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The conventional formula for quadratic roots suffers
from two defects: it is High Entropy, and it is computationally
inaccurate when two real roots are widely separated. An
improved formula is suggested that overcomes both defects.
Both roots are expressed in terms of a single parameter F that
contains the radical sign and is a unique function of the single
parameter Q that determines the nature of the roots Both roots
are computed in terms of F with the same computational
accuracy, and the Low Entropy format exposes the useful
design-oriented result that, for well-separated real roots, F
approaches unity so that the radical disappears and both roots
reduce to simple ratios of the original quadratic coefficients.

Introduction
It might be thought that the quadratic equation would be
beneath the notice of this conference. However, when reminded
of the conventional formulation in terms of the three a.b.c
coefficients, even graduate students often give depressing
answers to the following questions:

#1. How many independent parameters determine the roots?

#2. How many independent parameters determine whether the
roots are real or complex?

#3. Did you know that real roots, to a good approximation,
can be expressed as simple ratios of the a,b,c coefficients,
without use of a radical sign?

It is suggested here that enhanced understanding, and hence
more efficient application, of the quadratic equation may be
imparted in the context of Design-Oriented Analysis, proposed
at the FIE'91 conference [1].

Design-Oriented Analysis is a paradigm for teaching
design as an integral part of analysis. This is in contrast to the
more usual approach in which "design” is an appendage to
detailed and lengthy treatment of "analysis." To review the
theme of [1]:

Design is the reverse of analysis: one starts with the Answer
(the Specification), and one has to work back to the beginning
(circuit configuration and element values). Therefore, only
analysis that ¢can be worked backwards is worth doing. This is
Design-Oriented Analysis.

Design-Oriented Analysis is the process of guiding and
controlling the algebra so that the result is a Low Entropy
Expression, defined as one in which the terms are ordered, or
grouped, so that additional insight is obtained into the relative
importance of the various contributions to the result.

Engineers always have to solve for unknowns determined by an
insufficient number of equations. A Low Entropy Expression

allows more than one piece of information to be extracted from
one equation, and helps to substitute for the missing equations
that would be needed to solve formally for the number of
unknowns.

Def f the C ional Ouadratic F |
The standard-notation quadratic is
y=axz+bx+c=a(x—x,)(x—-x2) (1)
whose conventional root formula is
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This familiar formula, which we all know and love, suffers
from two disadvantages:

Defect #1. It is a High Entropy Expression, in that little or no
insight is obtained into how the values of a,b,c influence the
result.

Defect #2. It is numerically inaccurate, in that for real roots the
smaller root is computed with lower accuracy than the larger
root; the accuracy declines the smaller that root is relative to the
other. The origin of this effect is use of an algorithm that
requires computation of the small difference of large numbers, a

concept that students hear about in more advanced courses, but

often fail to recognize in the lowly quadratic.
Let us examine these defects, and attempt to overcome them.

A small rearrangement effects significant improvement
already with respect to Defect #1:
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In this Lower-Entropy format it is immediately seen that the two
roots are determined by only two independent parameters, (b/a)
and (c/a); the third parameter, a, is merely a normalizing factor
on y, and need not be considered further. Another small
rearrangement leads to a Low Entropy form especially suited for
complex roots:

b (¢ b\
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Before discussion of a different Low Entropy form
more suitable for real roots, let us consider Defect #2. .



Computational inaccuracy creeps in when (c/a) is much
smaller than (b/2a)’, in the form of the old nemesis Small
Difference of Large Numbers:

xlz——b |:l- l(c—/a)!]
o
X, E Za[l+ 1 ® 120 ]

In this situation, x, is computed in terms of a factor (1/2) minus
something almost (1/2), thereby multiplying the calculator
roundoff error. This Achilles heel is not possessed by the root
X,. Thus, real roots are computed with unequal accuracy.

Students tend to think that because engineers may be

satisfied with answers that are accurate to 10%, or at best 1%,
and that they have at least 10-digit pocket calculators, they don't
need to worry about computational accuracy, certainly not with
respect to the quadratic formula. A simple numerical example
destroys this faith.

Consider a quadratic in z with a=c=1, b=45,000
Z2+bz+1=0 (6)
The root z, from Eq. (2), call it z,,, is computed on an HP15C
as .

z,

_-b +J2b1 -4 @

= 2.000,000,000x 10
[The HP15C is a 10-digit calculator, and it takes a litte effort o
get it to display all 10 digits, since the last two are normally
preempted by the exponent.] However, the same root z, from
Eq. (5), call it z,,, is computed as

Z, =~g[l—\'l—4/b2] (8)

=2.250,000,000x10°
This is a bit disturbing (one hopes): The two results for
the same root, both computed from exact formulas on the same
calculator, differ by more than 10%. This leads to an even more
disturbing question: Which result is "right"? Worse, perhaps
they're both wrong. :

The difference between the two results must arise from
the computational algorithm, which in this case refers to the
format of the original expression. Let's work on the analytic
format and see if we can persuade it to reveal the "right” answer.

Rearrange Eg. (6) to
==Jg.z
z= b(l+z) (©)

The root z, under examination is known from Eq. (7) or (8) to
be much less than 1, regardless of whether neither result is
correct. Therefore, a zeroth-order result, call it z, , is obtained

by dropping the z* on the right-hand side of Eq. (9):
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7, = — =-2.222,222,222 x10°*

(10)
A first-order result, call it z,,, is obtained by substitution
of the zeroth-order z,_ into the right-hand side of Eq. (9):

Lo 1
14 b?

=+-2.222,222,222 x107*
~0.000,000,001,097,393,690 x 10~° (11)

Since the last (10th) digit of each of the two numbers to be
summed is subject to calculator roundoff error, the following
statement can be made: The “right” answer is

z, =-2.222,222,22 x10° correct to 9

significant figures (12)

Students sometimes take a little time to decide whether
they really believe this statement. When they are ready to
continue, it can be pointed out that both previous results z,, and

Z,, are wrong, z,, by 10%, and z,, by more than 1%.

Students may be curious enough to repeat the three
calculations for z,,, z,,, and the "right" z, for other values of b,
say 40,000 plus 1,000 increments to 50,000. The errors in z,,
and z,, are found to be scatiered; sometimes z,, has greater
error, sometimes z,,. An 8-digit calculator gives zero for z,,
and z,,; rather a large percentage ervor!

Clearly, the computational algorithm makes a significant
difference in the accuracy of the result. The punch-line,
however, is still to come: Both exact formulas, Eqgs. (7) and (8),
gave wrong answers, and the right answer was obtained from
an approximate formula, Eq. (11)!

With the accuracy defect thus exposed, students are
more receptive to the proposal that a more useful, Lower-
Entropy, format for the quadratic roots might be available.

The key to an improved result is to construct an
algorithm ‘in which the subtraction of two almost-equal
quantities is performed analytically, before introduction of
numerical values with consequent computational roundoff error..
Let us go back to the original format, Eq. (2), and write the two
roots as

(13)

The problem resides in the computation of x,, so let us exhume
another algebraic procedure from high school, "rationalizing the
denominator,” but this time we'll rationalize the numerator of x,:
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The crucial step follows: (1/4) - (1/4)=0 exactly, and the "small
difference” ac/b® is left exposed analytically, before
substitution of numbers and consequent roundoff error:

c 1

X = b[_!+_1 l Mc]
2 Z‘J i (15)
x2=_b[.14.1{14€]
al2 2 b

where x, from (13) has been repeated in order to display the
two roots together. In other words, this format for x, is
superior to that of Eq. (13) because Defect #2, the Small
Difference of Large Numbers, is avoided.

This derivation is longer than necessary in order that the
crucial step could be exposed pedagogically. A shorter
derivation can be used to introduce conveniently some new
notation that ultimately assists in lowering the entropy, thus also
avoiding Defect #1. '

Let us go back this time to one step beyond the original
format, Eq. (13), and introduce two quantities Q and F such that

X ==2F (16)
where

F=3+%y1-4Q (17)
in which

QedE [=@] (18
b b/a

The root X, given by (16) suffers from no problem; it is x, that
needs work. Instead of manipulating Eq. (13) in x, let us dust
off another property of the quadratic known (at least flectingly)
to high school students: the product of the two roots equals the
constant term of the quadratic, or

ax;x, =¢ (19)

as easily seen from Eq. (1). Hence, since x, is already known
in a good shape (the Low Entropy form of Eq. (16)), x, is
immediately given as

or

x, == (20)

where again the results for both roots have been displayed
together.”

The two results of Eqs. (20) are the same as those of
Eqgs. (15), but with the added notational economy of F and Q
defined by Eqs. (17) and (18), in which the computational
accuracy Defect #2 has been eliminated.

The additional benefits leading to elimination of Defect
#] can now be examined, since they are embodied in the
physical interpresation of F and Q.

Q> 0.5: complex pair
Q=0.5: 2 equal real roots
Q <0.5: 2 unequal real roots

It is no accident that the symbol Q was chosen because it is the
same as the Q-factor of an LC resonant tank. Students who are
uncertain about the answer to the foregoing question #2
immediately realize that they actually know the answer, when
the question is put in the context of resonance.

The biggest payoff from the Low Entropy format of
(20) arises from the function F: the smaller Q becomes, the
closer F approaches the limiting value unity, or ’

Q<<0.5: F-o1
There is an immediate consequence: in this limit, each of the

two quadratic roots becomes a simple ratio of the original a,b,c
coefficients, or

-
b
X, ---a Q<<0.5 (21)
and FE-)
X,
X, =

Question #3 of the Introduction is thereby answered: as long as
the ratio of the two real roots is sufficiently small (they are -
sufficiently well-separated), each root is a simple ratio of the

original quadratic coefficients, and no radical sign is needed in
the analytic expression.

It is now clear why the factor 1/2 was included in the
definition of F, instead of leaving it outside: a limiting value for
F of 1 is simpler and more easily remembered and used than .
some nonunity value (it is a Low Entropy Expression).

It remains to be seen how rapidly F approaches 1 as Q
decreases. As seen from the graph of F vs Q in Fig. 1, the
approach is very rapid. Real roots occur for Q<0.5, and for
Q=0.3,F = 1 with <10% error. All this information in Fig. 1 is
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Fig.1. The funcuon F rapxdly _approaches unity as Q drops
below 0.5, making the radical sign disappear for well-separated
real roots.

casily memorized and allows the following qualitative statement
to be made: except for a narrow range of Q just below 05,
whenever the quadratic roots are real they may be
approximated by Eqs. (21). The approximation improves the
smaller the value of Q, that is, the more unequal are the roots.

The usefulness of the Low Entropy format for a
quadratic is illustrated by analysis of the voltage transfer
function (gain) A= v,/v, for the network shown in Fig. 2.

v; = Av;
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Fig2. A circuit example 1o illustrate the unproved Jormula for
quadratic roots,

Standard analysis leads to the usual result as a ratio of
polynomials in complex frequency s:

R, +CRR;s

TIR,+RI+IG(RR, +R.R, +R \R.)+CR R, Is+[C,CRR,R,]s*

[This contrasts with Defect #2 of the conventional format, in
which the accuracy worsens the smaller the value of Q.]

A summary of the recommended formats is shown in
Table 1. The results are Low Entropy in that the radical is inside
the function F, whose value for real roots is confined to the
narrow range 0.5 to 1, and the same F appears as a factor in both
roots, which otherwise are simple ratios of the quadratic
coefficients. Thus, computational roundoff error remains in the
last digit, and both roots are computed to the same percentage
accuracy. The exact results are of course valid for any value of
Q, and a complex F implies a complex root pair.

The Low Entropy nature of the results is especially
beneficial when the roots are real and sufficiently well-separated
that F can be taken equal to 1. Then, no radical appears in the
expression for cither root, making analytic factorization of the
quadratic useful. Moreover, the degree of approximation is
easily tracked by evaluating the actual value of F, and affects

- each root proportionally.

Taking F = 1 for real roots could be considered a zeroth

order approximation for F. If desired, a first-order
R,

22)

This is a High Entropy Expression with respect to the concepts
introduced in [1]: it is a ratio of sums of products of the various
¢lements, and conveys no useful information other than that
obtained by direct insertion of numerical values.

Although mental energy could be injected to lower the
entropy, a better method, again following the recommendation
of [1]. is to do some of the algebra on the circuit diagram before
plunging into the equations. In this case, an appropriate step is

v, = Av,

R IIR,_-32k e
0002|.1F
R, +R R, + R, V1 =068, ;R; 1k

Fig.3. A Lower Entropy version of the circuit example of Fig.2:
one loop removed by Thevenin reduction.

to eliminate one of the loops by Thevenin reduction, namcly. o
convert v,, R;, and R, into a Thevenin equivalent, as shown in
Fig. 3. The result now is

1+CRjs (23)

A=

R, +R, 1+[C,R,+R|R )+ CRJRDIs+[CCR,(RYR,)]s*

approximation can be found by binomial expansion of the
radical in (17), which gives F = 1- Q?, and which also could be
sketched in Fig. 1. AtQ=0.3,1-Q* =091, only about a 1%
error from the actual value F = 0.90.

1t should be pointed out that the function F of Eq. (17)
has been plotied in Fig. 1 on the assumption that all three a,b,c
coefficients of the original quadratic are positive. If a or ¢ is
negative, Q? is negative; then, F exceeds unity and the roots are
always real regardless of the value of Q2. The shape of F is
different from that shown in Fig. 1, but all the expressions of
(17), (18), and (20) remain correct.

which exhibits several Low Entropy features. First, the two
polynomials each has a leading term of 1, exposing the initial
cocfficient R /(R,+R ) as the zero-frequency gain A,, obvious
from the model of Fig. 3. Second, the resistances otherwise
appear as series/parallel combinations, exposing their relative
importances. Third, the coefficient of the denominator s term is
seen to be the sum of two contributions, and it is obvious by -
inspection, without even substituting numbers, that the C,
contribution is negligible compared to that of the C, term, and
therefore may be dropped with less than 2% error in the
cocfficient.



This is an example of another Method of Design-
Oriented Analysis: Use of Numerical Values to Justify Analytic
Approximations. The principle is that non-dropped terms are
retained in analytic form, so that a simpler but still general result
is maintained. The advantage is that numerical values can be
changed later in order to meet some design specification, and it
is merely necessary to go back and check that the approximation
is still valid.

In the present example, the reduced expression for the
network gain is

R, 1+C,R,s
R, +R_ 1+ [C,(R, +R|[RIs+[C,C;R,(R] R, )]s’

This function contains a denominator quadratic in s, whose roots
@, and o, are the two poles of the function.

(24)

Substitution into the conventional formula (2) gives
2
CR,+RIR )% C(R+RIR,)'~4CCR,(R|R)

@y, @, =

@5)

This is a High Entropy Expression, and gives no insight into the
influence of any element on the result. It isn't even immediately
obvious whether the roots are real or complex. Indeed, it was &
waste of time even writing this expression, because all it's good
for is for substitution of numerical values, which might just as
well have been done in the original quadratic. Furthermore,
such a procedure will result in the two roots being computed
with different (and unknown) degrees of accuracy.

Instead, let us use the Low Entropy Expressions from
Table 1, which leads to

1 1
=R, +R]R) F
_C(R,+R|R)) _
C,GR,(R{R))

(26)
1

“CwRIRy

Note that the Low Entropy format already gives a vast‘ly
superior analytic result even before F is known, since F is a

mere number (between 0.5 and 1).
- EZ R Rﬂ R, Q@n
C, R,+RJR,

It is obvious by inspection, without actual substitution of
numbers, that Q is going to be much less than 0.5, and so the
rcal-root approximation F = 1 can safely be adopted.
Nevertheless, to press on with the computation,

Q=0024

2

Evaluation of Q gives

JCGRR|R)
C/(R,+R|R,)

(28)

which meets-the Q << 0.5 inequality by more than a factor of -

20, thus amply justifying the real-root approximation F = 1.

.S/

Actually,

=% +—J 1~ 4(0.024)’

=(0.99%4

and so F can be taken equal to 1 with less than 0.1% error. With
the same percentage error in each root, the two roots of the
quadratic, the poles of the network gain, are

1
“ =TUR, +RJR)
1

W, =
" TCRIRIRD

so that the complete gain expression A can be written in factorec
pole/zerc form:

(29)

(30)

s

7

Ao (1+iI1+i]
o, o

A comparison between the above Low Entropy
Expressions of (30) for @, and w, and the High Entropy
Expressions of (25) is no contest. One conclusion leaps to the
eye: C, determines @, and C, determines w,, and there is no
interaction. One would never know this by gazing at Eq. (25):
it looks as though C, and C, are inextricably intertwined, both
determining both poles.

@3N

From an analysis point of view, the Low Entropy
format obviously outdistances the conventional High Entropy
format. The bottom line, of course, is the design point of view,
from which it is equally obvious that the Low Entropy format
wins hands down. In a design context, @, and @, would be
given (or derived from) the specifications, and the problem
would be to select element values, primarily C, and C,. This is
simply achieved by separate inversion of Eqgs. (30), but would
be incomparably more difficult from the High Entropy Egs.
(25). The same is true to a lesser extent if there is another
constraint on C, and C,, and the specified roots must be
achieved by selection of resistor values: the Low Entropy Eqgs.
(30) reveal that @, is dominated by R,|R, , @, by R,. Again,
Eqgs. (25) would be no help.

I ive f the Low E Ouadratic F |

As usual, there are many possible Low Entropy formats
for a given expression; the choice depends on what features of
the result are to be exposed. The above discussion adopted the
conventional "high school” format of Eq. (1) as a starting point,
in which the a coefficient was extracted as a normalizing factor -
fory.

It is often convenient to adopt the constant term ¢ as a
normalizing parameter so that, with reversed sequence of terms,
the original quadratic becomes '



y=c+bx+ax’ =C(I—TxlI-l-'i'J k32)

A casce in point would be the previous network example with a
quadratic in the denominator of the transfer function, in which x
is complex frequency s, and -x, and -x, are the poles o, and w,

Since ¢ is now a normalizing parameter for y, and since
also the remaining two independent parameters that determine
the two roots are b/c and a/c, one might introduce two new
symbols @, =b/c and @, =a /¢ so that the original quadratic
can be rewritten as

y/c=1+alx+a1x’=[l——;‘-Il—szJ (33

The previous discussion leading to the Low Entropy
results can now be repeated in terms of the alternative
parameters @, and @,. The results are displayed in Table 2, and
correspond directly to those in Table 1.

Two points are worthy of note. First, the function F in
terms of Q remains the same, shown in Fig. 1. Second, the
real-root approximate factorization

i=q +a,x)(l +§f x) (34)

is particularly simple and easy to remember: the first factor is
identical to the first two terms of the original quadratic; the
coefficient of x in the second term is the ratio of the third to the
second coefficient in the original quadratic.

* Another useful Low Entropy manipulation of the format
is to normalize both x and y:

%=l+%x+—zx2
2
=1+€J—%u:‘;x]+uzc1x]
b a a ’ ]
=1+7E —cx+ —cx (35)

This form is particularly suitable when x is complex frequency

s, and vc/a is some normalizing frequency @,. Since the
coefficient of the middle term is recognized as 1/Q, by Eq.(18),
the resulting format is

2 : .
S 1 [
&)l () @

The single parameter Q that determines the nature of the roots is
now featured at the outset, and is the only parameter needed to
express the relation between the normalized variables. Table 3
summarizes the Low Entropy results in terms of the single
parameter Q.

An example is a low-pass LC filter, which has a voltage
transfer function A of the standard second-order form

6

Quadratic: y=ax2+bx + c = a(x - x)Xx - X2)
Definitions: Q-iz:‘-. Fet++y1.a¢  Fig.))
‘Well-separated real roots:
Exact Q<<05.F= 1
x =-£L R ¢ =-!Z.F x ==&, x3==L
Roots: ! bF ™7a ! b e
2
X h_p?
X2 % X2 Q
ization: = cl .’.’.] = LN b
Factorization: y-a(x-t-.b-F x+aF y a"&b x+a)

Table 1. Improved quadratic formulas in terms of the original
three a.b.c coefficients.

Quadratic: '¥‘= 1 +01X+02X2=(l ,‘L,}(l ",%

W

. Well-separated real roots:

Definitions: Qs_"‘a’z (Fig. 1)

Exact Q<< 05.F=1
11 =-4a1 =-1 =_41
X = ==, =-aF X| =", P O3 Tt
Roots: = F 253 g T
1'—=Q2 ﬂ:Q2
X2 X2

Factorization:

1=(l +a|Fx)(l +92 x
c a

Table 2. Improved quadratic formulas in terms of the two
parameters a,, a,. '

el L R e e
Definitions: F =.§. ...i.m Fig. 1)
Exact Well-(;ef:r;r:i ;e:l ;-oo,_g;
Roots: “":Q“*’;l‘.-- m:%x: ®1=Quy . wz=%°
o Q@ ~
52l TF % =Q’
Factorization: ll+ )(Hpm%)‘ ]'(356]-: (14.@}{“ “’;’Q)

Table 3. Improved quadratic formulas in terms of the smgle
parameter Q that determines the nature of the roots.
1

) l+—l > + s Y

Q| w, o,
where @, is the comner fréquency (double pole) and Q is
determined by various damping resistances. Numerous
textbooks and handbooks give graphs of |A| with Q as
parameter, but usually only for the underdamped (Q > 0.5) case.
Figure 4 shows three typical cases: Q > 0.5 (complex roots); Q

< 0.5 (real roots); and Q << 0.5 (well-separated real roots).
Features often neglected are: the value of |A| at the corner

37N



Fig4. Possible transfer function responses of a lowpass filter
having a quddratic pair of poles. The Low Entropy real roots
for Q<0.5 become even simpler when Q<<0.5, causing F-1.

frequency is Q, regardless of the value of Q; real poles of A
appear as corner frequencies Qw,/F and Fw,/Q; well-separated
real poles of A appear as corner frequencies Qw, and @,/Q.
Whether real poles are well-separated or not, they appear
cquidistant (on a log frequency scale) below and above the
corner frequency @, Again, the simple Low Entropy
expressions for real roots are particularly useful in a design
context, in which the roots may be specified and the design
problem may be to realize the appropriate values of Q and w,,.

Conglusions
It is claimed that the conventional beloved formula for

the roots of a quadratic equation suffers from two congenital
defects:

Defecr #1: The expressions for the two roots are High
Entropy, in that little or no insight is gained into how the
quadratic coefficients affect the roots, and substitution of
numerical values is the only recourse.

Defect #2: Real roots are computed with different (and
obscure) accuracies, and the accuracy disparity increases the
more widely separated are the roots. This results from implicit
use of an algorithm that requires computation of the small
difference of two almost equal numbers, causing multiplication

“of calculator roundoff error. In extreme cases, the accuracy of
one root can be totally desiroyed.

An example is given intended to destroy, instead,
students' faith in the conventional formula. The foundation is
thereby prepared for their acceptance of an improved formula
for quadratic roots that simultaneously overcomes both defects.

The improved formula, exact rcgardlcss of whether the
roots are real or complex, offers the following benefits.

Real roots can be computed with the same accuracy, and
the accuracy is constrained to last-digit roundoff error of the
calculator that is employed.

Analytically, both roots can be expressed as simple
ratios of the original quadratic coefficients, and a dimensionless
factor F that is a unique function of the single parameter Q that
determines the nature of the roots (Fig. 1). The radical sign, that
dominates the conventional root formula, is confined within the

factor F and does not appear elsewhere in the improved root
formula. If Q > 0.5, F is complex and the roots are a complex
pair. If Q<0.5, F is real and the roots are a real pair, equal if Q
= 0.5, and scparating (on a log frequency scale, symmetrically)
below and above their equal value for Q = 0.5 as Q drops below
0.5.

The ultimate benefit of the improved Low Entropy
Expression for quadratic roots is realized in the limiting case
when real roots are sufficiently well-separated that Q << 0.5, in
which case the factor F approaches 1. As a result the radical
sign, confined within F, disappears and the roots reduce to
simple ratios of the original quadratic coefficients. As a
consequence, the quadratic factors directly into a simple product

_ without radical signs. From a design point of view, this is a

significant advantage, and a network example is discussed in
some detail.

There are many Low Entropy formats for a quadratic
equation, the preferred alternative being determined by the
structure of the original equation and the structures of the desired
roots. Three useful representations are displayed in Tables 1, 2,
and 3. Common to all alternatives is the unique function F of Q,
itlustrated in Fig. 1.

There is nothing "new" in anything presented here. The
benefits of dealing with normalized variables, leaving a single
parameter Q, have been recommended, for example, by
Waldhauer [2]. It is not to be expected that anything
fundamentally new could emerge in relation to the quadratic
equation, so basic to all the physical sciences.

The purpose here has been simply to present a different
pedagogical perspective, from the viewpoint of Design-Oriented
Analysis in terms of Low Entropy Expressions. Analysis is
only valuable if it can be "inverted" for design, and from an
engineer's standpoint the name of the game is to extract the
maximum benefit from the minimum amount of algebra.

Many topics are repeated with higher levels of
sophistication during a typical engineering curriculum, as
student insight and understanding matures. Somehow, the
quadratic equation, probably the first algebraic formula
encountered, is considered so simple and basic that no further
consideration is warranted.

It's as though a teenager's memory has the famous
formula of Eq. (1) burned into it, and subsequently becomes
almost a Read Only Memory from which it is very difficult to
dislodge this formula, in spite of the fact that much improved
versions are well-known to exist, and are worth revisiting.
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