40

40

3.1

Chapter 3
Abstraction

Our first tool, divide and conquer, breaks enigmas into manageable prob-
lems. These leaf nodes are manageable partly because they are conceptual-
ly simple; the length of a classical symphony, roughly one hour, is a simple
concept compared to the data capacity of a CDROM. Successful leaf nodes
are manageable also because they are familiar. The length of a symphony,
for example, might be familiar from attending a classical concert. A concert
is typically 2.5 hours with a half-hour intermission (interval) in the middle,
leaving one-hour blocks at the start or end for a full symphony.

Familiarity is the sibling of reuse. Successful divide-and-conquer reasoning
breaks a problem not just into parts but into reusable parts. Discovering
and constructing such parts is the purpose of abstraction — the second tool
for organizing complexity. Abstraction is, according to the Oxford English
Dictionary [24]:

The act or process of separating in thought, of considering a thing indepen-
dently of its associations; or a substance independently of its attributes; or
an attribute or quality independently of the substance to which it belongs.
[my italics]

Abstraction thereby generates new ideas and new units of thought.

The tools taught in this book are themselves fruits of abstraction. For exam-
ple, many estimation problems were solved by dividing the problem into
small, manageable parts. This pattern needed a name — divide and conquer.
The other tools, even abstraction, are similarly the fruits of abstraction.

Reusability

The most important characteristic of abstraction is reusability. As Abelson
and Sussman [1, s. 1.1.8] eloquently describe:

2009-05-04 23:52:14 / rev bb931e4b905e

40

40

41

41

41

Chapter 3. Abstraction 41

The importance of this decomposition strategy is not simply that one is
dividing the program into parts. After all, we could take any large program
and divide it into parts — the first ten lines, the next ten lines, the next ten
lines, and so on. Rather, it is crucial that each procedure accomplishes an
identifiable task that can be used as a module in defining other procedures.

To understand what makes a useful, reusable abstraction, let’s examine a
weak, barely reusable abstraction and compare its features with the fea-
tures of a useful abstraction. So, imagine that the designers of UNIX had
noticed that users often needed to count how often each word appears in a
document, listing the most frequent words first (along with their frequen-
cies). One solution is to provide a special utility called sortedwordfreq.
This utility, however, cannot solve any other problem.

As an improvement, the problem could be broken into three steps:

1. break the document into words, one per line.
2. count how often each word appears
3. sort the frequency list by frequency

UNIX could provide three command-line programs, one for each step, and
the user would connect the programs with pipes:

break_into_words < file.txt | wordfreq | sort_frequency_list
where sort_frequency_list sorts a list such as

34 an
273 the
12 where
23 none

to produce

273 the
34 an

23 none
12 where

This approach is an improvement on the monolithic solution because one
of the three pieces might be used in solving a different problem.

The actual solution using the UNIX tools is even more reusable. Rather than
provide a special program to break a document into words, one per line,

2009-05-04 23:52:14 / rev bb931e4b905e a

42

42

42 3.1. Reusability

UNIX provides a utility called tr. It translates characters into other charac-
ters. So ask it to translate all non-alphabetic characters into newline char-
acters, and then to squeeze repeated newline characters into one newline
character. That command is

tr -s -c ’a-zA-Z’> ’\012’

The -s option tells tr to squeeze repeated newlines into one newline. The
—c option tells tr to invert (complement) the following character set (the
upper- and lowercase alphabet). It is simpler to specify the non-alphabetic
characters by what they are not than by what they are. So this invocation
of tr turns any non-alphabetic character into a newline, then squeezes re-
peated newlines into one newline.

It turns the first sentence of this paragraph into the following list of words,
one per line:

The
actual
solution
using
the

Unix
tools

is

even
more
reusable
Rather
than
provide
a
special
program
to
break

a
document
into
words

The next step is to count how often each word appears. Perhaps UNIX pro-
vides a program called count that performs this task? Such a program

2009-05-04 23:52:14 / rev bb931e4b905e

42

42

43

43

Chapter 3. Abstraction 43

would have to look through the entire list and accumulating counts. It is
simpler first to sort the list. Then identical words appear in clumps, which
means that the counting program need not scan the entire list. Instead it
can consider one clump at a time. The sorting step is accomplished by
the familiar program sort. The clump counting is accomplished by a new
program, uniq with the —c option.

Here is the result of taking the text of Gibbon’s Decline and Fall of the Roman
Empire (volume 1) and feeding it to the pipeline: first taking out all punc-
tuation and turning it into a list of words, one per line; then sorting the list;
then counting the clumps. The result is:

$ tr -cs ’a-zA-Z’ ’\012’ < decline.txt | sort | uniq -c
4452 a
233 A
2 Aaron
9 ab
1 Ab
8 abandon
30 abandoned
Abandoning
abandonment
Abate

w = -

These are not the 10 most common words! Rather, they are the 10 alphabet-
ically earliest words (along with their counts). To find the most common
words, sort this output numerically by adding sort -nr to the end of the
pipeline:

$ tr -cs ’a-zA-Z’ ’\012’ < decline.txt | sort | uniq -c |
sort -nr
24241 the
17920 of
9097 and
5951 to
4452 a
3869 in
3171 was
2904 his
2737 by
2711 The

2009-05-04 23:52:14 / rev bb931e4b905e

43

43

44

44

3.2

44

44 3.2. Notation and hierarchy

We're almost there! But a problem is the appearance of “The’ on a separate
line. We forgot about uppercase versus lowercase. So let’s use tr one more
time (what a useful abstraction), to turn uppercase into lowercase:

$ tr -cs ’a-zA-Z’ °\012’ < decline.txt | tr ’A-Z’ ’a-z’ |
sort | uniq -c | sort -nr
26960 the
18099 of
9168 and
6050 to
4685 a
4217 in
3171 was
3081 his
2815 by
2396 that

The new count for ‘the” is 29690. But the count for ‘the” together the count
for “The” give a count of 24241 + 2711 = 26952. What accounts for the
discrepancy between 26952 and 26960? Let’s ask UNIX to tell us about all
forms of ‘the” that showed up. To do so, use grep to match only lines
reporting counts for ‘the” or one its mixed-case variants. The —-i option to
grep tells grep not to care about upper versus lowercase. The pattern for
grep to look for is then a space followed by ‘the” followed by the end of
line ($ in grep notation). So the pipeline with its output is:

$ tr -cs ’a-zA-Z’ ’\012’ < decline.txt | sort | uniq -c |
grep -i ’ the$’
24241 the
2711 The
8 THE

Ah, so there were eight appearances of “THE’ — which accounts for the dis-
crepancy between 26952 and 26960.

Notation and hierarchy

Good notation promotes good thinking.

2009-05-04 23:52:14 / rev bb931e4b905e 4

