
How to use the PSoC – based 16C450 Replacement

Matthew Burns

Eric Ponce

August 2017 (Updated March 2019)

1 Overview
The PSoC based 16C450 Replacement is intended to replace the 16C450 serial

communication chip. It has a data bus, an address bus, and all other supporting pins to

make this PSoC communicate with an 8051 as if it were an 8000-series peripheral with

16 registers. In addition to that, it has TX and RX pins to carry out UART

communication with other UART peripherals. Furthermore, the firmware serves as a

starting point to create different combinations of peripherals for the 8051.

2 Hardware
This 16C450 replacement is designed around a CY8CKIT-059 PSoC 5LP. Many

of the pins on this PSoC are not used in this implementation and are labeled in black on

the pinout shown on page one of this manual. The pins that are used are labeled with

their function in red.

 This PSoC is fitted with an 8-bit data bus, a 4-bit address bus, /RD and /WR lines,

a /CS line, and an INTR line to communicate with the 8051 as if it were an 8000-series

peripheral. It also has a RESET line which controls the software reset of the entire

PSoC replacement. This RESET line should be connected to the 8051’s reset line

through two 7414 inverters – with a small (~.01 uF) capacitance on the 8051’s reset line

for filtering.

Note: The RESET pin is labeled 3.0 on the PSoC and is different then the pin

labelled ‘RST’ on the development board, which is not used in this application.

*Note: Power (5V) and ground (0V) connections were intentionally left off of the PSoC in the

schematic for clarity.

 In addition to connecting all standard lines for 8000 series communication, the

three GND pins of the PSoC should connect to the same ground as the 8051. VDD and

VDDIO should be tied to +5VDC. RX is the receive line for the PSoC UART

component and is intended to be tied to the transmit line of the device you wish to

communicate with. TX is the transmit line for the PSoC UART component and is

intended to be tied to the receive line of the device.

3 Firmware
The firmware for this 16C450 replacement was created in PSoC Creator 3.3.

Interface:

The UART module makes use of the first three of the 16 addressable registers on the

PSoC: address 0x00, address 0x01, and address 0x02.

Address 0x00 is the control register for the UART module. It allows the user to

turn on and off the UART module, set the baud rate of the UART module, and

manipulate the receive / transmit flags and the receive / transmit interrupt enable bits.

Address 0x01 is the UART write register. Writing to this register causes the

UART module to transmit the byte that was written to this register provided that the

UART module is on and is not currently transmitting a byte.

Address 0x02 is the UART read register. Reading this register returns the byte

that was most recently received by the UART module. Reading this register does NOT

clear the receive flag in the control register

All these registers have a reset value of 0x00.

UART Registers

Address: Register Name: Reset Value: Function:

0x00 UART Control Register 0x00 The control register

allows you to turn on

and off the UART

module, set the baud

rate, and control the

UART interrupts.

0x01 UART Transmit Buffer 0x00 The transmit buffer is

the register you write to

when you wish to

transmit a byte.

0x02 UART Receive Buffer 0x00 The receive buffer holds

the value of the most

recently received byte.

Control Register:

7 6 5 4 3 2 1 0

TF RF TIE RIE M3 M2 M1 M0

The bits of the control register (0x00) are set up as follows:

Bit 7: Transmit Flag. This bit is automatically set when the UART component

finishes transmitting a byte. Both this bit and the receive flag (bit 6) need to be

cleared to reset the interrupt line if this UART component sent a falling edge

interrupt to the 8051.

Bit 6: Receive Flag. This bit is automatically set when the UART component

receives a byte. Both this bit and the transmit flag (bit 7) need to be cleared to

reset the interrupt line if this UART component sent a falling edge interrupt to the

8051.

Bit 5: Transmit Interrupt Enable. If this bit is set, the PSoC will send a falling

edge interrupt to the 8051 upon completion of a UART transmit.

Bit 4: Receive Interrupt Enable. If this bit is set, the PSoC will send a falling

edge interrupt to the 8051 upon receiving a byte.

Bit 3: (M3) The lower nibble of this control register is used to turn on and off the

UART module and set the baud rate.

Bit 2: (M2)

Bit 1: (M1)

Bit 0: (M0)

The UART mode is used to control the baud rate of the UART module and is

determined by the lower four bits of the UART control register. Below are the possible

nibble values for controlling the UART mode:

M3: M2: M1: M0: Mode:

0 0 0 0 UART off

0 0 0 1 300 Baud

0 0 1 0 1200 Baud

0 0 1 1 2400 Baud

0 1 0 0 4800 Baud

0 1 0 1 9600 Baud

0 1 1 0 19200 Baud

0 1 1 1 38400 Baud

1 0 0 0 57600 Baud

1 0 0 1 115200 Baud

1 0 1 0 230400 Baud

1 0 1 1 9600 Baud

1 1 0 0 9600 Baud

1 1 0 1 9600 Baud

1 1 1 0 9600 Baud

1 1 1 1 9600 Baud

Once the control word is set up in the control register, the UART module is ready to

receive and write bytes. To keep track of the state of the UART module, the user can

either poll the receive / transmit flags, or the user can set up an interrupt. If the PSoC

generates an interrupt on the INTR line back to the 8051, the line will drop low until the

user clears the interrupt. The interrupt can be cleared by clearing the transmit and

receive flags of the UART module.

Summary of Internal Operation:

The BUS_CLK of the PSoC is set to 48 MHz so that the PSoC can perform its

functions quickly enough to complete its task faster than the 8051 can communicate.

 The PSoC’s Direct Memory Access (DMA) controller is used to emulate memory-

mapped registers. Given a command – a read to or write from an address – a DMA

channel moves data to and from the appropriate memory location. A byte array labeled

‘Reg’ stores the data for the 16 accessible register addresses. A control register is used

to write data to the data bus and status registers are used to record bus and address data

into the ‘Reg’ array and ‘Addr’ variable, respectively.

 Upon an update to the ‘Addr’ variable, the main loop of the PSoC firmware

carrys out the appropriate changes to the UART peripheral. Having the main loop

control the UART hardware makes the code understandable while the DMA controller

provides fixed latency memory accesses to ensure the timing specification is not

violated.

4 Example
To demonstrate this 16C450 Replacement, we will attach it to an Amulet module

and write some software for the R31JP so that every time a button is pressed on the

Amulet module, the character is displayed on the R31JP P1 LED bank as well as on the

monitor’s display. There are two code examples to demonstrate the polling approach as

well as the interrupt approach

 After wiring the 8000-series communication portion of this chip to the 8051,

attach the PSoC’s RX line to the Amulet’s TX line. Be sure to connect the ground of the

Amulet module to the ground of the R31-JP kit and PSoC. Assemble and load the

R31JP with either of the following assembly code examples:

Example 1 – Polling

; PSoC 16C450 Replacement Amulet Example - Polling

.equ CTRL_REG, 0fe00h

.equ RX_REG, 0fe02h

.equ RX_FLAG, 40h

.org 000h

ljmp start

.org 100h

start:

 lcall init

main:

 mov dptr, #CTRL_REG ; check rx flag

 movx a, @dptr

 anl a, #RX_FLAG

 jz main

 mov dptr, #RX_REG ; get data

 movx a, @dptr

 mov P1, a

 lcall sndchr

 mov dptr, #CTRL_REG ; clear the rx flag

 mov a, #05h ; baud = 9600, no interrupts

 movx @dptr, a

 sjmp main

init:

; Set up serial communication to the computer

 mov tmod, #20h ; set timer 1 for auto reload - mode 2

 mov tcon, #41h ; run counter 1 and set edge trig ints

 mov th1, #0fdh ; set 9600 baud with xtal=11.059mhz

 mov scon, #50h ; set serial control reg for 8 bit data

 ; and mode 1

 mov dptr, #CTRL_REG ; Set up PSoC UART

 mov a, #05h ; baud = 9600, no interrupts

 movx @dptr, a

 ret

sndchr:

 clr scon.1 ; clear the tx buffer full flag.

 mov sbuf,a ; put chr in sbuf

txloop:

 jnb scon.1, txloop ; wait till chr is sent

 ret

Example 2 - Interrupts

; PSoC 16C450 Replacement Amulet Example – Interrupt

.org 000h

ljmp start

.org 003h
ljmp isr

.org 100h
start:
 lcall init
main:
 sjmp main

init:
; Set up serial communication to the computer
 mov tmod, #20h ; set timer 1 for auto reload - mode 2

mov tcon, #41h ; run counter 1 and set edge trig ints
mov th1, #0fdh ; set 9600 baud with xtal=11.059mhz
mov scon, #50h ; set serial control reg for 8 bit data

 ; and mode 1

 mov IE, #81h ; Fully enable the edge triggered interrupt

 mov dptr, #0xFE00 ; Set up PSoC UART flags for 9600 baud

 mov a, #0x15 ; communication

 movx @dptr, a

 ret

isr:
 mov dptr, #0xFE02 ; Read in the byte from the PSOC
 movx a, @dptr

 mov P1, a

 ; Here I send the byte to the PC

 clr scon.1 ; clear the tx buffer full flag.

 mov sbuf,a ; put chr in sbuf

txloop:
 jnb scon.1, txloop ; wait till chr is sent

 mov dptr, #0xFE00 ; Clear the PSoC UART flags thus clearing

 ; the external interrupt

 mov a, #0x15
 movx @dptr, a

 reti ; Return from interrupt

Once this code is loaded onto and running on the R31JP, the P1 LED bank and serial

interface should respond to presses on the Amulet module.

