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2. The constant C is independent of k and m. So I can measure it for one
spring–mass system and know it for all spring–mass systems, no matter
the mass or spring constant. The constant is a universal constant.

The requirement that dimensions be valid has simplified the analysis of the
spring–mass system. Without using dimensions, the problem would be to
find (or measure) the three-variable function f that connects m, k, and x0

to the period:

T = f(m, k, x0).

Whereas using dimensions reveals that the problem is simpler: to find the
function h such that

kT2

m
= h().

Here h() means a function of no variables. Why no variables? Because the
right side contains all the other quantities on which kT2/m could depend.
However, dimensional analysis says that the variables appear only through
the combination kT2/m, which is already on the left side. So no variables
remain to be put on the right side; hence h is a function of zero variables.
The only function of zero variables is a constant, so kT2/m = C.

This pattern illustrates a famous quote from the statistician and physicist
Harold Jeffreys [25, p. 82]:

A good table of functions of one variable may require a page; that of
a function of two variables a volume; that of a function of three vari-
ables a bookcase; and that of a function of four variables a library.

Use dimensions; avoid tables as big as a library!

Dimensionless groups are a kind of invariant: They are unchanged even
when the system of units is changed. Like any invariant, a dimensionless
group is an abstraction (Chapter 3). So, looking for dimensionless groups
is recipe for developing new abstractions.

6.4 Hydrogen atom
Hydrogen is the simplest atom, and studying hydrogen is the simplest way
to understand the atomic theory. Feynman has explained the importance
of the atomic theory in his famous lectures on physics [, p. 1-2]:

If, in some cataclysm, all of scientific knowledge were to be de-
stroyed, and only one sentence passed on to the next generations
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of creatures, what statement would contain the most information in
the fewest words? I believe it is the atomic hypothesis (or the atomic
fact, or whatever you wish to call it) that all things are made of atoms –
little particles that move around in perpetual motion, attracting each other
when they are a little distance apart, but repelling upon being squeezed into
one another. In that one sentence, you will see, there is an enormous
amount of information about the world. . .

The atomic theory was first stated by Democritus. (Early Greek science and
philosophy is discussed with wit, sympathy, and insight in Bertrand Rus-
sell’s History of Western Philosophy [30].) Democritus could not say much
about the properties of atoms. With modern knowledge of classical and
quantum mechanics, and dimensional analysis, you can say more.

6.4.1 Dimensional analysis

The next example of dimensional reasoning is the hydrogen atom in order
to answer two questions. The first question is how big is it. That size sets
the size of more complex atoms and molecules. The second question is
how much energy is needed to disassemble hydrogen. That energy sets the
scale for the bond energies of more complex substances, and those energies
determine macroscopic quantities like the stiffness of materials, the speed
of sound, and the energy content of fat and sugar. All from hydrogen!

The first step in a dimensional analysis is to choose the relevant variables.
A simple model of hydrogen is an electron orbiting a proton. The orbital
force is provided by electrostatic attraction between the proton and elec-
tron. The magnitude of the force is

e2

4πε0

1

r2
,

where r is the distance between the proton and electron. The list of vari-
ables should include enough variables to generate this expression for the
force. It could include q, ε0, and r separately. But that approach is need-
lessly complex: The charge q is relevant only because it produces a force.
So the charge appears only in the combined quantity e2/4πε0. A similar
argument applies to ε0.
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Var Dim What ω

T−1 frequency k
L−1 wavenumber g
LT−2 gravity h

L depth ρ

ML−3 density γ

MT−2 surfacetension

Therefore rather than listing q and ε0

separately, list only e2/4πε0. And rather
than listing r, list a0, the common no-
tation for the Bohr radius (the radius
of ideal hydrogen). The acceleration of
the electron depends on the electrostat-
ic force, which can be constructed from
e2/4πε0 and a0, and on its mass me.
So the list should also include me. To
find the dimensions of e2/4πε0, use the
formula for force

F =
e2

4πε0

1

r2
.

Then [
e2

4πε0

]
=
[
r2
]
× [F] = ML3T−2.

The next step is to make dimensionless groups. However, no combination
of these three items is dimensionless. To see why, look at the time dimen-
sion because it appears in only one quantity, e2/4πε0. So that quantity
cannot occur in a dimensionless group: If it did, there would be no way to
get rid of the time dimensions. From the two remaining quantities, a0 and
me, no dimensionless group is possible.

The failure to make a dimensionless group means that hydrogen does not
exist in the simple model as we have formulated it. I neglected important
physics. There are two possibilities for what physics to add.

One possibility is to add relativity, encapsulated in the speed of light c. So
we would add c to the list of variables. That choice produces a dimen-
sionless group, and therefore produces a size. However, the size is not the
size of hydrogen. It turns out to be the classical electron radius instead.
Fortunately, you do not have to know what the classical electron radius is
in order to understand why the resulting size is not the size of hydrogen.
Adding relativity to the physics – or adding c to the list – allows radiation.
So the orbiting, accelerating electron would radiate. As radiation carries
energy away from the electron, it spirals into the proton, meaning that in
this world hydrogen does not exist, nor do other atoms.

The other possibility is to add quantum mechanics, which was developed
to solve fundamental problems like the existence of matter. The physics of
quantum mechanics is complicated, but its effect on dimensional analyses
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is simple: It contributes a new constant of nature  h whose dimensions are
those of angular momentum. Angular momentum is mvr, so

[ h] = ML2T−1.

Var Dim What
a0 L size

e2/4πε0 ML3T−2

me M electron mass
 h ML2T−1 quantum

The  h might save the day. There are
now two quantities containing time di-
mensions. Since e2/4πε0 has T−2 and
 h has T−1, the ratio  h2/(e2/4πε0) con-
tains no time dimensions. Since[  h2

e2/4πε0

]
= ML,

a dimensionless group is

 h2

a0me(e2/4πε0)

It turns out that all dimensionless groups can be formed from this group.
So, as in the spring–mass example, the only possible true statement involv-
ing this group is

 h2

a0me(e2/4πε0)
= dimensionless constant.

Therefore, the size of hydrogen is

a0 ∼
 h2

me(e2/4πε0)
.

Putting in values for the constants gives

a0 ∼ 0.5Å = 0.5 ·10−10 m.

It turns out that the missing dimensionless constant is 1, so the dimensional
analysis has given the exact answer.

6.4.2 Atomic sizes and substance densities

Hydrogen has a diameter of 1Å. A useful consequence is the rule of thumb
is that a typical interatomic spacing is 3Å. This approximation gives a rea-
sonable approximation for the densities of substances, as this section ex-
plains.
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a

aLet A be the atomic mass of the atom; it is (roughly)
the number of protons and neutrons in the nucleus. Al-
though A is called a mass, it is dimensionless. Each atom
occupies a cube of side length a ∼ 3 A, and has mass
Amproton. The density of the substance is

ρ =
mass

volume
∼

Amproton

(3 A)3
.

You do not need to remember or look up mproton if you
multiply this fraction by unity in the form of NA/NA,
where NA is Avogadro’s number:

ρ ∼
AmprotonNA

(3 A)3 ×NA
.

The numerator is A g, because that is how NA is defined. The denominator
is

3 ·10−23 cm3 × 6 ·1023 = 18.

So instead of remembering mproton, you need to remember NA. However,
NA is more familiar than mproton because NA arises in chemistry and
physics. Using NA also emphasizes the connection between microscopic
and macroscopic values. Carrying out the calculations:

ρ ∼
A

18
g cm−3.

Element ρestimated ρactual

Li 0.39 0.54

H2O 1.0 1.0

Si 1.56 2.4

Fe 3.11 7.9

Hg 11.2 13.5

Au 10.9 19.3

U 13.3 18.7

The table compares the estimate against re-
ality. Most everyday elements have atomic
masses between 15 and 150, so the densi-
ty estimate explains why most densities lie
between 1 and 10 g cm−3. It also shows
why, for materials physics, cgs units are
more convenient than SI units are. A typ-
ical cgs density of a solid is 3 g cm−3, and
3 is a modest number and easy to remem-
ber and work with. However, a typical SI
density of a solid 3000 kg m−3. Numbers
such as 3000 are unwieldy. Each time you
use it, you have to think, ‘How many powers of ten were there again?’ So
the table tabulates densities using the cgs units of g cm−3. I even threw a
joker into the pack – water is not an element! – but the density estimate is
amazingly accurate.
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6.4.3 Physical interpretation

The previous method, dimensional analysis, is mostly mathematical. As a
second computation of a0, we show you a method that is mostly physics.
Besides checking the Bohr radius, it provides a physical interpretation of
it. The Bohr radius is the radius of the orbit with the lowest energy (the
ground state). The energy is a sum of kinetic and potential energy. This
division suggests, again, a divide-and-conquer approach: first the kinetic
energy, then the potential energy.

What is the origin of the kinetic energy? The electron does not orbit in
any classical sense. If it orbited, it would, as an accelerating charge, radiate
energy and spiral into the nucleus. According to quantum mechanics, how-
ever, the proton confines the electron to a region of size r – still unknown
to us – and the electron exists in a so-called stationary state. The nature of
a stationary state is mysterious; no one understands quantum mechanics,
so no one understands stationary states except mathematically. However,
in an approximate estimate you can ignore details such as the meaning of
a stationary state. The necessary information here is that the electron is, as
the name of the state suggests, stationary: It does not radiate. The prob-
lem then is to find the size of the region to which the electron is confined.
In reality the electron is smeared over the whole universe; however, a sig-
nificant amount of it lives within a typical radius. This typical radius we
estimate and call a0.

E = 0

− e2/4πε0
2r

− e2/4πε0
r

KE ∼ e2/4πε0
2r

∆x ∼ r

For now let this radius be an unknown r and study
how the kinetic energy depends on r. Confinement
gives energy to the electron according to the uncertain-
ty principle:

∆x∆p ∼  h,

where ∆x is the position uncertainty and ∆p is the mo-
mentum uncertainty of the electron. In this model ∆x ∼

r, as shown in the figure, so ∆p ∼  h/r. The kinetic en-
ergy of the electron is

EKinetic ∼
(∆p)2

me
∼

 h2

mer2
.

This energy is the confinement energy or the uncer-
tainty energy. This idea recurs in the book.

The potential energy is the classical expression
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EPotential ∼ −
e2

4πε0r
.

The total energy is the combination

E = EPotential + EKinetic ∼ −
e2

4πε0r
+

 h2

mer2
.

The two energies compete. At small r, kinetic energy wins, because of the
1/r2; at large r, potential energy wins, because it goes to zero less rapidly. Is
there a minimum combined energy at some intermediate value of r? There
has to be. At small r, the slope dE/dr is negative. At large r, it is positive.
At an intermediate r, the slope crosses between positive and negative. The
energy is a a minimum there. The location would be easy to estimate if
the energy were written in dimensionless form. Such a rewriting is not
mandatory in this example, but it is helpful in complicated examples and
is worth learning in this example.

In constructing the dimensionless group containing a0, we constructed an-
other length:

l =
 h2

me(e2/4πε0)
.

To scale any length – to make it dimensionless – divide it by l. So in the
total energy the scaled radius

r̄ ≡ r

l
.

The other unknown in the total energy is the energy itself. To make it
dimensionless, a reasonable energy scale to use is e2/4πε0l by defining
scaled energy as

Ē ≡ E

e2/4πε0l
.

Using the dimensionless length and energy, the total energy

E = EPotential + EKinetic ∼ −
e2

4πε0r
+

 h2

mer2

becomes

Ē ∼ −
1

r̄
+

1

r̄2
.

The ugly constants are placed into the definitions of scaled length and en-
ergy. This dimensionless energy is easy to think about and to sketch.
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Simple calculus: minimizing scaled energy Ē versus scaled bond length r̄.
The scaled energy is the sum of potential and kinetic energy. The shape
of this energy illustrates Feynman’s explanation of the atomic hypothesis.
At a ‘little distance apart’ – for large r̄ – the curve slopes upward; to lower
their energy, the proton and electron prefer to move closer, and the result-
ing force is attractive. ‘Upon being squeezed into one another’ – for small
r̄ – the potential rapidly increases, so the force between the particles is re-
pulsive. Somewhere between the small and large regions of r̄, the force is
zero.

Estimate
Actual Total

KE

−PE

1 2 3 4 5

0

0.5

1

1.5

2

r̄

Ē

Calculus (differentiation) locates this minimum-energy r̄ at r̄min = 2. An
alternative method is cheap minimization: When two terms compete, the
minimum occurs when the terms are roughly equal. This method of mini-
mization is familiar from Section 4.5.2.

Equating the two terms r̄−1 and r̄−2 gives r̄min ∼ 1. This result gives a
scaled length. In actual units, it is

rmin = lr̄min =
 h2

me(e2/4πε0)
,

which is the Bohr radius computed using dimensional analysis. The sloppi-
ness in estimating the kinetic and potential energies has canceled the error
introduced by cheap minimization!

Here is how to justify cheap minimization. Consider a reasonable general
form for E:

E(r) =
A

rn
−

B

rm
.
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This form captures the important feature of the combined energy

E = EPotential + EKinetic ∼ −
e2

4πε0r
+

 h2

mer2
,

that two terms represent competing physical effects. Mathematically, that
physical fact is shown by the opposite signs.

To find the minimum, solve E′(rmin) = 0 or

−n
A

rn+1
min

+ m
B

rm+1
min

= 0.

The solution is

A

rn
min

=
n

m

B

rm
min

(calculus).

This method minimizes the combined energy by equating the two terms
A/rn and B/rm:

A

rn
min

=
B

rm
min

.

This approximation lacks the n/m factor in the exact result. The ratio of
the two estimates for rmin is

approximate estimate
calculus estimate

∼
( n

m

)1/(m−n)
,

which is smaller than 1 unless n = m, when there is no maximum or min-
imum. So the approximate method underestimates the location of minima
and maxima.

To judge the method in practice, apply it to a typical example: the potential
between nonpolar atoms or molecules, such as between helium, xenon, or
methane. This potential is well approximated by the so-called Lennard–
Jones potential where m = 6 and n = 12:

U(r) ∼
A

r12
−

B

r6
.

The approximate result underestimates rmin by a factor of(
12

6

)1/6

∼ 1.15.

An error of 15 percent is often small compared to the other inaccuracies in
an approximate computation, so this method of approximate minimization
is a valuable time-saver.
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Now return to the original problem: determining the Bohr radius. The
approximate minimization predicts the correct value. Even if the method
were not so charmed, there is no point in doing a proper, calculus mini-
mization. The calculus method is too accurate given the inaccuracies in the
rest of the derivation.

Engineers understand this idea of not over-engineering a system. If a bi-
cycle most often breaks at welds in the frame, there is little point replacing
the metal between the welds with expensive, high-strength aerospace ma-
terials. The new materials might last 100 years instead of 50 years, but such
a replacement would be overengineering. To improve a bicycle, put effort
into improving or doing without the welds.

In estimating the Bohr radius, the kinetic-energy estimate uses a crude
form of the uncertainty principle, ∆p∆x ∼  h, whereas the true statement
is that ∆p∆x >  h/2. The estimate also uses the approximation EKinetic ∼

(∆p)2/m. This approximation contains m instead of 2m in the denomina-
tor. It also assumes that ∆p can be converted into an energy as though it
were a true momentum rather than merely a crude estimate for the root-
mean-square momentum. The potential- and kinetic-energy estimates use
a crude definition of position uncertainty ∆x: that ∆x ∼ r. After making so
many approximations, it is pointless to minimize the result using the ele-
phant gun of differential calculus. The approximate method is as accurate
as, or perhaps more accurate than the approximations in the energy.

This method of equating competing terms is balancing. We balanced the
kinetic energy against the potential energy by assuming that they are rough-
ly the same size. The consequence is that

a0 ∼
 h2

me(e2/4πε0)
.

Nature could have been unkind: The potential and kinetic energies could
have differed by a factor of 10 or 100. But Nature is kind: The two energies
are roughly equal, except for a constant that is nearly 1. ‘Nearly 1’ is also
called of order unity. This rough equality occurs in many examples, and
you often get a reasonable answer by pretending that two energies (or two
quantities with the same units) are equal. When the quantities are poten-
tial and kinetic energy, as they often are, you get extra safety: The so-called
virial theorem protects you against large errors (for more on the virial the-
orem, see any intermediate textbook on classical dynamics).

6.5 Bending of light by gravity


