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Chapter 8
Discretization

8.1 Random walks
Random walks are everywhere. Do you remember the card game War?
How long does it last, on average? A molecule of neurotransmitter is re-
leased from a vesicle. Eventually it binds to the synapse, and your leg
twitches. How long does it take to get there? On a winter day, you stand
outside wearing only a thin layer of clothing. Why do you feel cold?

These physical situations are examples of random walks. In a physical ran-
dom walk, for example a gas molecule moving and colliding, the walker
moves a variable distance and can move in any direction. This general
situation is complicated. Fortunately, the essential features of the random
walk do not depend on these complicated details.

Simplify by discarding the generality. The generality arises from the con-
tinuous degrees of freedom: the direction is continuous and the distance
between collisions is continuous. So, discretize the direction and the dis-
tance: Assume that the particle travels a fixed distance between collisions
and that it can move only along the coordinate axes. Furthermore, ana-
lyze the special case of one-dimensional motion before going to the more
general cases of two- and three-dimensional motion.

In this discretized, one-dimensional model, a particle starts at the origin
and moves along a line. At each tick it moves left or right with probability
1/2 in each direction. Let the position after n steps be xn, and the expected
position after n steps be 〈xn〉. Because the random walk is unbiased –
because moving in each direction is equally likely – the expected position
remains constant:

〈xn〉 = 〈xn−1〉 .
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So 〈x〉, the so-called first moment of the position, is an invariant. However,
it is not a fascinating invariant because it does not tell us much that we do
not already understand intuitively.

Given that the first moment is not interesting, try the next-most-complicated
moment: the second moment 〈x2〉. This analysis is easiest in special cas-
es. Suppose that after a while wandering, the particle has arrived at 7, i.e.
x = 7. At the next tick it will be at either x = 6 or x = 8. Its expected
squared position – not its squared expected position! – has become

〈x2〉 =
1

2

(
62 + 82

)
= 50.

The expected squared position increased by 1.

Let’s check this pattern in a second example. Suppose that the particle is at
x = 10, so 〈x2〉 = 100. After one tick, the new expected squared position is

〈x2〉 =
1

2

(
92 + 112

)
= 101.

Yet again 〈x2〉 has increased by 1! Based on those two examples, the con-
clusion is that

〈x2
n+1〉 = 〈x2

n〉+ 1.

In other words,

〈x2
n〉 = n.

Since each step takes a constant time, in this discretized analysis, the con-
clusion is that

〈x2
n〉 ∝ t.

The result that 〈x2〉 is proportional to time applied to the one-dimensional
random walk. And it works for any dimension. Here’s an example in two
dimensions. Suppose that the particle’s position is (5, 2), so 〈x2〉 = 29.
After one step, it has four equally likely positions:

(0, 0)

(5, 2)

r



159 159

159 159

Chapter 8. Discretization 159

2009-05-04 23:52:14 / rev bb931e4b905e

Rather than compute the new expected squared distance using all four po-
sitions, be lazy and just look at the two horizontal motions. The two possi-
bilities are (6, 2) and (4, 2). The expected squared distance is

〈x2〉 =
1

2
(40 + 20) = 30,

which is one more than the previous value of 〈x2〉. Since nothing is special
about horizontal motion compared to vertical motion – symmetry! – the
same result holds for vertical motion. So, averaging over the four possible
locations produces an expected squared distance of 30.

For two dimensions, the pattern is:

〈x2
n+1〉 = 〈x2

n〉+ 1.

No step in the analysis depended on being in only two dimensions. In
fancy words, the derivation and the result are invariant to change of di-
mensionality. In plain English, this result also works in three dimensions.

8.1.1 Difference between a random walk and a regular walk

In a standard walk in a straight line, 〈x〉 ∝ time. Note the single power of
x. The interesting quantity in a regular walk is not x itself, since it can grow
without limit and is not invariant, but the ratio x/t, which is invariant to
changes in t. This invariant is also known as the speed.

In a random walk, where 〈x2〉 ∝ t, the interesting quantity is 〈x2〉/t. The
expected squared position is not invariant to changes in t, but the ratio
〈x2〉/t is an invariant. This invariant is, except for a dimensionless con-
stant, the diffusion constant often denoted D. It has dimensions of L2T−1.

The difference between a random and a regular walk makes intuitive sense.
A random walker, for example a gas molecule or a very drunk person,
moves back and forth, sometimes making progress in one direction, and
other times undoing that progress. So a random walker should take longer
than a regular walker would take to travel the same distance. The relation
〈x2〉/t ∼ D confirms and sharpens this intuition. The time for a random
walker to travel a distance l is t ∼ l2/D, which grows quadratically rather
than linearly with distance.

8.1.2 Diffusion equation

The discretized model of a random explains where the diffusion equation
comes from. Imagine a gas of particles with each particle doing a random
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walk in one dimension. How does the concentration, or number, change
with time?

Slice the one-dimensional world into slices of width ∆x, and look at the
slices at x−∆x, x, and x+∆x. In every time step, one-half the molecules in
each slice move left, and one-half move right. So the number at x changes
from N(x) to

1

2
(N(x − ∆x) + N(x + ∆x)),

for a change of

∆N =
1

2
(N(x − ∆x) + N(x + ∆x)) − N(x)

=
1

2
(N(x − ∆x) − 2N(x) + N(x + ∆x)).

This last relation can be rewritten as

∆N ∼ (N(x + ∆x) − N(x)) − (N(x) − N(x + ∆x)) ,

which in terms of derivatives is

∆N ∼ (∆x)2 ∂2N

∂x2
.

The slices are separated by a distance such that most of the molecules travel
from one piece to the neighboring piece in the time step τ. If τ is the time
between collisions – the mean free time – then the distance is the mean free
path λ. Thus

∆N

τ
∼

λ2

τ

∂2N

∂x2
,

or

Ṅ ∼ D
∂2N

∂x2

where D ∼ λ2/τ is a diffusion constant.

This partial-differential equation has interesting properties. The second
spatial derivative means that a linear spatial concentration gradient re-
mains unchanged: Its second derivative is zero so its time derivative must
be zero. Diffusion smashes only curvature – roughly speaking, the second
derivative – and does not try to change just the gradient. Heat often dif-
fuses by a random walk, either via phonons (in a liquid or solid) or via
molecular random walks (in a gas), so if you maintain one end of a bar at
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T1 and the other end at T2, then the bar will eventually linearly interpolate
between the two temperatures, as long as heat is fed into the hot end and
drawn out of the cold end.

8.1.3 Keeping warm

One consequence of random walks is how to keep warm on a cold day. We
need to calculate the flux of heat: the energy flowing per unit area per unit
time. We start from the definition of flux and reason physically.

Flux of stuff is defined as

flux of stuff =
stuff

area× time
.

The flux depends on the density of stuff and on how fast the stuff travels:

flux of stuff =
stuff

volume
× speed.

You can check that the dimensions are the same on both sides.

For heat flux, the stuff is thermal energy. The specific heat cp is the thermal
energy per mass, and ρcpT is the thermal energy per volume. The speed is
the ‘speed’ of diffusion. To diffuse a distance l takes time t ∼ l2/D, making
the speed l/t or D/l. The l in the denominator indicates that, as expect-
ed, diffusion is slow over long distances. For heat diffusion, the diffusion
constant is denoted κ and called the thermal diffusivity. So the speed is l/κ.

Combine the thermal energy per volume with the diffusion speed:

thermal flux = ρcpT × κ

l
.

The product ρcpκ occurs so frequently that it is given a name: the thermal
conductivity K. And the ratio T/l is a discretized version of the temperature
gradient ∆T/∆x. With those substitutions, the thermal flux is

F = K
∆T

∆x
.

To estimate how much heat one loses on a cold day, we need to estimate
K = ρcpκ. Time to put all the pieces together for air:

ρ ∼ 1 kg m−3,

cp ∼ 103 J kg−1 K−1,

κ ∼ 1.5 ·10−5 m2 s−1,



162 162

162 162

162 8.1. Random walks

2009-05-04 23:52:14 / rev bb931e4b905e

where we are guessing that κ = ν, since both are diffusion constants. Then

K = ρcpκ ∼ 0.02 W m−1 K−1.

Now we can estimate the heat loss outside on a cold day. Let’s say that your
skin is at 30 ◦C and the air outside is 0 ◦C, so ∆T = 30 K. A thin T-shirt may
have thickness 2 mm, so

F = K
∆T

∆x
∼ 0.02 W m−1 K−1 × 30 K

2 ·10−3 m
∼ 300 W m−2.

Damn, I wanted a power not a power per area. Oh, flux is power per area,
so all is well. I just need to multiply by my surface area. I’m roughly 2 m
tall (approximately!) and 0.5 m wide, so my front and back each have area
1 m2. Then

P ∼ FA = 300 W m−2 × 2 m2 = 600 W.

No wonder it feels so cold! Just sitting around, your body generates 100 W
(the basal metabolic rate). So, with 600 W escaping, you lose far more heat
more than you generate. After long enough, your core body temperature
drops. Chemical reactions in your body slow down, because all reactions
go slower at lower temperature, and because enzymes lose their optimized
shape. Eventually you die.

One solution is jogging to generate extra heat. That solution indicates that
the estimate of 600 W is plausible. Cycling hard, which generates hundreds
of watts of waste heat, is vigorous enough exercise to keep you warm, even
on a winter day in thin clothing.

Another simple solution, as parents repeat to their children: Dress warmly
by putting on thick layers. Let’s recalculate the power loss if you put on a
fleece that is 2 cm thick. You could redo the whole calculation from scratch,
but it is simpler is to notice that the thickness has gone up by a factor of 10.
Since F ∝ 1/∆x, the flux and the power drop by a factor of 10. So, when
wearing the fleece,

P ∼ 60 W.

That heat loss is smaller than the basal metabolic rate, which indicates that
you do not feel too cold. Indeed, when wearing a thick fleece, you feel most
cold in your hands and face. Those regions are exposed to the air, and are
protected by only a thin layer of still air. Because a small ∆x means a large
heat flux, the moral is: Listen to your parents, bundle up!


