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ef(t) =
(n

e

)n

e−(t−n)2/2n.

tne−t

√
8n ln 2

nn/en

The first factor is a constant, the peak height.
The second factor is the familiar Gaussian.
This one is centered at t = n and con-
tains 1/2n in the exponent but otherwise
it’s just a Gaussian. It falls by a factor of 2

when (t − n)2/2n = ln 2, which is when

t± = n±
√

2n ln 2.

The FWHM is t+ − t−, which is
√

8n ln 2. The approximate area under ef(t),
which is n!, is then

n! ≈
(n

e

)n

×
√

8n ln 2.

This approximation reproduces the most important factors of Stirling’s ap-
proximation: the nn in the numerator and the en in the denominator. Stir-
ling’s approximation contains

√
2π instead of

√
8 ln 2 – a change of only

6%.

Problem 4.9 Coincidence?
The FWHM approximation for the area under a Gaussian (Section 4.3) was also
accurate to 6%. Coincidence?

Problem 4.10 More accurate constant factor

Where does the more accurate constant factor of
√

2π come from?

4.5 Pendulum period

Is it coincidence that g, in units of meters per second squared, is 9.81, very
close to π2 ≈ 9.87? Their proximity suggests a connection. Indeed, they
are connected through the original definition of the meter. It was proposed
by the the Dutch scientist and engineer Christian Huygens (science and
engineering were not separated in the 17th century) – called ‘the most in-
genious watchmaker of all time’ by the great physicist Arnold Sommerfeld
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[21, p. 79]. Huygens’s portable definition of the meter required only a pen-
dulum clock: Adjust the bob’s length l until the pendulum requires 1 s to
swing from one side to the other; in other words, until its period is T = 2 s.
A pendulum’s period (for small amplitudes) is T = 2π

√
l/g, as shown

below, so

g =
4π2l

T 2
.

Using the T = 2 s standard for the meter,

g =
4π2x1 m

4 s2
= π2 m s−2.

So, if Huygens’s standard were used today, then g would be π2 by defin-
ition. Instead, it is close to that value. The story behind the difference is
rich in physics, mechanical and materials engineering, mathematics, and
history; see [22, 23, 24] for several views of a vast and fascinating subject.

Problem 4.11 How is the time measured?
Huygens’s standard for the meter requires a way to measure time, and no quartz
clocks were available. How could one, in the 17th century, ensure that the pendu-
lum’s period is indeed 2 s?

Here our subject is to find how the period of a pendulum depends on its
amplitude. The analysis uses all our techniques so far – dimensions (Chap-
ter 2), easy cases (Chapter 3), and discretization (this chapter) – to learn as
much as possible without solving differential equations.

m

l

θ

Here is the differential equation for the motion of an ideal pen-
dulum (one with no friction, a massless string, and a miniscule
bob):

d2θ

dt2
+

g

l
sin θ = 0,

where θ is the angle with respect to the vertical, g is the gravi-
tational acceleration, and l is the mass of the bob.

Instead of deriving this equation from physical principles (see [25] for a
derivation), take it as a given but check that it makes sense.
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Are its dimensions correct?

It has only two terms, and they must have identical dimensions. For the
first term, d2θ/dt2, the dimensions are the dimensions of θ divided by T2

from the dt2. (With apologies for the double usage, this T refers to the time
dimension rather than to the period.) Since angles are dimensionless (see
Problem 4.12),[

d2θ

dt2

]
= T−2.

For the second term, the dimensions are[g
l

sin θ
]

=
[g

l

]
× [sin θ] .

Since sin θ is dimensionless, the dimensions are just those of g/l, which
are T−2. So the two terms have identical dimensions.

Problem 4.12 Angles
Why are angles dimensionless?

Problem 4.13 Where did the mass go?
Use dimensions to show that the differential equation cannot contain the mass of
the bob (except as a common factor that divides out).

Because of the nonlinear factor sin θ, solving this differential equation is
difficult. One can compute a power-series solution, and call the resulting
infinite series a new function. That procedure, when applied to another
differential equation, is the origin of the Bessel functions. However, the
so-called elementary functions – those built from sin, cos, exp, ln, and
powers – do not contain a solution to the pendulum equation.
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cos θ

sin θ
θ1

unit circle

θ

So, use easy cases to simplify the source of the prob-
lem, namely the sin θ factor. One easy case is the ex-
treme case θ → 0. To approximate sin θ in that limit,
mark θ and sin θ on a quarter-section of the unit cir-
cle. By definition, θ is the length of the arc. Also by
definition, sin θ is the altitude of the enclosed right
triangle. When θ is small, the arc is almost exactly
the altitude. Therefore, for small θ:

sin θ ≈ θ.

It is a tremendously useful approximation.

Problem 4.14 Slightly better approximation
The preceding approximation replaced the arc with a straight, vertical line. A
more accurate approximation replaces the arc with the chord (a straight but non-
vertical line). What is the resulting approximation for sin θ, including the θ3

term?

In this small-θ extreme, the pendulum equation turns into

d2θ

dt2
+

g

l
θ = 0.

It looks like the ideal-spring differential equation analyzed in Section 2.5:

d2x

dt2
+

k

m
x = 0,

where m is the mass and k is the spring constant (the stiffness). Comparing
the two equations produces this correspondence:

x → θ;

k

m
→ g

l
.

Since the oscillation period for the ideal spring is

T = 2π

√
m

k
,
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the oscillation period for the pendulum, in the θ → 0 limit, is

T = 2π

√
l

g
.

Does this period have correct dimensions?

Pause to sanity check this result by asking: ‘Is each portion of the formula
reasonable, or does it come out of left field.’ [For non-American readers,
left field is one of the distant reaches of a baseball field. To come out of
left fields means an idea comes almost out of nowhere, surprising all with
its craziness.] The first sanity check is dimensions. They are correct in the
approximate spring differential equation; but let’s also check the dimen-
sions of the period T = 2π

√
l/g that results from solving the equation. In

the symbolic factor
√

l/g, the lengths cancel and leave only T2 inside the
square root. So

√
l/g is a time – as it should be.

What about easy cases?

Another sanity check is easy cases. For example, imagine a huge gravita-
tional field strength g. Then gravity easily and rapidly swings the bob to
and fro, making the period tiny. So g should live in the denominator of T

– and it does.

Problem 4.15 Another easy case?
Can you use easy cases to explain why l belongs in the numerator?

Didn’t the 2π come from solving differential equations, contrary to the earlier
promise to avoid solving differential equations?

The dimensions and easy-cases tests confirm the
√

l/g factor. But how to
explain the remaining piece: the numerical factor of 2π that arose from the
solution to the ideal-spring differential equation. However, we want to
avoid solving differential equations. Can our techniques derive the 2π?

4.5.1 Small amplitudes and Huygens’ method
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m

l

θ

Dimensions and easy cases rarely explain a dimen-
sionless constant. Therefore explaining the factor of 2π

probably requires a new idea. It too is due to Huy-
gens. His idea [21, p. 79ff] is to analyze the motion
of a conical pendulum: a pendulum moving in a hori-
zontal circle. Although its motion is two dimensional,
it is at constant speed, so it is easy to analyze without
solving differential equations.

Even if the analysis of the conical pendulum is simple, how is it relevant to the
motion of a one-dimensional pendulum?

Projecting the two-dimensional motion onto a screen produces one-dimensional
pendulum motion, so the period of the two-dimensional motion is the
same as the period of the one-dimensional motion! This statement is slight-
ly false when θ0 is large. But when θ0 is small, which is the extreme ana-
lyzed here, the equivalence is exact.

To project onto one-dimensional motion with amplitude θ0, give the con-
ical pendulum the constant angle θ = θ0. The plan is to use the angle to
find the speed of the bob, then use the speed to find its period.

What is the speed of the bob in terms of l and θ0?

To find the speed, find the inward force in two ways:

1. To move in a circle of radius r at speed v, the bob requires an inward
force

F =
mv2

r
,

where m is the mass of the bob (it anyway divides out later).

mg

T

F

mg2. The two forces on the bob are from gravity and from the
string tension. Since the bob has zero vertical acceleration
– it has no vertical motion at all – the vertical component of
the tension force cancels gravity:

T cos θ0 = mg.

Therefore, the horizontal component of tension is the net force
on the mass, so that net force is
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F = T sin θ0 = T cos θ0︸ ︷︷ ︸
mg

tan θ0 = mg tan θ0.

Equating these two equivalent expressions for the inward force F gives
mg tan θ0 = mv2/r or v =

√
gr tanθ0. Since the radius of the circle is

r = l sin θ0, the bob’s speed is

v =
√

gl tanθ0 sin θ0.

Problem 4.16 Check dimensions
Check that v =

√
gl tanθ0 sin θ0 has correct dimensions.

The period is the circumference divided by speed:

T =
2πr

v
=

2πl sin θ0√
gl tanθ0 sin θ0

= 2π

√
l cos θ0

g
.

As long as θ0 is small, cos θ0 is approximately 1, so T ≈ 2π
√

l/g. This
equation contains a negative result: the absence of θ0; therefore, period
is independent of amplitude (for small amplitudes). This equation also
contains a positive result: the magic factor of 2π, courtesy of Huygens and
without solving differential equations.

4.5.2 Large amplitudes

The preceding results are valid when the amplitude θ0 is infinitesimally
small. When this restriction is removed, how does the period behave?

Does the period increase, decrease, or remain constant as θ0 is increased?

First reformulate this question in dimensionless form by constructing di-
mensionless groups (Section 3.4.1). The period T belongs to a dimension-
less group T/

√
l/g. Since the amplitude θ0 is no longer restricted to be

near zero, it can have an important effect on period, so θ0 should also join
a dimensionless group. Since angles are dimensionless, θ0 can make a di-
mensionless group by itself. With these choices, the problem contains two
dimensionless groups (Problem 4.17): T/

√
l/g and θ0.
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Problem 4.17 Dimensionless groups using the pendulum variables
Check that the period T , length l, gravitational strength g, and amplitude θ0 pro-
duce two independent dimensionless groups.

In constructing two useful groups, why should the period T appear in only one
group? For the same purpose, why should θ0 not appear in the same group as T?

Two dimensionless groups produce this general dimensionless form:

one group = f(other group),

or

T√
l/g

= f(θ0),

where f is a dimensionless function. Since T/
√

l/g goes to 2π as θ0 (the
ideal-spring limit), simplify slightly by pulling out the factor of 2π:

T√
l/g

= 2πh(θ0),

where the dimensionless function h has the simple endpoint value h(0) =

1. The function h contains all the information about how the period of a
pendulum depends on its amplitude. In terms of h, the preceding question
about the period becomes this question:

Is the function h(θ0) monotonic increasing, monotonic decreasing, or constant?

This type of question suggests considering easy cases of θ0: If the question
can be answered for any case, the answer identifies a likely trend for the
whole amplitude range. Two easy cases are the extremes of the amplitude
range. One extreme is already analyzed case θ0 = 0; it reproduces the
differential equation and behavior of an ideal spring. But that analysis
does not predict the behavior of the pendulum when θ0 is nonzero but
still small. Since the low-amplitude extreme is not easy to analyze, try the
large-amplitude extreme.

How does the period behave at large amplitudes? What is a large amplitude?
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A large amplitude could be θ0 = π/2. That case is, however, hard to an-
alyze. The exact value of h(π/2) is the following awful expression, as can
be shown using conservation of energy (Problem 4.18):

h(π/2) =

√
2

π

∫π/2

0

dθ√
cos θ

.

Is this expression less than, equal to, or more than 1?! Who knows. The
integral looks unlikely to have a closed form, and numerical evaluation is
difficult without a computer (Problem 4.19).

Problem 4.18 General expression for h

Use conservation of energy to show that the period of a pendulum with amplitude
θ0 is

T(θ0) = 2
√

2

√
l

g

∫θ0

0

dθ√
cos θ − cos θ0

.

In terms of h, the equivalent statement is that

h(θ0) =

√
2

π

∫θ0

0

dθ√
cos θ − cos θ0

.

For horizontal release, θ0 = π/2, whereupon

h(π/2) =

√
2

π

∫π/2

0

dθ√
cos θ

.

Problem 4.19 Numerical evaluation for horizontal release
Why do the discretization recipes, such as the ones in Section 4.2 and Section 4.3,
fail for the integrals in Problem 4.18?

Use or write a program to evaluate h(π/2) numerically.
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θ0

h(θ0)

π

11

Since π/2 was not a helpful extreme, be even more
extreme:3 Try θ0 = π: releasing the pendulum bob
from the highest possible point. That release lo-
cation fails if the pendulum bob is connected to
the support point by only a string – the pendulum
would collapse downwards rather than oscillate.
This behavior is not described by the pendulum
differential equation, which assumes that the pen-
dulum bob is constrained to move in a circle of radius l. Fortunately, the
experiment is easy to improve, because it is a thought experiment. So,
replace the string with a material that can maintain the constraint: Let’s
splurge on a rigid but massless steel rod. The improved pendulum does
not collapse even when θ0 = π.

Balanced at θ0 = π, the pendulum bob will hang upside down forever; in
other words, T(π) = ∞. For smaller amplitudes, the period is finite, so the
period most probably increases as amplitude increases toward π. Stated in
dimensionless form, h(θ0) most probably increases monotonically toward
infinity.

θ0

h(θ0)

π

1

Although monotonic behavior is the simplest as-
sumption, alternative assumptions are possible. For
example, for small θ0, the dimensionless function
h(θ0) could decrease from 1; then flatten; then in-
crease toward infinity as θ0 approaches π. Altough
possible, such behavior would be surprising com-
pared to the original, pendulum differential equa-
tion. What would such a nice, smooth differential
equation like the pendulum equation be doing producing such a badly be-
haved, non-monotonic solution? This complicated behavior is therefore
unlikely. As a rule of thumb, assume until proven otherwise that nature
does not play nasty tricks.

Problem 4.20 Small but nonzero amplitude
At θ0 = 0, does h(θ0) have zero or positive slope? In other words, which figure
is the more likely to be correct:

One definition of insanity is repeating an action but expecting a different result.3
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θ0

h(θ0)

π

1

θ0

h(θ0)

π

1

h′(0) = 0 h′(0) > 0

As has been said in arms-control negotiations: ‘Trust but verify.’ So, while
trusting the preceding rule of thumb, verify it by more accurately analyz-
ing the period at small amplitudes.

This analysis seems like it requires solving the original pendulum differ-
ential equation,

d2θ

dt2
+

g

l
sin θ = 0.

To avoid this difficult task, let’s isolate, encapsulate, and try to mitigate the
equation’s complexity.

0

1

0 θ0

f(θ) =
sin θ

θ
The complexity arises because the sin θ factor makes
the equation nonlinear. If only that factor were θ,
then the equation would be linear and tractable.
And sin θ is almost θ: The functions θ and sin θ

match as θ goes to 0. However, as θ grows – i.e.
for larger amplitudes – θ and sin θ part company.
To explicate the comparison, rewrite the differen-
tial equation in this form:

d2θ

dt2
+

g

l
θf(θ) = 0,

where the ratio f(θ) ≡ (sin θ)/θ encapsulates the difference between the
pendulum and the ideal spring. When f(θ) is close to 1, the pendulum
acts like an ideal spring; when f(θ) falls significantly below 1, the simple-
harmonic approximation falls in accuracy. Having isolated the complexity
into f(θ), the next step is to approximate f(θ) until the pendulum equation
becomes easy to solve.
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4.5.3 Adding discretization

The differential equation’s nonlinearity is now represented by a changing
f(θ). When change and complexity appear in the same sentence, pull out
the discretization tool. In other words, replace the slowly changing f(θ)

with a simpler, constant value.

0

1

0 θ0

f(0)The simplest choice is to replace f(θ) with f(0).
Since f(0) = 1, the differential equation becomes

d2θ

dt2
+

g

l
θ = 0.

It is once again the ideal-spring equation, which
produces a period independent of amplitude. So
the simplest discretization f(θ) −→ f(0) is too
crude to provide new information about how the period depends on am-
plitude.

What about discretizing using the other extreme of θ?

The absolute pendulum angle |θ| lives in the range [0, θ0]. Since the first
endpoint θ = 0 was not a useful angle for discretizing, try the other end-
point θ0.

0

1

0 θ0

f(θ0)

In other words, replace the changing f(θ) not
with f(0) but with the slightly smaller constant
f(θ0). That change replaces f(θ) with a straight
line, and turns the pendulum differential equa-
tion into

d2θ

dt2
+

g

l
θf(θ0) = 0.

Is this equation linear? What physical system does it describe?

This equation is linear! Even better, it is familiar: It describes an ideal
spring on a planet with slightly weaker gravity than earth’s:

d2θ

dt2
+

geff︷ ︸︸ ︷
gf(θ0)

l
θ = 0,

where the gravity on the planet is geff ≡ gf(θ0). Since an ideal spring has
period T = 2π

√
l/g, this ideal spring has period
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T = 2π

√
l

geff
= 2π

√
l

gf(θ0)
.

To compare this result with the ideal-spring period, rewrite it in dimen-
sionless form using dimensionless quantities. One quantity, the amplitude
θ0, is already dimensionless. The period T is not dimensionless, but the
dimensionless period h(θ0) is defined as

h(θ0) ≡
T

2π
√

l/g
.

The 2π in the definition makes the small-amplitude limit come out simple:
h(0) = 1. With that definition for h(θ0), the the discretization f(θ) −→
f(θ0) predicts

h(θ0) =

√
l

gf(θ0)

/√ l

g
= f(θ0)

−1/2.

θ0

h(θ0)

π

1

Since f(θ0) = (sin θ0)/θ0, the dimensionless peri-
od becomes

h(θ0) =

(
sin θ0

θ0

)−1/2

.

This prediction (gray curve) matches the exact di-
mensionless period (black curve) quite well at small
but nonzero amplitudes.

The comparison is easiest to make in that limit of small but nonzero ampli-
tude θ0. In that limit, the Taylor series for sine is

sin θ ≈ θ −
θ3

6
,

so

sin θ0

θ0

≈ 1 −
θ2

6
.

Therefore

h(θ0) ≈
(

1 −
θ2

0

6

)−1/2

.
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Since θ2
0/6 is even smaller than θ0, which is itself small, the right side fur-

ther simplifies using the binomial approximation (for small x):

(1 + x)−1/2 ≈ 1 −
x

2
.

Then the dimensionless period becomes

h(θ0) ≈
(

1 −
θ2

0

6

)−1/2

≈ 1 +
θ2

0

12
.

Putting back the dimensional quantities, the period is

T ≈ 2π

√
l

g

(
1 +

θ2
0

12

)
.

Is this result an underestimate or an overestimate?

The discretization approximation used the lowest possible effective gravity
geff, namely its value at the endpoint θ = θ0. Since weak gravity produces
a long period, the approximation overestimates the period. Indeed, the
exact coefficient of θ2

0 is 1/16 rather than 1/12; see for example [26] for the
following infinite series:

h(θ0) = 1 +
1

16
θ2

0 +
11

3072
θ4

0 + · · · .

Problem 4.21 Slope revisited
Use the preceding result for h(θ0) to check your conclusion in Problem 4.20 about
the slope of h(θ0) at θ0 = 0.

4.6 Summary and problems

Discretization turns calculus on its head. Whereas calculus analyzes a
changing process by dividing it into ever finer intervals, discretization sim-
plifies a changing process by lumping it into one unchanging process. Dis-
cretization turns curves into straight lines, so difficult integrals turn into
rectangles, and mildly nonlinear differential equations turn into linear dif-
ferential equations. Even though lumping sacrifices accuracy, it provides
great simplicity.


