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Chapter 4
Symmetry and conservation

When symmetry can be applied to a problem, it often greatly simplifies the
problem – and at no cost in accuracy. A classic example is a story about the
young Carl Friedrich Gauss. The story is perhaps an urban legend, but it is
so instructive that it ought to be true.

When Gauss was 3 years old, the story goes, his schoolteacher wanted to
occupy the young students for a good while. So he asked them to compute

S = 1 + 2 + 3 + · · ·+ 100.

To the teacher’s surprise, Gauss returned in just a few minutes claiming
that the sum is 5050. Was he right? If so, how did he do it so quickly?

Gauss noticed that the sum remains fixed if the terms are added backwards,
from last to first. In other words,

S′ = 100 + 99 + 98 + · · ·+ 1

equals S. Then add these two ways to compute S:

S = 1 + 2 + 3 + · · ·+ 100

+S = 100 + 99 + 98 + · · ·+ 1

2S = 101 + 101 + · · ·+ 101.

In this form, 2S is easy to compute because it is 100 copies of 101. So 2S =

100× 101 and S = 50× 101 = 5050.

Gauss found a symmetry, and it tremendously simplified the problem. In
order to extract a general pattern to reuse in other areas, let’s try symmetry
in diverse examples.



65 65

65 65

Chapter 4. Symmetry and conservation 65

2009-05-04 23:52:14 / rev bb931e4b905e

4.1 Heat flow
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Imagine a metal sheet, perhaps aluminum foil, cut in the shape
of a regular pentagon. Attach heat sources and sinks to the edge
that hold the five edges at the temperatures marked on the fig-
ure. After enough time passes, the temperature distribution in
the pentagon stops changing (‘comes to equilibrium’). What then
is the temperature at the center of the pentagon?

A brute-force analytic solution is difficult. Heat flow is described
by the following second-order partial differential equation:

κ∇2T =
∂T

∂t
,

where T is the temperature as a function of position and time, and κ is a
constant known as the thermal diffusivity. Waiting makes time derivatives
approach zero (everything eventually settles down), so in our problem the
right side is zero. Therefore, the equation simplifies to

κ∇2T = 0.

Alas, even this simpler time-independent equation has simple solutions
only for a few simple boundaries. A pentagon, even a regular pentagon, is
not among those boundaries.

Symmetry, however, makes the solution flow. Rotating the pentagon about
its center does not change the temperature at the center. Nature, in the
person of the heat equation, does not care in what direction our coordinate
system points. Mathematically stated, the laplacian operator∇2 is rotation
invariant. So these five orientations of the pentagon behave identically:

10◦

10
◦

10◦
10
◦

80 ◦

T =?

10
◦

10◦
10
◦

10 ◦

80◦

T
=

?

10
◦

10◦
10
◦

10 ◦

80◦

T
=

?

10
◦

10◦
10
◦

10 ◦

80◦

T
=

?

10
◦

10◦
10
◦

10 ◦

80◦

T
=

?

Now stack these sheets (mentally), adding the temperatures that lie on top
of each other to make the temperature profile of a new metal supersheet.
On this new sheet, each edge has temperature

Tedge = 80◦ + 10◦ + 10◦ + 10◦ + 10◦ = 120◦.
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To solve this resulting temperature distribution, there is no need to solve
the heat equation. Since all the edges are held at 120◦, the temperature
throughout the sheet is 120◦.

That information is enough to solve the original problem. The symmetry
operation is a rotation about the center of the pentagon, so the centers over-
lap when the plates are stacked atop one another. Since the stacked plate
has a temperature of 120◦ throughout, and the centers of the five stacked
sheets align, each center is at T = 120◦/5 = 24◦.

To find transferable ideas, compare the symmetry solutions to Gauss’s sum
and to the pentagon temperature. Both problems looked complex at first
glance. Gauss’s sum had many terms in it, all different. The pentagon
problem seemed to require solving a difficult differential equation. Both
problems contained a symmetry operation. In Gauss’s sum, the symmetry
operation flipping the sum around. In the pentagon problem, the symme-
try operation rotated the pentagon by 72◦. In both problems, the symmetry
operation left an important quantity unchanged: the sum S or the temper-
ature Tcenter. And this invariance became the key to solving the problem
simply.

A moral of these two examples is: When there is change, look for what
does not change. In other words, look for invariants. Alternatively, if those
quantities are given (e.g. the sum S or temperature at the center), look for
operations that leave them unchanged. In other words, look for symme-
tries.

4.2 Cube solitaire
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Here is a game of solitaire that illustrates the theme of this chap-
ter. The following cube starts in the configuration in the margin;
the goal is to make all vertices be multiples of three simultane-
ously. The moves are all of the same form: Pick any edge and
increment its two vertices by one. For example, if I pick the bot-
tom edge of the front face, then the bottom edge of the back face,
the configuration becomes the first one in this series, then the sec-
ond one:
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