Chapter 2. Divide and conquer 31

The next estimate is the value per
gold or bills?
mass of gold. I can be as accu-

rate as I want in converting from / \

ounces to grams. But I'll be laZy value/mass for $100 bill value/mass for gold
and try to remember the value / \ / \
while including uncertainty to re-

el . ’ value Mbill value of 10z of gold m
flect the fallibility of memory; let’s $100 050...130g $400. .. 900 97 308

say that Toz = 27...30g. This

range spans only a factor of 1.1, but the value of an ounce of gold will have
a wider plausible range (except for those who often deal with financial mar-
kets). My range is $400. . .900. The mass and value ranges combine to give
$14...32/g as the range for gold.

Here is a picture comparing the range for gold with the ranges for US cur-
rency denominations:

gold

14e——232

$10 bill 19
16 $20 bill 38 — 3/g (log scale)

il
40 $50 bi 95

79 $100 bill 189

Looking at the locations of these ranges and overlaps among them, I am
confident that the $100 bills are worth more (per mass) than gold. I am
reasonably confident that $50 bills are worth more than gold, undecided
about $20 bills, and reasonably confident that $10 bills are worth less than
gold.

Example 4: The UNIX philosophy

The preceding examples illustrate how divide and conquer enables accu-
rate estimates. An example remote from estimation — the design principles
of the UNIX operating system — illustrates the generality of this tool.

UNIX and its close cousins such as GNU/Linux operate devices as small as
cellular telephones and as large as supercomputers cooled by liquid nitro-
gen. They constitute the world’s most portable operating system. Its suc-
cess derives not from marketing — the most succesful variant, GNU/Linux,

2009-05-04 23:52:14 / rev bb931e4b905e

32

32

32

32 2.7. Example 4: The UNIX philosophy

is free software and owned by no corporation —but rather from outstanding
design principles.

These principles are the subject of The UNIX Philosophy [14], a valuable book
for anyone interested in how to design large systems. The author isolates
nine tenets of the UNIX philosophy, of which four - those with comments
in the following list — incorporate or enable divide-and-conquer reasoning:

1. Small is beautiful. In estimation problems, divide and conquer works
by replacing quantities about which one knows little with quantities
about which one knows more (Section 2.5). Similarly, hard compu-
tational problems — for example, building a searchable database of all
emails or web pages — can often be solved by breaking them into small,
well-understood tasks. Small programs, being easy to understand and
use, therefore make good leaf nodes in a divide-and-conquer tree (Section 2.3).

2. Make each program do one thing well. A program doing one task — on-
ly spell-checking rather than all of word processing — is easier to under-
stand, to debug, and to use. One-task programs therefore make good
leaf nodes in a divide-and-conquer trees.

Build a prototype as soon as possible.
Choose portability over efficiency.

Store data in flat text files.

Use software leverage to your advantage.

Use shell scripts to increase leverage and portability.

® N o Gk ®»

Avoid captive user interfaces. Such interfaces are typical in programs
for solving complex tasks, for example managing email or writing doc-
uments. These monolithic solutions, besides being large and hard to
debug, hold the user captive in their pre-designed set of operations.

In contrast, UNIX programmers typically solve complex tasks by divid-
ing them into smaller tasks and conquering those tasks with simple pro-
grams. The user can adapt and remix these simple programs to solve
problems unanticipated by the programmer.

9. Make every program a filter. A filter, in programming parlance, takes
input data, processes it, and produces new data. A filter combines easily
with another filter, with the output from one filter becoming the input
for the next filter. Filters therefore make good leaves in a divide-and-
conquer tree.

As examples of these principles, here are two UNIX programs, each a small
filter doing one task well:

2009-05-04 23:52:14 / rev bb931e4b905e 32

33

33

Chapter 2. Divide and conquer 33

e head: prints the first lines of the input. For example, head invoked as
head -15 prints the first 15 lines.

e tail: prints the last lines of the input. For example, tail invoked as
tail -15 prints the last 15 lines.

How can you use these building blocks to print the 23rd line of a file?

This problem subdivides into two parts: (1) print the first 23 lines, then (2)
print the last line of those first 23 lines. The first subproblem is solved with
the filter head -23. The second subproblem is solved with the filter tail
-1.

The remaining problem is how to hand the second filter the output of the
tirst filter — in other words how to combine the leaves of the tree. In esti-
mation problems, we usually multiply the leaf values, so the combinator
is usually the multiplication operator. In UNIX, the combinator is the pipe.
Just as a plumber’s pipe connects the output of one object, such as a sink,
to the input of another object (often a larger pipe system), a UNIX pipe con-
nects the output of one program to the input of another program.

The pipe syntax is the vertical bar. Therefore, the following pipeline prints
the 2374 line from its input:

head -23 | tail -1

But where does the system get the input? There are several ways to tell it
where to look:

1. Use the pipeline unchanged. Then head reads its input from the key-
board. A UNIX convention —not a requirement, but a habit followed by
most programs — is that, unless an input file is specified, programs read
from the so-called standard input stream, usually the keyboard. The
pipeline

head -23 | tail -1

therefore reads lines typed at the keyboard, prints the 237¢ line, and
exits (even if the user is still typing).

2. Tell head to read its input from a file — for example from an English
dictionary. On my GNU/Linux computer, the English dictionary is the
file /usr/share/dict/words. It contains one word per line, so the
following pipeline prints the 23"¢ word from the dictionary:

head -23 /usr/share/dict/words | tail -1

2009-05-04 23:52:14 / rev bb931e4b905e

33

33

34

34

34

3.

2.7. Example 4: The UNIX philosophy

Let head read from its standard input, but connect the standard input
to a file:

head -23 < /usr/share/dict/words | tail -1

The < operator tells the UNIX command interpreter to connect the file
/usr/share/dict/words to the input of head. The system tricks head
into thinking its reading from the keyboard, but the input comes from
the file — without requiring any change in the program!

Use the cat program to achieve the same effect as the preceding method.

The cat program copies its input file(s) to the output. This extended
pipeline therefore has the same effect as the preceding method:

cat /usr/share/dict/words | head -23 | tail -1

This longer pipeline is slightly less efficient than using the redirection
operator. The pipeline requires an extra program (cat) copying its in-
put to its output, whereas the redirection operator lets the lower level of
the UNIX system achieve the same effect (replumbing the input) without
the gratuitous copy.

As practice, let’s use the UNIX approach to divide and conquer a search
problem:

Imagine a dictionary of English alphabetized from right to left instead of the usual
left to right. In other words, the dictionary begins with words that end in ‘a’. In
that dictionary, what word immediately follows trivia?

This whimsical problem is drawn from a scavenger hunt [29] created by the
computer scientist Donald Knuth, whose many accomplishments include
the TEX typesetting system used to produce this book.

The UNIX approach divides the problem into two parts:

1.
2.

Make a dictionary alphabetized from right to left.

Print the line following ‘trivia’.

The first problem subdivides into three parts:

1.
2.
3.

Reverse each line of a regular dictionary.
Alphabetize (sort) the reversed dictionary.

Reverse each line to undo the effect of step 1.

2009-05-04 23:52:14 / rev bb931e4b905e

34

34

35

35

Chapter 2. Divide and conquer 35

The second part is solved by the UNIX utility sort. For the first and third
parts, perhaps a solution is provided by an item in UNIX toolbox. However,
it would take a long time to thumb through the toolbox hoping to get lucky:
My computer tells me that it has over 8000 system programs.

Fortunately, the UNIX utility man does the work for us. man with the -k
option, with the ‘k’ standing for keyword, lists programs with a specified
keyword in their name or one-line description. On my laptop, man -k re-
verse says:

$ man -k reverse

col (1) - filter reverse line feeds from in-
put

git-rev-list (1)
logical order

rev (1) - reverse lines of a file or files

tac (1) - concatenate and print files in re-
verse

xxd (1) - make a hexdump or do the reverse.

Understanding the free-form English text in the one-line descriptions is not
a strength of current computers, so I leaf through this list by hand - but it
contains only five items rather than 8000. Looking at the list, I spot rev as
a filter that reverses each line of its input.

How do you use rev and sort to alphabetize the dictionary from right to left?

Therefore the following pipeline alphabetizes the dictionary from right to
left:

rev < /usr/share/dict/words | sort | rev

The second problem — finding the line after “trivia’ —is a task for the pattern-
searching utility grep. If you had not known about grep, you might find
it by asking the system for help with man -k pattern. Among the short
list is

grep (1) - print lines matching a pattern

In its simplest usage, grep prints every input line that matches a specified
pattern. For example,

grep ’trivia’ < /usr/share/dict/words

2009-05-04 23:52:14 / rev bb931e4b905e

Lists commit objects in reverse chrono-

35

35

36

36

36

36 2.7. Example 4: The UNIX philosophy

prints all lines that contain trivia. Besides trivia itself, the output in-
cludes trivial, nontrivial, trivializes, and similar words. To re-
quire that the word match trivia with no characters before or after it,
give grep this pattern:

grep ’“trivia$’ < /usr/share/dict/words

The patterns are regular expressions. Their syntax can become arcane but
their important features are simple. The “character matches the beginning
of the line, and the $ character matches the end of the line. So the pattern
trivia$ selects only lines that contain exactly the text trivia.

This invocation of grep, with the special characters anchoring the beginning and
ending of the lines, simply prints the word that I specified. How could such an
invocation be useful?

That invocation of grep tells us only that trivia is in the dictionary. So it
is useful for checking spelling — the solution to a problem, but not to our
problem of finding the word that follows trivia. However, Invoked with
the —-A option, grep prints lines following each matching line. For example,

grep -A 3 ’“trivia$’ < /usr/share/dict/words
will print “trivia” and the three lines (words) that follow it.

trivia

trivial

trivialities

triviality
To print only the word after ‘trivia’ but not ‘trivia’ itself, use tail:
grep -A 1 ’“trivia$’ < /usr/share/dict/words | tail -1

These small solutions combine to solve the scavenger-hunt problem:

rev </usr/share/dict/words | sort | rev | grep -A 1 ’“triv-
ia$’ | tail -1

Try it on a local UNIX or GNU/Linux system. How well does it work?
Alas, on my system, the pipeline fails with the error

rev: stdin: Invalid or incomplete multibyte or wide char-
acter

2009-05-04 23:52:14 / rev bb931e4b905e 36

Chapter 2. Divide and conquer 37

The rev program is complaining that it does not understand a character in
the dictionary. rev is from the old, ASCII-only days of UNIX, when each
character was limited to one byte; the dictionary, however, is a modern one
and includes Unicode characters to represent the accented letters prevalent
in European languages.

To solve this unexpected problem, I clean the dictionary before passing it
to rev. The cleaning program is again the filter grep told to allow through
only pure ASCII lines. The following command filters the dictionary to
contain words made only of unaccented, lowercase letters.

grep ’~[a-z]*$’ < /usr/share/dict/words

This pattern uses the most important features of the regular-expression lan-
guage. The " and $ characters have been explained in the preceding exam-
ples. The [a-z] notation means ‘match any character in the range a to z —
i.e. match any lowercase letter.” The * character means ‘match zero or more
occurrences of the preceding regular expression’. So “[a-z]*$ matches any
line that contains only lowercase letters — no Unicode characters allowed.

The full pipeline is
grep ’~[a-z]*$’ < /usr/share/dict/words \

| rev | sort | rev \
| grep -A 1 ’“trivia$’ | tail -1

where the backslashes at the end of the lines tell the shell to continue read-
ing the command beyond the end of that line.

The tree representing this solution is

word after trivia in reverse dictionary

grep ’~“[a-z]*$’ | rev | sort | rev | grep -A 1 ’“trivia$’ | tail -1
make reverse dictionary select word after trivia
grep ’~[a-z]*$’ | rev | sort | rev grep -A 1 ’“trivia$’ | tail -1
clean dictionary reverse sort unreverse select trivia and next word print last of two words
grep ’~[a-z]*$’ rev sort rev grep -A 1 ’“trivia$’ tail -1

Running the pipeline produces produces ‘alluvia’.

2009-05-04 23:52:14 / rev bb931e4b905e

38

38 2.7. Example 4: The UNIX philosophy

Problem 2.11 Angry
In the reverse-alphabetized dictionary, what word follows angry?

Although solving this problem won’t save the world, it illustrates how
divide-and-conquer reasoning is built into the design of UNIX. In short, di-
vide and conquer is a ubiquitous tool useful for estimating difficult quan-
tities or for designing large, successful systems.

Main messages
This chapter has tried to illustrate these messages:

1. Divide large, difficult problems into smaller, easier ones.

2. Accuracy comes from subdividing until you reach problems about which
you know more or can easily solve.

3. Trees compactly represent divide-and-conquer reasoning.
4. Divide-and-conquer reasoning is a cross-domain tool, useful in text pro-

cessing, engineering estimates, and even economics.

By breaking hard problems into comprehensible units, the divide-and-conquer
tool helps us organize complexity. The next chapter examines its cousin ab-
straction, another way to organize complexity.

Problem 2.12 Air mass

Estimate the mass of air in the 6.055] /2.038] classroom and explain your estimate with
a tree. If you have not seen the classroom yet, then make more effort to come to lecture
(!); meanwhile pictures of the classroom are linked from the course website.

Problem 2.13 747

Estimate the mass of a full 747 jumbo jet, explaining your estimate using a tree. Then
compare with data online. We’ll use this value later this semester for estimating the
energy costs of flying.

Problem 2.14 Random walks and accuracy of divide and conquer

Use a coin, a random-number function (in whatever programming language you like),
or a table of reasonably random numbers to do the following experiments or their
equivalent.

The first experiment:

38 2009-05-04 23:52:14 / rev bb931e4b905e

38

38

39

39

Chapter 2. Divide and conquer 39

1. Flip a coin 25 times. For each heads move right one step; for each tails, move left
one step. At the end of the 25 steps, record your position as a number between —25
and 25.

2. Repeat the above procedure four times (i.e. three more times), and mark your four
ending positions on a number line.

The second experiment:

1. Flip a coin once. For heads, move right 25 steps; for tails, move left 25 steps.

2. Repeat the above procedure four times (i.e. three more times), and mark your four
ending positions on a second number line.

Compare the marks on the two number lines, and explain the relation between this
data and the model from lecture for why divide and conquer often reduces errors.

Problem 2.15 Fish tank

Estimate the mass of a typical home fish tank (filled with water and fish): a useful
exercise before you help a friend move who has a fish tank.

Problem 2.16 Bandwidth
Estimate the bandwidth (bits/s) of a 747 crossing the Atlantic filled with CDROM’s.

Problem 2.17 Repainting MIT

Estimate the cost to repaint all indoor walls in the main MIT classroom buildings.
[with thanks to D. Zurovcik]

Problem 2.18 Explain a UNIX pipeline
What does this pipeline do?

1ls -t | head | tac

[Hint: If you are not familiar with UNIX commands, use the man command on Athena
or on any nearby UNIX or GNU/Linux system.]

Problem 2.19 Design a UNIX pipeline

Make a pipeline that prints the ten most common words in the input stream, along
with how many times each word occurs. They should be printed in order from the
the most frequent to the less frequent words. [Hint: First translate any non-alphabetic
character into a newline. Useful utilities include tr and uniq.]

2009-05-04 23:52:14 / rev bb931e4b905e

39

39

