experiments, and the prior be N (7, 9). The desired
objective to be maximized is the final expected information gain (expected KL divergence) plus an
experimental cost in the form of a quadratic penalty in the controls: gk(xk, dk, yk) = −0.01d2k.

27



6.1 Constant Noise Variance

Consider when σ2ǫ,k = 1 is a constant. Then, the expected KL divergence is a function of the
posterior variance only. Since the posterior variance progresses deterministically given dk (see
Equation (37)), the problem is no longer stochastic, and we expect the open-loop and closed-loop
analytical results to be the same.

6.1.1 Analytical Results

Open-Loop The open-loop expected utility function can be expressed as

U(d0, d1) = Ey0,y1|d0,d1 [DKL (f(·|y0, y1, d0, d1)||f(·)) + g(f(·), d0, d1, y0, y1)]

= Ey0,y1|d0,d1

[

Eθ|y0.y1,d0,d1

[

ln

[

f(θ|y0, y1, d0, d1)
f(θ)

]]

− 0.01(d20 + d21)

]

= Eθ|d0,d1

[

Ey0,y1|θ,d0,d1

[

ln

[

f(θ|y0, y1, d0, d1)
f(θ)

]]]

− 0.01(d20 + d21), (38)

where the last equality is due to the application of conditional expectation. In the derivation, we
take advantage of the linearity of expectation, and use the following formulas

Eθ|d0,d1 [θ] = s0, Eθ|d0,d1
[

θ2
]

= σ20 + s20 (39)

Eyi|θ,di [yi] = θdi, Eyi|θ,di
[

y2i
]

= σ2ǫ,k + θ2d2i , (40)

where i = 0, 1 indicates the experiment number, and yi are assumed independent conditioned on θ
and di. The final analytical expected utility surface is plotted in Figure 6(a). The optimal designs
(red dashed line in Figure 6(a)) follow the formulas

1 ≤ d∗0 ≤
√
440

3
, d∗1 =

√

449− 9(d∗0)
2

3
. (41)

The corresponding optimal expected utility value of U∗ ≈ 2.5557.

Greedy For the greedy approach, we proceed in the same manner as open-loop, taking expecta-
tions and using the relationships in Equations (39) and (40). However, we do this for one experiment
at a time.

The greedy policy is

d∗0 =

√
440

3
, d∗1 = 1. (42)

This design is the single point along the bottom of the domain on the open-loop optimal design front
(red dashed line) in Figure 6(a), and we have the same optimal expected utility of U∗ ≈ 2.5557.

Dynamic Programming In the DP formulation, since we are interested in the expected in-
formation gain of the experiments with respect to θ, the terminal cost is chosen to be the KL
divergence between the final and initial densities on θ

JN (xN ) =

∫

H
h(xN ) ln

(

h(xN )

h(x0)

)

dθ =
1

2

[

σ2N
σ20

+
(sN − s0)

2

σ20
− ln

(

σ2N
σ20

)

− 1

]

, (43)

28



where the second equality is the special case for 1D Gaussians, and

h(xk) =
1

√

2πσ2k

exp

[

−(θ − sk)
2

2σ2k

]

(44)

transforms the state xk to its corresponding conditional density function. The Bellman equation is

Jk(xk) = max
dk

E [gk(xk, dk, yk) + Jk+1(F(xk, dk, yk))] , k = 0, . . . , N − 1. (45)

Note that this is not a linear-quadratic DP model because the system equation (Bayes’ Theorem)
is not linear, and the log term in the terminal cost makes it non-quadratic.

We proceed backwards by first substituting J2 into J1, and again exploit the linearity of expec-
tation and use the following formulas

Ey1|s1,σ2
1
,d1

[y1] = d1s1, Ey1|s1,σ2
1
,d1

[

y21
]

= σ2ǫ,k + d21(σ
2
1 + s21). (46)

The optimal policy is

1 ≤ d∗0 ≤
√
440

3
, d1 = µ∗1(x1) =

√

50σ21 − 1

σ1
. (47)

Since µ∗1 only depends on σ21, which is a deterministically evolution from x0 given d0, we can plot
d∗1 as a function of d0, shown in Figure 7:

d1 =

√

449− 9(d∗0)
2

3
. (48)

This optimal policy is identical to the open-loop optimal design. The optimal expected total reward
is again J0,π∗(x0 = (7, 9)) ≈ 2.5557.

6.1.2 Numerical Results

The optimal experimental design problem is solved using open-loop, greedy, and DP approaches
with the numerical tools described in Section 5. Specifically, RM is used for stochastic optimization
in open-loop and greedy designs. One-step lookahead backward induction is the chosen ADP
technique, where the approximate value functions are degree 4 polynomials in the state variable
constructed using a simple least-squares regression. We will refer to all results based on the DP
formulation as “DP” for simplicity, even if ADP were used.

The open-loop expected utility surfaces are shown in Figure 6. The contours from analytical and
numerical methods have excellent agreement. In Figure 6(c), there appears to be a “thick blue line”
near the analytical optimal design front. This thick line is actually the converged results of 5000
stochastic optimization runs. Figure 6(d) provides a zoomed-in view, showing the optimization
results lie closely to the true optimal design front, but slightly biased due to the finite inner-loop
sample size M . As M increases, this bias is decreased.

The open-loop, greedy, and DP numerical optimization designs are superimposed with the open-
loop analytical expected utility surface in Figure 8. It is possible to express the closed-loop optimal
policy in terms of d0 because this is a deterministic problem, and the optimal policy is independent
of the noise y0. As expected, rewards from simulated trajectories shown in Figure 9 are almost the
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same for all three design approaches, and they have excellent agreement with the analytical optimal
value. The greedy method pinpoints its d0 with ease, but has difficulty in finding the d1 = 1. This is
because the second experiment’s objective function is very flat in a large region near the optimum,
such that the bias and Monte Carlo noise can greatly shift the numerical optimum away from the
true optimum. The DP results only capture one particular region of the full optimal front. This
is due to the polynomial approximation used in approximating the value function, where even a
slight approximation error would lead to the favoring of a localized region due to the flatness of
the expected utility across the optimal front.
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(b) Numerical surface
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(c) Numerical optimization results
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(d) Numerical optimization results zoomed,
compared to analytical optimal design front

Figure 6: Open-loop expected utility surfaces for the constant variance case. The red dashed lines
are the open-loop optimal design fronts.

6.2 State-Dependent Noise Variance

We now consider the noise variance σ2ǫ,k = exp(0.5sk) that depends on the state. Since the mean
is a function of the measurement, we expect open- and closed-loop approaches to yield different
results.
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Figure 7: Analytical DP policy for the constant noise variance case.
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(a) Open-loop
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(b) Greedy
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(c) DP

Figure 8: Final designs of 5000 optimization runs for the constant variance case, plotted on top of
the open-loop analytical expected utility surface. The red dashed lines in Figures 8(a) and 8(b)
are the open-loop optimal design fronts, the red × in Figure 8(b) is the optimal greedy policy, and
the red solid line in Figure 8(c) is the DP optimal policy.

6.2.1 Analytical Results

We will not show the analytical equations in for this case as they become very messy. Instead,
the policies will be plotted. While available, we do not present the analytical expected utility
values for open-loop and greedy designs to avoid confusion, because the objectives used in those
approaches are now different than that in DP for a noise model that depends on the state and
cannot be compared. One may view their objectives as quantities that guide towards the true
closed-loop optimal. Instead, we are interested in how they perform under the expected rewards
function (Equation (9)) used for closed-loop design.

Open-Loop The analytical and numerical expected utility surfaces are the same as in Figure 6
except that the contour values are much lower due to the larger noise variance and the contour
lines are slightly shifted. This is expected since the only difference to the constant variance case is
a different variance value.
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(a) Open-loop (mean: 2.54)
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(b) Greedy (mean: 2.55)
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(c) DP (mean: 2.57)

Figure 9: Final reward (utility) values of 5000 optimization runs for the constant variance case.
The red vertical line indicates the mean value.

Greedy The greedy policy is as follows. For the first experiment, d0 ≈ 6.806; and for the second
experiment, d1 as a function of the first experiment’s measurement y0 is plotted as the blue dashed
line in Figure 10.
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Figure 10: Analytical optimal designs for the second experiment using greedy and DP for the
state-dependent variance case.

Dynamic Programming While the analytical form of J1(x1) can be derived, it is not practical
for J0(x0) because J1(x1) is a piecewise function. Instead, we will take a “pseudo-analytical”
approach and evaluate the following expectation and maximization numerically:

J0(x0) = max
d0

E [g0(x0, d0, y0) + J1(F(x0, d0, y0))] . (49)

Specifically, we perform the maximization using a grid search, and take the expectation with a
Monte Carlo sample size of 108 to ensure that the sampling noise does not affect the maximization
(the standard error of our results is on the order of 10−5).

The optimal policy is as follows. For the first experiment, d∗0 ≈ 5.297; for the second experiment,
d∗1 plotted as a function of y0 is shown as the red solid line in Figure 10, with an optimal expected
reward of ≈ 1.010.
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6.2.2 Numerical Results

The numerical results for the design of the second experiment for greedy and DP are superimposed
with their analytical counterparts in Figure 11. Unlike the previous constant variance example,
this is no longer a deterministic problem, and we expect an advantage in utilizing the results from
the first experiment in designing the second experiment. Consequently, the optimal designs cannot
be shown on a d0-d1 plane, but must be expressed as a function of the state x1 (i.e., a policy). In
this example, because we have fixed the prior x0 and only have a single optimal value for d0, we
are able to plot d1 as a function of the scalar y0. In the figure, the DP optimization results doe
not match the analytical designs exactly, due to the approximation error in the value function.
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Figure 11: Final designs of 5000 optimization runs for the state-dependent variance case. The
red line in Figure 11(a) represents the optimal greedy designs, and the red line in Figure 11(b)
represents the optimal DP designs.

Another effect is that the closed-loop designs (greedy and DP) are expected to be different (and
better, at least for DP) than the open-loop design. Indeed, rewards from simulated trajectories are
shown in Figure 12, and the open-loop mean is about 10% lower than the greedy and DP designs
(both of which are within 1% of the analytical optimal). The greedy is able to keep up with DP for
this case, but this is not in general true for all noise structures that only dependent on the state.
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(a) Open-loop (mean: 0.914)
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Figure 12: Final reward (utility) values of 5000 optimization runs for the state-dependent variance
case. The red vertical line indicates the mean value.

In arriving at the numerical DP results, a one-step lookahead DP method is used, where only
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J1(x1) is approximated since J2(x2) (i.e., Equation (43)) can be evaluated exactly and cheaply, and
J0(x0) is not needed since x0 is fixed. The analytical form and polynomial approximation are shown
in Figure 13. The approximation function does a good job in most of the region of interest2 except
for the parts of low σ21. However, the states x1 actually encountered in the simulated trajectories
(Figure 14) concentrate only near the higher values of σ21. This result demonstrates the importance
of state measure: if this measure is known (or perhaps explored iteratively and adaptively), the
approximation function can be made more accurately and efficiently according to this measure.
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(a) J1(x1) analytical
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(b) J1(x1) numerical

Figure 13: Analytical form and polynomial approximation to the DP value function J1(x1) for the
state-dependent variance case.
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Figure 14: State x1 encountered in the simulated trajectories in the numerical DP method for the
state-dependent variance case.

6.3 State- and Design-Dependent Noise Variance

Finally, we consider a more complicated noise variance of σ2ǫ,k = (
√
7
5 d

sk−6.5
k )2. This structure is

complicated enough to prohibit any analytical derivation; we will only provide numerical results.

2The region of interest is determined from experimentation and analytical derivation (e.g., for the range of σ2
1).
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Rewards from simulated trajectories are shown in Figure 15. The open-loop outperforms greedy
by 32%, while DP further outperforms open-loop by another 34%. Fully solving the closed-loop
optimal design problem can indeed be greatly beneficial over other design approaches.

Some intuition may be obtained for the DP results from the form of the variance. The variance
monotonically increases with d1 if s1 is greater than 6.5, and decreases otherwise. Since how the
mean changes does not depend on the magnitude of d0, the DP formulation correctly applies the
minimal d0 in the first experiment (since there is a quadratic stage cost on dk), and then chooses
either the smallest or largest d1 depending on the outcome of the first experiment. The open-
loop design is unable to capture any effect that involves a change dependent on any experimental
outcome as there is no feedback. The greedy design is also unable to capture this phenomenon
because it does not know if we have any future experiments, and would try to recover the maximum
information gain immediately, rather than “making a sacrifice” in the first experiment in order to
extract an even higher gain from the second experiment.
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Figure 15: Final reward (utility) values of 5000 optimization runs for the state- and design-
dependent variance case. The red vertical line indicates the mean value.

7 Future Work

The primary objectives of this thesis are outlined in Section 2, and restated here:

1. to rigorously formulate the optimal closed-loop experimental design problem, for the purpose
of Bayesian parameter inference, using a dynamic programming approach; and

2. to develop the numerical tools that find the optimal experimental conditions in a computa-
tionally feasible manner.

Here we describe in more detail the future work to be done in achieving these objectives. A
proposed schedule can be found in Section 8.2.

7.1 First Objective: Closed-Loop Design Formulation

The majority of the first objective is completed, as we have rigorously formulated the optimal
experimental design problem using open-loop, greedy, and DP approaches in Section 4. There
remains, however, interesting questions related to the formulation.

In many practical situations, the total number of experiments is not fixed. Instead, experiments
may be added or reduced due to funding adjustments, change of managerial direction or political
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influence, or simply that we have gained enough information from our experiments. The DP
formulation in Section 4.2.2 assumes a fixed finite horizon of experiments, and does not offer the
flexibility to accommodate these situations. We will explore some techniques that may be more
used from this perspective.

In Section 7.1.1, we present the stopping rule formulation where an experimenter might want
to stop the project once enough information has been gathered. Section 7.1.2 describes remedies
under which an unexpected change in the number of experiments takes place. Finally, options in
directly constructing a formulation robust to early termination are discussed in Section 7.1.3.

7.1.1 Intended Stopping Rule

Sometimes a project can be terminated once enough information has been extracted from the
experiments. Such a termination is within the decision power of the designer or experimenter, and
a stopping rule can be set.

In a finite horizon setting, we can set N to be the maximum possible number of experiments or
simply some large number (although blindly choosing a large N can lead to substantial unnecessary
computational costs) and use the Bellman equation

Jk(xk) =

{

max
{

maxdk E [gk(xk, dk, yk) + Jk+1 (F(xk, dk, yk))] ,
∫

H
ln

[

xk

x0

]

xk dθ
}

if xk 6= T

0 if xk = T
(50)

JN (xN ) =

{

∫

H
ln

[

xN

x0

]

xN dθ if xN 6= T

0 if xN = T
, (51)

where T is the absorbing terminal state, and the 2nd argument in the max function in Equation (50)
corresponds to the decision of terminating the project.

Suppose there is no upper limit for N , such as in the weather balloon example described in the
Introduction section, the problem can also be formed in a infinite horizon framework:

J∗(x) = max

{

max
d

E [g(x, d, y) + J∗ (F(x, d, y))] ,

∫

H
ln

[

x

x0

]

x dθ

}

. (52)

Stationarity assumptions need to be imposed in order to guarantee convergence [81].

7.1.2 Unexpected Changes to the Number of Experiments

Here we describe situations where the number of experiments is changed due to factors beyond the
control of the planner or experimenter (e.g., funding adjustments).

Supposed you have completed 4 experiments of a 10-experiment series originally planned using
DP. Unforeseen increase in funding has allowed you to add 3 new experiments. What should you
do? First, there is nothing you can do about the 4 experiments already performed. They are in the
past. What matters is where you are now, your current state x4. Next, in order to fully capture
the future gains, a new policy must be created to take into account this change. If time is not an
issue, we can simply repeat the DP computations for a 9-experiment horizon starting at the old
x4. However, this would be an expensive task, and the gains of creating the new policy may not
be substantial enough to warrant repeating the full DP computations. This may especially be the
case if the experiments are of the same structure inferring the same parameters [34], or if only a
small change is made compared to the original total (e.g., 1 experiment added to the original total
of 100). These factors, combined with often limited time in forming the new policy, present a need
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for updating or modifying the original policy on the fly (perhaps suboptimally), instead of starting
anew.

One possible solution is to use rollout. First, we can construct a starting base policy by simply
appending a heuristics to the remaining original policy

πinit =
{

µ∗4,old, . . . , µ
∗
9,old, µ10, . . . , µ12

}

, (53)

where µ10, . . . , µ12 can be, for example, the same as µ∗9,old. Rollout algorithm (Equation (30)) can
then be used repeatedly to improve from this base policy. Intuitively, using part of the previously-
optimal policy should lead to a starting policy that is closer to the new optimal, and thus faster
convergence. Numerically, we still need to overcome the challenges of parameterizing policy and
value functions.

In extreme situations where the number of experiments fluctuates frequently, even an online
update method may be too expensive. It would then be more advantageous to address this from
the fundamentals, and use a more robust formulation to start with.

7.1.3 Formulations Robust to Horizon Change

Stopping Problem The first solution we introduce is a stopping problem formulation. Here is an
example in a finite horizon setting. We introduce a new, augmented state variable xk = [xk,t, xk,n]
where xk,t ∈ {0, T1, T2} is a “tag” component for keeping track of termination, and xk,n = f(θ|Ik) is
the usual conditional density function. The values for xk,t will be explained as we proceed through
the example. We start from an initial project of N = 8 experiments, with the understanding that
a project review will take place after the completion of 4 and 6 experiments, and each review will
have a probability of pf of terminating the project. The initial state’s tag is x0,t = 0 to represent
that it is not in the termination state. For the first three experiments (k = 0, . . . , 2), the value
functions are

Jk(xk) = max
dk

E [gk(xk, dk, yk) + Jk+1 (Fk(xk, dk, yk))] , (54)

and the system equation is

xk+1 = Fk(xk, dk, yk) =

[

0,
f(yk|θ, dk)xk,n
f(yk|dk, Ik)

]

. (55)

For the fourth experiment, while J3(x3) still takes the form of Equation (54), the system equation
is now a stochastic function

x4 = F4(x3, d3, y3) =







[

0,
f(y3|θ,d3)x3,n

f(y3|d3,I3)

]

w.p. (1− pf )
[

T1,
f(y3|θ,d3)x3,n

f(y3|d3,I3)

]

w.p. pf
, (56)

since there is a 25% chance of terminating the project. Here T1 is the tag for a special (temporary)
termination state (before accounting the information gain). The next value function is

J4(x4) =

{

maxd4 E [g4(x4, d4, y4) + J5 (F(x4, d4, y4))] if x4,t 6= T1
∫

H ln
[

x4,n

x0,n

]

x4,n dθ if x4,t = T1
, (57)
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where if x4,n = T1 then we will now account for the information gain, and then immediately move
to the T2 tag at the next stage (i.e., termination state after accounting for information gain) via

x5 = F5(x4, d4, y4) =

{ [

0,
f(y4|θ,d4)x4,n

f(y4|d4,I4)

]

if x4,t 6= T1

[T2, 0] if x4,t = T1
. (58)

Note that T2 is an absorbing state, such that if xk,t = T2 then xl,t = T2 for all l > k. For the next
stage, we have

J5(x5) =

{

maxd5 E [g5(x5, d5, y5) + J6 (F(x5, d5, y5))] if x5,t 6= T2
0 if x5,t = T2

, (59)

and F6(x5, d5, y5) follows Equation (56) (unless x5 = T2, in which case x6 = T2). Similarly, we
have J6(x6) having the same form as Equation (57), F7(x6, d6, y6) as Equation (58), J7(x7) as
Equation (59), F8(x7, d7, y7) as Equation (56) but with pf = 1 (mandatory termination), and the
terminal cost being

JN (xN ) =

{

∫

H ln
[

xN,n

x0,n

]

xN,n dθ if xN,t = T1

0 if xN,t = T2
. (60)

If there is no mandatory termination and the review occurs perpetually, an analogous infinite
horizon formulation can be used.

A slightly more complicated situation would be when a project review reveals whether exper-
iments are added or reduced effective at a future date. This variable will be random before the
review date, but observed once that date passes, and must be augmented as part of the noise
variable yk. The system equations above then must take its observed value into account.

Greedification The greedy design formulation is naturally independent of the design horizon
due to its myopia, and is thus robust against any changes to the total number of experiments. The
downside is that greedy is a suboptimal policy. A mix between greedy and DP formulations can be
used to attain some of both properties: robustness and optimality. For example, the N experiments
may be broken into groups, where within each group a DP policy is sought; and between the larger
groups, a greedy policy governs. Such a formulation is also numerically advantageous since now
smaller DP problems need to be solved.

Incremental Information Measure Looking at the DP reward functions Equations (11) and (12),
all of the information gain is in the terminal rewards, which means the policy expects the informa-
tion reward to be only realized at the end of the project. If we want to create a policy that guards
against early termination, then we can simply build that into the objective function by dividing
the information gain into a incremental manner across the experiments.

Specifically, we assign the incremental information measures in stage rewards gk(xk, dk, yk). In
a two-experiment example, the incremental formulation would be

max
d0

{

E

[
∫

H
ln

[

x1
x0

]

x1 dθ +max
d1

{

E

[
∫

H
ln

[

x2
x1

]

x2 dθ

]}]}

, (61)

subject to the system equation xk+1 = F(xk, dk, yk). The resulting policy would not be the same
as the one from Section 4.2.2 since the incremental KL terms are not additive. The policy we
obtain would be one that is more robust against early termination, with the tradeoff of having an
objective that is not truly optimal in the expected information gain sense, and that a KL term
needs to be evaluated at every experiment which can be computationally expensive.
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7.2 Second Objective: ADP Solution Methods

The second objective concerns the numerical tools for solving the optimal experimental design
problem. It will be tackled in three parts: ADP, state representation, and application problem.

7.2.1 New ADP Algorithm

Foremost and central to the theme of the thesis, is the development of an ADP algorithm that
solves the optimal sequential experimental design problem in a manner that is accurate and compu-
tationally feasible. To this aim, we shall start by making incremental improvements upon existing
ADP methods such as those described in Section 5.2.2.

Q-Factors Q-factor is a special case of post-decision state method discussed in Section 5.2.2,
where the post-decision state is taken to be the augmented state-control pairs

xpk = F1(xk, dk) ≡ (xk, dk) . (62)

The advantage of this transformation is that it does not rely on any special structure of the system
equation F(xk, dk, yk), hence it is possible to execute in all DP problems. The Q-factors themselves
are defined to be

Qk(xk, dk) ≡ E [gk(xk, dk, yk) + Jk+1 (F(xk, dk, yk))] . (63)

The Bellman equation (Equations (11) and (12)) can now be equivalently restated as

QN−1(xN−1, dN−1) = E [gN−1(xN−1, dN−1, yN−1) + JN (F(xN−1, dN−1, yN−1))] (64)

Qk(xk, dk) = E

[

gk(xk, dk, yk) + max
dk+1

Qk+1 (F(xk, dk, yk), dk+1)

]

(65)

and

J0(x0) = max
d0

Q0(x0, d0). (66)

Q-factor is a transformation technique that takes advantage of the recursive nature of the DP
problem; it does not change or approximate the problem in anyway.

How can Q-factors be advantageous? Instead of approximating value functions Jk(xk), we now
approximate Q-factors Qk(xk, dk). From a numerical perspective, we no longer need to evaluate the
optimization of an expectation, but instead only need to take the expectation of an optimization.
First, stochastic optimization methods can now be avoided, and instead more developed deter-
ministic optimization techniques may be used. Second, assuming the Q-factor approximations are
constructed via ΠE, where Π is a projection onto an approximating subspace. Then, Π̂Ê, where
Monte Carlo approximations are used for the projection and expectation, is an unbiased estimator
due to the linearity of Monte Carlo. In contrast, Π̂max Ê used in value function approximations
are biased due to the nonlinearity of max. Third, Π̂Ê can now use more efficient methods that
heavily rely on function regularity, such as sparse quadrature. Quadrature methods would not
work well for noisy function, which would be the case for Π̂max Ê in constructing Ĵ functions due
to stochastic optimization.
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Forward Trajectory Simulation The ADP algorithm presented by Powell [83] (see Section 5.2.2,
Algorithm 1)) produces sample paths from forward trajectory simulations, and uses these sample
paths to adaptively update the value function approximations. Its main advantages over methods
based on backward-induction in constructing the approximation functions are: (1) exploitation of
the approximation function and automatically explore the state space; (2) construction of approx-
imation functions not directly dependent on approximations from previous stage, and thus can
avoid the potential exponential growth in approximation error from backward induction; and (3)
flexibility in stopping or continue refining the approximation functions.

As we have learned from Section 6.2.2 (particularly Figure 14), knowledge about the state
measure can be extremely advantageous in building the approximation functions. We envision the
new ADP method to be developed being based on forward trajectory simulation, as one aspect of
its novelty lies within a more efficient construction of the approximate value functions through the
use of a state measure approximation.

As mentioned in Section 5.2.2, exploitation and exploration need to be balanced. Here is an
illustration of the unwanted consequences if only exploitation were used. We start with some
initialization of the value function approximations, which may not be close to the true value
functions. In these initial forms, some regions of the state will have higher values while others have
low values. Due to the maximization in Bellman equation, the simulated trajectories will tend to
go to the next states that have high values of the approximation function. The approximations
are then mostly updated at states in which we have obtained data, and the unvisited “low-value”
states will remain low value. As a result, those states will remain unvisited, and we would not be
able to find out about the regions we wrongly assumed to be low value in the initialization. As a
result, exploration needs to be added to provide the opportunity for us to find these mistakes.

One approach to attain exploration is by treating the approximation values of the physical states
in an uncertain (e.g., probabilistic) setting. Exploration then depends not only on its mean, but also
on how confident we feel about that value. We might opt to visit a state that is highly uncertain
over one with a high value. Various statistical techniques may be employed, such as Gaussian
process [66]. The policy governing exploration, however, is likely to be a result of heuristics and
experimentation.

Inference We have so far focused on constructing accurate value function approximations and
finding the optimal policy. However, the ultimate goal of the experiments is parameter inference.
Indeed, how good of a job we have done is measure by how well we do in inferring the uncertain
parameters, and this is reflected by our choice of the objective function. While it is true that
accurate value function approximations and optimization would yield a good policy, but a good
policy does not require them. In fact, we may spend substantial resources in improving our approx-
imation techniques while only attaining insignificant improvement in the objective. Would it then
be possible to find another indicator to guide us in finding a “good enough” policy? The answer
potentially lies within iterative methods, which is another reason to pursue the forward trajectory
simulation method. It remains an open question and is a future direction of research.

7.2.2 State Representation

The major numerical difficulty in the closed-loop formulations (e.g., greedy and DP) is to represent
the state variable xk, which are probability density functions. We are interested in problems beyond
linear-Gaussian models, and a general density function cannot be represented exactly by a finite-
dimensional vector. It then must be approximately represented.
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One popular technique is Gaussian mixture model (GMM) (e.g., [132])

f(θ|Ik) =
M
∑

m=1

wmN (θ|µm,Σm, Ik) , (67)

where µm is the mean vector of the mth Gaussian, Σm is the covariance matrix, and wm are the
relative weights. The fitting of these parameters can be done efficiently using the Expectation-
Maximization (EM) algorithm [138]. However, the choice M is not always clear, and often needs
to be adjusted in an automated manner via data clustering algorithms [139].

Another technique is to use a nonparametric (particle) representation. In particular, particle
filters (a.k.a. sequential Monte Carlo) [133] provides a natural infrastructure for representing and
updating our state variable. This method, however, would not be suitable for high dimensions
as the number of particles required for obtaining reasonably accurate representations would be
enormous.

Finally, instead of trying to capture the distribution directly, one can focus on capturing the
mapping or transformation from a reference random variable to the random variable corresponding
to the current state [134]. Although the density function is no longer available, but all that is
required in our experimental design formulation is to be able to sample the random variable, which
is available from this method. The basis functions in value function approximations can no longer
depend on properties of the density function such as mean or higher moments. However, we can
simply create new features that depend on the parameters of the mapping instead. How well these
features work in ADP is yet to be explored. This newly introduced method provides an alternative
to MCMC for solving Bayesian inference problems while requiring substantially less computation
effort.

Due to the numerous research topics in this thesis project, we will focus mainly on the develop-
ment of the ADP algorithm. For the state representation problem, we will for the most part select
an existing method that works well in the sequential Bayesian inference setting for our closed-loop
experimental design formulation.

7.3 Model Problems and Applications

We would like to apply the framework and tools developed on a series of model and application
problems. Through these, we will address practical questions such as how much more beneficial
is DP over other design methods such as open-loop and greedy, and if the advantage increases
or decreases as the number of experiments is expanded. The answer is not trivial: on the one
hand, only DP is able to fully capture the expected effects of future, while on the other hand, a
longer horizon would lead to an accumulation of value function approximation error, and repeated
experiments can lead to diminishing return. These questions naturally bring out the need of a
stopping rule, with a simple formulation described in Section 7.1.1.

To test our methods, we start with a series of simple model problems both to assess the
performance of our tools and to extract intuition and insight from the results. We then move on
application problems with different levels of complexity. First, optimally designing experiments
with fixed form and stationary parameters are tested on a chemical combustion system. Then,
in the setting of optimal sensor placement in a diffusion field for source inversion, we explore the
optimal design framework applies to experiments with varying form and both stationary and non-
stationary parameters. Finally, we describe an above-and-beyond full-blown scenario that possesses
the closest resemblance to a real life situation.

41



7.3.1 Simple Model Problems

The simple model problems we have chosen are the linear-Gaussian problems described in Section 6.
Specifically, we have explored variants where the Gaussian noise has constant, state-dependent, and
state- and control-dependent variance structures. The first two allow the derivation of analytical
results for open-loop, greedy, and DP designs, and allowed us to not only compare the performance
between the different design approaches, but also to the exact optimal design and value. Moreover,
these simple examples provided motivation for the superiority of DP design, and intuition and
insight on why an approach chose its design or policy and which areas we need to focus on. For
detailed formulation, implementation, results and discussions, please see Section 6.

7.3.2 Experiments with Fixed Form and Stationary Parameters

The chemical combustion problem is the first example described in Section 1, where the goal is to
determine experimental conditions such as temperature and pressure that are optimal for inferring
kinetic parameters from measurements at different times. When the parameter to be inferred, and
measurement quantity and times are fixed, we have experiments of a fixed form and stationary
parameters. This provides with us the simplest type of problem in which we can test our tools on
a realistic application model. We investigated this problem in the open-loop framework, and used
the opportunity to compare and validate the performance between alternative numerical methods,
in particular stochastic optimization and polynomial chaos surrogates. Our next step is to apply
sequential experimental design to this problem. Full details of this work can be found in [7].

7.3.3 Experiments with Varying Form and Stationary Parameters

For the next three subsections, let us consider the situation when a biological weapon is released
as a result of a terrorist attack. As the toxic contaminant diffuses from its source, it endangers the
health and safety of everyone around it. Having ordered appropriate evacuations, the authority
must now find the contaminant source and eliminate it as soon as possible! It would be far too
dangerous to send personnel into the contamination zone. Luckily, a number of remote-controlled
robotic vehicles are available. But due to their slow movement, a full visual search for the source
is out of the question. We must use a limited sequence of measurements of the contaminant
concentration to infer its source location. When and where should these measurements be made
so the source is determined most accurately and quickly? Our work can be used to answer these
questions.

We will describe a few different levels of simplification to this complicated situation. In a
very simple one, the physical process can be described by the 2D scalar diffusion equation in a
rectangular domain. A sequence of measurements can then be made, and we would like to find the
optimal measuring locations as well as times such that the expected information gain on the source
location is maximized. The source is assumed stationary in this case. In this type of problem,
the experimental form changes with time, as we would be making measurements at different times.
The author has carried out investigation in the open-loop design and with fixed measurement times
of this problem in [9].

7.3.4 Experiments with Varying Form and Non-Stationary Parameters

In the next level of complication, the source is assumed to be moving (perhaps being carried on a
truck) according to some known model (e.g., random walk) with unknown parameters—the uncer-
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tain source location is now a function of time. The objective may need to be modified, for example,
to account for the inference of the random walk model parameters, or the uncertainty in prediction
of the truck location at a future time. Such a problem can be related to the field of filtering, which
can provide insights and lend existing techniques. The measurement times also can be chosen, but
under constraints or penalties depending on the distance from the previous measurement (i.e., due
to movement speeds of robotic vehicles). A prescribed or changing convection field can also be
easily incorporated. This is the highest level of complexity we aim for in this thesis.

7.3.5 Above and Beyond

A truly realistic model would be fully 3D and include building topology and road geometries. While
such complexities make the physical simulation much harder, the problem is not conceptually much
different. A more challenging objective would be to tie the project to path planning (i.e., for the
sensor robot to also catch the source), and to use game theory to intercept an intelligent and evasive
moving source.

8 Milestones and Proposed Schedule

8.1 Milestones

Completed

2010/01 qualifying exams
2010/06 S.M. degree
2012/04 thesis committee formation
2012/12 minor approval
2012/12 course requirement

Future

2013/02 thesis proposal defense
2014/06 Ph.D. defense and graduation
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8.2 Proposed Schedule

Completed

2008/09–2011/08 open-loop design for multiple experiments; gradient-free stochastic optimiza-
tion methods (SPSA and NM); combustion application; contents in JCP pa-
per [7]

2011/06–2012/05 gradient-based stochastic optimization methods (RM and SAA-BFGS); diffu-
sion source-inversion application; contents in IJUQ paper [9]

2011/11–2013/01 closed-loop DP design formulation; analytic solutions and preliminary numer-
ical ADP results for simple linear-Gaussian cases

Future

2013/02–2013/07 ADP : literature review, implement existing techniques (e.g., Q-factors), create
new techniques (state measure exploration and simultaneous inference)

2013/08–2013/11 state representation: literature review, compare and choose methods to rep-
resent the states (PDFs) in experimental design context

2013/12–2014/03 combine tools together, run cases on the application problem

2014/04–2014/06 write and defend thesis
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