
50 50

50 50

50 3.4. Example: Operators

2009-05-04 23:52:14 / rev bb931e4b905e

This simple code – simple to understand and simple to write – expands
into 34 lines of tedious, error-prone MetaPost boxes code (not shown here
to avoid boring you). The moral is: Let a computer, which rarely makes
errors, do the translation, and do your thinking using the higher-level ab-
stractions.

3.4 Example: Operators
The next abstraction is two levels more abstract than ordinary numbers.
Ordinary numbers are

Operators turn functions into functions. The space of functions is itself
vast and complex, so operators are complex beasts. Ignoring most of that
complexity makes operators act like ordinary numbers. Although this ab-
straction is leaky, it leaks so rarely that we can figure out a lot by adopting it
and charging ahead fearlessly. ‘Be approximately right rather than exactly
wrong’ (attributed to John Tukey and John Maynard Keynes).

3.4.1 Derivative operator

A familiar operator is the derivative. Here is a differential equation for the
motion of a damped spring, in a suitable system of units:

d2x

dt2
+ 3

dx

dt
+ x = 0,

where x is dimensionless position, and t is dimensionless time. Imagine x

as the amplitude divided by the initial amplitude; and t as the time mul-
tiplied by the frequency (so it is radians of oscillation). The dx/dt term
represents the friction, and its plus sign indicates that friction dissipates
the system’s energy. A useful shorthand for the d/dt is the operator D.
It is an operator because it operates on an object – here a function – and
returns another object. Using D, the spring’s equation becomes

D2x(t) + 3Dx(t) + x(t) = 0.

The tricky step is replacing d2x/dt2 by D2x, as follows:

D2x = D(Dx) = D

(
dx

dt

)
=

d2x

dt2
.

The analogy comes in solving the equation. Pretend that D is a number,
and do to it what you would do with numbers. For example, factor the
equation. First, factor out the x(t) or x, then factor the polynomial in D:



51 51

51 51

Chapter 3. Abstraction 51

2009-05-04 23:52:14 / rev bb931e4b905e

(D2 + 3D + 1)x = (D + 2)(D + 1)x = 0.

This equation is satisfied if either (D + 1)x = 0 or (D + 2)x = 0. The first
equation written in normal form, becomes

(D + 1)x =
dx

dt
+ x = 0,

or x = e−t (give or take a constant). The second equation becomes

(D + 2)x =
dx

dt
+ 2x = 0,

or x = e−2t. So the equation has two solutions: x = e−t or e−2t.

The example above introduced D and its square, D2, the second derivative.
You can do more with the operator D. You can cube it, take its logarithm,
its reciprocal, and even its exponential. Let’s look at the exponential eD. It
has a power series:

eD = 1 + D +
1

2
D2 +

1

6
D3 + · · · .

That’s a new operator. Let’s see what it does by letting it operating on a
few functions. For example, apply it to x = t:

(1 + D + D2/2 + · · ·)t = t + 1 + 0 = t + 1.

And to x = t2:

(1 + D + D2/2 + D3/6 + · · ·)t2 = t2 + 2t + 1 + 0 = (t + 1)2.

And to x = t3:

(1+D+D2/2+D3/6+D4/24+ · · ·)t3 = t3 + 3t2 + 3t+ 1+ 0 = (t+ 1)3.

It seems like, from these simple functions (extreme cases again), that eDx(t) =

x(t + 1). You can show that for any power x = tn, that

eDtn = (t + 1)n.

Since any function can, pretty much, be written as a power series, and eD

is a linear operator, it acts the same on any function, not just on the powers.
So eD is the successor function: It replaces x(t) by x(t + 1).



52 52

52 52

52 3.4. Example: Operators

2009-05-04 23:52:14 / rev bb931e4b905e

3.4.2 Successor operator

Now that we know how to represent the successor operator in terms of de-
rivatives, let’s give it a name: S, and use it. It is useful in finding sums and
evaluating derivatives. Let’s first use it for evaluating derivatives. Sup-
pose you sample a function and want to compute its derivative at one of
the points.

D = ln(S) = ln(1 + (S − 1)) = (S − 1) + (S − 1)2/2 + · · ·

3.4.3 Euler–MacLaurin Summation

Suppose you have a function f(n) and you want to find the sum
∑

f(k).
Never mind the limits for now. It’s a new function of n, so summation, like
integration, takes a function and produces another function. It is an oper-
ator,

∑
. Let’s figure out how to represent it in terms of familiar operators.

To keep it all straight, let’s get the limits right. Let’s define it this way:

F(n) = (
∑

f)(n) =

n∑
−∞

f(k).

So f(n) goes into the maw of the summation operator and comes out as
F(n). Look at SF(n). On the one hand, it is F(n + 1), since that’s what S

does. On the other hand, S is, by analogy, just a number, so let’s swap it
inside the definition of F(n):

SF(n) = (
∑

Sf)(n) =

n∑
−∞

f(k + 1).

The sum on the right is F(n) + f(n + 1), so

SF(n) − F(n) = f(n + 1).

Now factor the F(n) out, and replace it by
∑

f:

((S − 1)
∑

f)(n) = f(n + 1).

So (S−1)
∑

= S, which is an implicit equation for the operator
∑

in terms
of S. Now let’s solve it: ∑

=
S

S − 1
=

1

1 − S−1
.

Since S = eD, this becomes



53 53

53 53

Chapter 3. Abstraction 53

2009-05-04 23:52:14 / rev bb931e4b905e

∑
=

1

1 − e−D
.

Again, remember that for our purposes D is just a number, so find the
power series of the function on the right:∑

= D−1 +
1

2
+

1

12
D −

1

720
D3 + · · · .

The coefficients do not have an obvious pattern. But they are the Bernoulli
numbers. Anyway, let’s look at the terms one by one to see what the mean.
First is D−1, which is the inverse of D. Since D is the derivative operator,
its inverse is the integral operator. So the first approximation to the sum is
the integral – what we know from first-year calculus.

The first correction is 1/2. Huh? Are we supposed to add 1/2 to the inte-
gral, no matter what function we are summing? That cannot be right. And
it isn’t. The 1/2 is one piece of an operator, and the whole sum is applied
to a function. Let’s take it in slow motion:∑

f(n) =

∫n

f(k) dk +
1

2
f(n) + · · · .

So the first correction is one-half of the final term f(n).

Problem 3.1 Pictorial explanation
Find a pictorial explanation for the f(n)/2 term in

∑
f(n).

3.4.4 Euler sum

Let’s improve the estimate for the Euler sum
∑∞

1 n−2. The first term is 1,
the result of integrating. The second term is 1/2, the result of f(1)/2. The
third term is 1/6, the result of D/12 applied to n−2. So:

∞∑
1

n−2 ≈ 1 +
1

2
+

1

6
= 1.666 . . .

The true value is 1.644 . . ., so we’re close. The fourth term gives a correction
of −1/30. So the new value is 1.633 . . .. The approximation gets better and
better!

Let’s see where the π2/6 comes from, by using analogy at a key step. Look
at the function sin x. That intersects the x-axis at±nπx, where n = 0, 1, 2, . . ..



54 54

54 54

54 3.5. Example: Recursion

2009-05-04 23:52:14 / rev bb931e4b905e

Let’s get rid of the π by looking at the function sinπx, which has roots at
±nx. Now, sin z is an entire function: It has no infinities – no poles –
for any z, even for complex z. Polynomials also have no poles. An entire
function is analogous to a polynomial: It is an infinite-degree polynomi-
al. Others are ez and sinh z. Why is the analogy useful? Because your
knowledge from the source system helps you generate ideas to use in the
destination system. Polynomials are characterized by their zeros, so maybe
entire functions are as well. For polynomials, that characterization is done
by factoring them. So let’s factor entire functions too.

How does sinπz factor? We already have a good idea.

As we’ll see in a later chapter, rational functions generalize to what are
called meromorphic functions in complex analysis: functions with zeros
and poles.

3.5 Example: Recursion
Sometimes you make a minilanguage to solve just one problem. The mini-
language or abstraction is reusable, and is reused multiple times in solving
that problem. Recursion is an example of this use of abstraction.

4!

4 3 2 1

A classic example of recursion is computing n!. Here is a non-
recursive definition of factorial:

n! ≡ n× (n − 1)× (n − 2)× · · · × 1.

The tree illustrates how to compute 4! using this definition: You
multiply 4, 3, 2, and 1.

4!

4 3!

3 2!

2 1!

Then I have a great insight: You notice that 3 × 2 × 1 is also 3!,
which is 3×2!, and so on. This realization turns the flat, seemingly
unstructured tree into a tree with a pattern.


