Tear-Off Sheet

Tear-Off Sheet

Some (possibly useful) Relations for 8.02 Test 1
You may use these freely unless the problem specifically prescribes a different approach.

$$
\begin{array}{lll}
\mathbf{F}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} q_{2}}{r^{2}} \hat{\mathbf{r}} & & \int \mathbf{E} \cdot \mathbf{d} \mathbf{A}=\frac{q_{i n}}{\varepsilon_{0}} \\
\mathbf{F}=q \mathbf{E} & & V(b)-V(a) \equiv-\int_{a}^{b} \mathbf{E} \cdot \mathbf{d s} \\
\varepsilon_{0} \cong 9 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2} & C \equiv \frac{Q}{\Delta V} & \mathbf{E}=-\left(\frac{\partial V}{\partial x} \widehat{\mathbf{x}}+\frac{\partial V}{\partial y} \widehat{\mathbf{y}}+\frac{\partial V}{\partial z} \widehat{\mathbf{z}}\right) \\
\frac{1}{4 \pi \varepsilon_{0}} \cong 9 \times 10^{9} \mathrm{~N} \mathrm{~m}^{2} \mathrm{C}^{-2} & U_{E}=\frac{C(\Delta V)^{2}}{2}=\frac{Q^{2}}{2 C} & u_{E}=\frac{1}{2} \varepsilon_{0} \mathbf{E} \cdot \mathbf{E}=\frac{1}{2} \varepsilon_{0}|\mathbf{E}|^{2} \\
& & \Phi_{E}=\iint \mathbf{E} \cdot \mathbf{d A}
\end{array}
$$

