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pressure
∝ l

force
∝ l3

mass
∝ l3

volume
∝ l3

area
∝ l2

The force and area results show that the pressure is proportional to
l:

p ∼
F

A
∝ l3

l2
= l.

With a large-enough mountain, the pressure is larger than the maxi-
mum pressure that the rock can withstand. Then the rock flows like
a liquid, and the mountain cannot grow taller.

This estimate shows only that there is a maximum height but it does
not compute the maximum height. To do that next step requires esti-
mating the strength of rock. Later in this book when we estimate the
strength of materials, I revisit this example.

This estimate might look dubious also because of the assumption that moun-
tains are cubical. Who has seen a cubical mountain? Try a reasonable al-
ternative, that mountains are pyramidal with a square base of side l and
a height l, having a 45◦ slope. Then the volume is l3/3 instead of l3 but
the factor of one-third does not affect the proportionality between force and length.
Because of the factor of one-third, the maximum height will be higher for a
pyramidal mountain than for a cubical mountain. However, there is again
a maximum size (and height) of a mountain. In general, the argument for
a maximum height requires only that all mountains are similar – are scaled
versions of each other – and does not depend on the shape of the mountain.

5.4 Animal jump heights
We next use proportional reasoning to understand how high animals jump,
as a function of their size. Do kangaroos jump higher than fleas? We study
a jump from standing (or from rest, for animals that do not stand); a run-
ning jump depends on different physics. This problem looks underspeci-
fied. The height depends on how much muscle an animal has, how efficient
the muscles are, what the animal’s shape is, and much else. The first sub-
section introduces a simple model of jumping, and the second refines the
model to consider physical effects neglected in the crude approximations.

5.4.1 Simple model

We want to determine only how jump height varies with body mass. Even
this problem looks difficult; the height still depends on muscle efficiency,
and so on. Let’s see how far we get by just plowing along, and using sym-
bols for the unknown quantities. Maybe all the unknowns cancel.
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We want an equation for the height h in the form h ∼ mβ, where m is the
animal’s mass and β is the so-called scaling exponent.

m

m

h

Jumping requires energy, which must be provided by muscles. This first,
simplest model equates the required energy to the energy supplied by
the animal’s muscles.

The required energy is the easier estimation: An animal of mass m jump-
ing to a height h requires an energy Ejump ∝ mh. Because all animals feel
the same gravity, this relation does not contain the gravitational acceler-
ation g. You could include it in the equation, but it would just carry
through the equations like unused baggage on a trip.

The available energy is the harder estimation. To find it, divide and con-
quer. It is the product of the muscle mass and of the energy per mass (the
energy density) stored in muscle.

To approximate the muscle mass, assume that a fixed fraction of an animals
mass is muscle, i.e. that this fraction is the same for all animals. If α is the
fraction, then

mmuscle ∼ αm

or, as a proportionality,

mmuscle ∝ m,

where the last step uses the assumption that all animals have the same α.

For the energy per mass, assume again that all muscle tissues are the same:
that they store the same energy per mass. If this energy per mass is E, then
the available energy is

Eavail ∼ Emmuscle

or, as a proportionality,

Eavail ∝ mmuscle,

where this last step uses the assumption that all muscle has the same ener-
gy density E.

Here is a tree that summarizes this model:
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jump height h

energy required

h m g

energy available

muscle mass

animal’s mass m muscle fraction

energy density
in muscle

Now finish propagating toward the root. The available energy is

Eavail ∝ m.

So an animal with three times the mass of another animal can store roughly
three times the energy in its muscles, according to this simple model.

Now compare the available and required energies to find how the jump
height as a function of mass. The available energy is

Eavail ∝ m

and the required energy is

Erequired ∝ mh.

Equate these energies, which is an application of conservation of energy.
Then mh ∝ m or

h ∝ m0.

In other words, all animals jump to the same height.

Flea

Click beetle

Locust
Human

10−3 101 105
10

30

60

Mass (g)

h (cm)

The result, that all animals jump to the same
height, seems surprising. Our intuition tells
us that people should be able to jump higher
than locusts. The graph shows jump heights
for animals of various sizes and shapes [source:
Scaling: Why Animal Size is So Important [31,
p. 178]. Here is the data:
Animal Mass (g) Height (cm)

Flea 5 ·10−4 20

Click beetle 4 ·10−2 30

Locust 3 59

Human 7 ·104 60
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The height varies almost not at all when compared to variation in mass,
so our result is roughly correct! The mass varies more than eight orders of
magnitude (a factor of 108), yet the jump height varies only by a factor of 3.
The predicted scaling of constant h (h ∝ 1) is surprisingly accurate.

5.4.2 Power limits

Power production might also limit the jump height. In the preceding analy-
sis, energy is the limiting reagent: The jump height is determined by the
energy that an animal can store in its muscles. However, even if the animal
can store enough energy to reach that height, the muscles might not be able
to deliver the energy rapidly enough. This section presents a simple model
for the limit due to limited power generation.

Once again we’d like to find out how power P scales (varies) with the size
l Power is energy per time, so the power required to jump to a height h is

P ∼
energy required to jump to height h

time over which the energy is delivered
.

The energy required is E ∼ mgh. The mass is m ∝ l3. The gravitational
acceleration is independent of l. And, in the energy-limited model, the
height h is independent of l. Therefore E ∝ l3.

The delivery time is how long the animal is in contact with the ground,
because only during contact can the ground exert a force on the animal. So,
the animal crouches, extends upward, and finally leaves the ground. The
contact time is the time during which the animal extends upward. Time is
length over speed, so

tdelivery ∼
extension distance

extension speed
.

The extension distance is roughly the animal’s size l. The extension speed
is roughly the takeoff velocity. In the energy-limited model, the takeoff
velocity is the same for all animals:

vtakeoff ∝ h1/2 ∝ l0.

So

tdelivery ∝ l.

The power required is P ∝ l3/l = l2.
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That proportionality is for the power itself, but a more interesting scaling
is for the specific power: the power per mass. It is

P

m
∝ l2

l3
= l−1.

Ah, smaller animals need a higher specific power!

A model for power limits is that all muscle can generate the same maxi-
mum power density (has the same maximum specific power). So a small-
enough animal cannot jump to its energy-limited height. The animal can
store enough energy in its muscles, but cannot release it quickly enough.

More precisely, it cannot do so unless it finds an alternative method for
releasing the energy. The click beetle, which is toward the small end in the
preceding graph and data set, uses the following solution. It stores energy
in its shell by bending the shell, and maintains the bending like a ratchet
would (holding a structure motionless does require energy). This storage
can happen slowly enough to avoid the specific-power limit, but when the
beetle releases the shell and the shell snaps back to its resting position, the
energy is released quickly enough for the beetle to rise to its energy-limited
height.

But that height is less than the height for locusts and humans. Indeed,
the largest deviations from the constant-height result happen at the low-
mass end, for fleas and click beetles. To explain that discrepancy, the model
needs to take into account another physical effect: drag.

5.5 Drag

5.5.1 Effect of drag on fleas jumping

The drag force

F ∼ ρAv2

affects the jumps of small animals more than it affects the jumps of peo-
ple. A comparison of the energy required for the jump with the energy
consumed by drag explains why.

The energy that the animal requires to jump to a height h is mgh, if we use
the gravitational potential energy at the top of the jump; or it is ∼ mv2, if
we use the kinetic energy at takeoff. The energy consumed by drag is
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Edrag ∼ ρv2A︸ ︷︷ ︸
Fdrag

×h.

The ratio of these energies measures the importance of drag. The ratio is

Edrag

Erequired
∼

ρv2Ah

mv2
=

ρAh

m
.

Since A is the cross-sectional area of the animal, Ah is the volume of air
that it sweeps out in the jump, and ρAh is the mass of air swept out in the
jump. So the relative importance of drag has a physical interpretation as a
ratio of the mass of air displaced to the mass of the animal.

To find how this ratio depends on animal size, rewrite it in terms of the
animal’s side length l. In terms of side length, A ∼ l2 and m ∝ l3. What
about the jump height h? The simplest analysis predicts that all animals
have the same jump height, so h ∝ l0. Therefore the numerator ρAh is
∝ l1, the denominator m is ∝ l3, and

Edrag

Erequired
∝ l2

l3
= l−1.

So, small animals have a large ratio, meaning that drag affects the jumps
of small animals more than it affects the jumps of large animals. The miss-
ing constant of proportionality means that we cannot say at what size an
animal becomes ‘small’ for the purposes of drag. So the calculation so far
cannot tell us whether fleas are included among the small animals.

The jump data, however, substitutes for the missing constant of propor-
tionality. The ratio is

Edrag

Erequired
∼

ρAh

m
∼

ρl2h

ρanimall3
.

It simplifies to

Edrag

Erequired
∼

ρ

ρanimal

h

l
.

As a quick check, verify that the dimensions match. The left side is a ratio
of energies, so it is dimensionless. The right side is the product of two
dimensionless ratios, so it is also dimensionless. The dimensions match.

Now put in numbers. A density of air is ρ ∼ 1 kg m−3. The density of
an animal is roughly the density of water, so ρanimal ∼ 103 kg m−3. The
typical jump height – which is where the data substitutes for the constant
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of proportionality – is 60 cm or roughly 1 m. A flea’s length is about 1 mm
or l ∼ 10−3 m. So

Edrag

Erequired
∼

1 kg m−3

103 kg m−3

1 m
10−3 m

∼ 1.

The ratio being unity means that if a flea would jump to 60 cm, overcoming
drag would require roughly as much as energy as would the jump itself in
vacuum.

Drag provides a plausible explanation for why fleas do not jump as high as
the typical height to which larger animals jump.

5.5.2 Swimming

The last section’s analysis of cycling helps predict the world-record speed
for swimming. The last section showed that

vmax ∼

(
Pathlete

ρA

)1/3

.

To evaluate the maximum speed for swimming, one could put in a new
ρ and A directly into that formula. However, that method replicates the
work of multiplying, dividing, and cube-rooting the various values.

Instead it is instructive to scale the numerical result for cycling by look-
ing at how the maximum speed depends on the parameters of the situ-
ation. In other words, I’ll use the formula for vmax to work out the ra-
tio vswimmer/vcyclist, and then use that ratio along with vcyclist to work out
vswimmer.

The speed vmax is

vmax ∼

(
Pathlete

ρA

)1/3

.

So the ratio of swimming and cycling speeds is

vswimmer

vcyclist
∼

(
Pswimmer

Pcyclist

)1/3

×
(

ρswimmer

ρcyclist

)−1/3

×
(

Aswimmer

Acyclist

)−1/3

.

Estimate each factor in turn. The first factor accounts for the relative ath-
letic prowess of swimmers and cyclists. Let’s assume that they generate
equal amounts of power; then the first factor is unity. The second factor
accounts for the differing density of the mediums in which each athlete
moves. Roughly, water is 1000 times denser than air. So the second factor


