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Let’s get rid of the π by looking at the function sinπx, which has roots at
±nx. Now, sin z is an entire function: It has no infinities – no poles –
for any z, even for complex z. Polynomials also have no poles. An entire
function is analogous to a polynomial: It is an infinite-degree polynomi-
al. Others are ez and sinh z. Why is the analogy useful? Because your
knowledge from the source system helps you generate ideas to use in the
destination system. Polynomials are characterized by their zeros, so maybe
entire functions are as well. For polynomials, that characterization is done
by factoring them. So let’s factor entire functions too.

How does sinπz factor? We already have a good idea.

As we’ll see in a later chapter, rational functions generalize to what are
called meromorphic functions in complex analysis: functions with zeros
and poles.

3.5 Example: Recursion
Sometimes you make a minilanguage to solve just one problem. The mini-
language or abstraction is reusable, and is reused multiple times in solving
that problem. Recursion is an example of this use of abstraction.

4!

4 3 2 1

A classic example of recursion is computing n!. Here is a non-
recursive definition of factorial:

n! ≡ n× (n − 1)× (n − 2)× · · · × 1.

The tree illustrates how to compute 4! using this definition: You
multiply 4, 3, 2, and 1.

4!

4 3!

3 2!

2 1!

Then I have a great insight: You notice that 3 × 2 × 1 is also 3!,
which is 3×2!, and so on. This realization turns the flat, seemingly
unstructured tree into a tree with a pattern.
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n!

n (n− 1)!

Here is the pattern (when n > 1). The Python code that implements
this idea is

def fact(n):
if n == 1:

return 1
else:

return n * fact(n-1)

The tree approach, and the corresponding code, divides the computation
of n! into three parts:

1. digging up n, which is easy;

2. computing (n − 1)!, whose details I don’t care about because I know
how to compute factorial; and

3. multiplying n and (n − 1)!, which is easy.

The abstraction is reusable: It works not just for 4! but for n! where n is any
positive integer.

In keeping with the principle of telling lies first, and removing them later, I
confess that multiplying n and (n − 1)! is not easy when n is large because
then (n − 1)! is gigantic, larger than what the central processing unit of my
computer can handle in its hardware. As a second example of recursion,
I describe a quick way to multiply very large integers. For simplicity, I
instead describe a way to square very large integers. In the problems, you
get to generalize the method to multiplication of two different integers.

First, I square 35 using the common method, then using a fast method. I
use base 10 and small examples to illustrate the methods.

Okay, the common method:

352 = (3× 10 + 5)2 = (3× 10)2 + 2× 3× 10× 5 + 52.

In a pictorial abstraction, where 3|5 represents 35 and in general x|y repre-
sents 10x + y:

(3|5)2 = 32|2× 3× 5|52,

where x|y|z represents 100x + 10y + z.

This method is not fast. To square x|y requires squaring x, squaring y,
and multiplying x and y (plus a few additions, but those are quick). But
isn’t that easy, since x = 3 and y = 5? In this case, it is easy. However, I
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want the squaring algorithm to work for giant integers, where x and y are
themselves giant integers. So, the algorithm will be used recursively.

Now I’ll estimate Sn, the time required to square an n-digit number. The
algorithm requires two squarings of n/2-digit numbers. It also requires
multiplying two n/2-digit numbers (x and y). Then

Sn = 2Sn/2 + Mn/2,

where Mn/2 is the time required to multiply two n/2-digit numbers.

To estimate Sn, I need to estimate Mn. Using a similar algorithm as for
squaring, multiplying two n-digit numbers involves four multiplications
of n/2-digit numbers. So

Mn = 4Mn/2.

This recurrence has the solution Mn ∝ n2. Call the constant of proportion-
ality A, so Mn = An2.

Then the recurrence for Sn, the time to square an n-digit number, becomes

Sn = 2Sn/2 +
A

4
n2.

To solve this recurrence, I guess that squaring is not tremendously faster
than multiplying. So Sn is not going to be proportional to n or even n log n,
and is likely to be proportional to n2. This guess goes by the fancy name of
an Ansatz.

Let B be the constant of proportionality: Sn = Bn2. Then the recurrence
for the squaring time becomes:

Bn2 = 2
B

4
n2 +

A

4
n2.

The common n2 factors divide out, leaving behind

B =
B

2
+

A

4
,

whose solution is B = A/2. Since this equation is not nonsense, the guess
is very likely to be valid. The result is that squaring using the common
method is a quadratic operation (as is multiplying).

A slight variation in the common method makes it significantly faster. The
problem with the common method is that it uses multiplication, which is
quadratic (at least using a similar multiplication algorithm), and the slow
method of multiplication contaminates the squaring algorithm. If only
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there were a way to avoid multiplying! And there is! To square x|y, com-
pute (x|y)2 as follows:

(x|y)2 = x2|x2 + y2 − (x − y)2|y2.

This new method is significantly faster, as I show with the next estimate.
Let S′n be the time to square an n-digit number using this new method. It
requires squaring three n/2-digit numbers: x, y, and x − y. So

S′n = 3S′n/2.

This recurrence has the solution

Sn ∝ nlog2 3 ≈ n1.58

The exponent is roughly 1.58 instead of 2. This small decrease has a large
effect when n is large. For example, when multiplying billion-digit num-
bers, the ratio of n2 to nlog2 3 is roughly 5000.

Why would anyone multiply billion-digit numbers? One answer is to com-
pute π to a billion digits. Why would anyone do that? Computing π to a
huge number of digits, and comparing the result with the calculations of
other supercomputers, is one way to check the numerical hardware in a
new supercomputer.

I haven’t told the whole story. The fast algorithm, known as the Karat-
suba algorithm after its inventor [18], is not used for absurdly huge num-
bers. For large enough n, an algorithm using fast Fourier transforms is
still faster. The so-called Schönhage–Strassen algorithm [32] requires a time
proportional to n log n log log n. High-quality libraries for large-number
mulitiplication use a combination of regular multiplication, Karatsuba, and
Schönhage–Strassen, selecting the algorithm according to the size of the in-
teger.

3.6 Spacetime
An abstraction can be so useful as to be unbelievable. An example is the
concept of spacetime, introduced in a famous lecture on relativity given
by the mathematician Hermann Minkowski [22]. Minkowski boldly an-
nounced (translation from [37]):

From this hour on, space by itself and time by itself are to sink fully in-
to the shadows and only a kind of union of the two should yet preserve
autonomy.


