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4.5 Flight
How far can birds and planes fly? The theory of flight is difficult and in-
volves vortices, Bernoulli’s principle, streamlines, and much else. This sec-
tion offers an alternative approach: use conservation estimate the energy
required to generate lift, then minimize the lift and drag contributions to
the energy to find the minimum-energy way to make a trip.

4.5.1 Lift

Instead of wading into the swamp of vortices, study what does not change.
In this case, the vertical component of the plane’s momentum does not
change while it cruises at constant altitude.

Because of momentum conservation, a plane must deflect air downward.
If it did not, gravity would pull the plane into the ground. By deflecting air
downwards – which generates lift – the plane gets a compensating, upward
recoil. Finding the necessary recoil leads to finding the energy required to
produce it.

Imagine a journey of distance s. I calculate the energy to produce lift in
three steps:

1. How much air is deflected downward?

2. How fast must that mass be deflected downward in order to give the
plane the needed recoil?

3. How much kinetic energy is imparted to that air?

The plane is moving forward at speed v, and it deflects air over an area L2

where L is the wingspan. Why this area L2, rather than the cross-sectional
area, is subtle. The reason is that the wings disturb the flow over a distance
comparable to their span (the longest length). So when the plane travels a
distance s, it deflects a mass of air

mair ∼ ρL2s.

The downward speed imparted to that mass must take away enough mo-
mentum to compensate for the downward momentum imparted by grav-
ity. Traveling a distance s takes time s/v, in which time gravity imparts a
downward momentum Mgs/v to the plane. Therefore

mairvdown ∼
Mgs

v
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so

vdown ∼
Mgs

vmair
∼

Mgs

ρvL2s
=

Mg

ρvL2
.

The distance s divides out, which is a good sign: The downward velocity
of the air should not depend on an arbitrarily chosen distance!

The kinetic energy required to send that much air downwards is mairv
2
down.

That energy factors into (mairvdown)vdown, so

Elift ∼ mairvdown︸ ︷︷ ︸
Mgs/v

vdown ∼
Mgs

v

Mg

ρvL2︸ ︷︷ ︸
vdown

=
(Mg)2

ρv2L2
s.

Check the dimensions: The numerator is a squared force since Mg is a
force, and the denominator is a force, so the expression is a force times the
distance s. So the result is an energy.

Interestingly, the energy to produce lift decreases with increasing speed.
Here is a scaling argument to make that result plausible. Imagine doubling
the speed of the plane. The fast plane makes the journey in one-half the
time of the original plane. Gravity has only one-half the time to pull the
plane down, so the plane needs only one-half the recoil to stay aloft. Since
the same mass of air is being deflected downward but with half the total
recoil (momentum), the necessary downward velocity is a factor of 2 lower
for the fast plane than for the slow plane. This factor of 2 in speed lowers
the energy by a factor of 4, in accordance with the v−2 in Elift.

4.5.2 Optimization including drag

The energy required to fly includes the energy to generate lift and to fight
drag. I’ll add the lift and drag energies, and choose the speed that mini-
mizes the sum.

The energy to fight drag is the drag force times the distance. The drag force
is usually written as

Fdrag ∼ ρv2A,

where A is the cross-sectional area. The missing dimensionless constant is
cd/2:

Fdrag =
1

2
cdρv2A,
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where cd is the drag coefficient.

However, to simplify comparing the energies required for lift and drag, I
instead write the drag force as

Fdrag = Cρv2L2,

where C is a modified drag coefficient, where the drag is measured relative
to the squared wingspan rather than to the cross-sectional area. For most
flying objects, the squared wingspan is much larger than the cross-sectional
area, so C is much smaller than cd.

With that form for Fdrag, the drag energy is

Edrag = Cρv2L2s,

and the total energy to fly is

E ∼
(Mg)2

ρv2L2
s︸ ︷︷ ︸

Elift

+ Cρv2L2s︸ ︷︷ ︸
Edrag

.

voptimum

Edrag ∝ v2

Elift ∝ v−2

Etotal

E

A sketch of the total energy versus velocity shows
interesting features. At low speeds, lift is the
dominant consumer because of its v−2 depen-
dence. At high speeds, drag is the dominant
consumer because of its v2 dependence. In be-
tween these extremes is an optimum speed voptimum:
the speed that minimizes the energy consump-
tion for a fixed journey distance s. Going faster
or slower than the optimum speed means con-
suming more energy. That extra consumption
cannot always be avoided. A plane is designed
so that its cruising speed is its minimum-energy speed. So at takeoff and
landing, when its speed is much less than the minimum-energy speed, a
plane requires a lot of power to stay aloft, which is one reason that the en-
gines are so loud at takeoff and landing (another reason is probably that
the engine noise reflects off the ground and back to the plane).

The constraint, or assumption, that a plane travels at the minimum-energy
speed simplifies the expression for the total energy. At the minimum-
energy speed, the drag and lift energies are equal. So

(Mg)2

ρv2L2
s ∼ Cρv2L2s,
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or

Mg ∼ C1/2ρv2L2.

This constraint simplifies the total energy. Instead of simplifying the sum,
simplify just the drag, which neglects only a factor of 2 since drag and lift
are roughly equal at the minimum-energy speed. So

E ∼ Edrag ∼ Cρv2L2s ∼ C1/2Mgs.

This result depends in reasonable ways upon M, g, C, and s. First, lift
overcomes gravity, and gravity produces the plane’s weight Mg. So Mg

should show up in the energy, and the energy should, and does, increase
when Mg increases. Second, a streamlined plane should use less energy
than a bluff, blocky plane, so the energy should, and does, increase as the
modified drag coefficient C increases. Third, since the flight is at a constant
speed, the energy should be, and is, proportional to the distance traveled s.

4.5.3 Explicit computations

To get an explicit range, estimate the fuel fraction β, the energy density E,
and the drag coefficient C. For the fuel fraction I’ll guess β ∼ 0.4. For E,
look at the nutrition label on the back of a pack of butter. Butter is almost
all fat, and one serving of 11 g provides 100 Cal (those are ‘big calories’). So
its energy density is 9 kcal g−1. In metric units, it is 4·107 J kg−1. Including
a typical engine efficiency of one-fourth gives

E ∼ 107 J kg−1.

The modified drag coefficient needs converting from easily available data.
According to Boeing, a 747 has a drag coefficient of C′ ≈ 0.022, where this
coefficient is measured using the wing area:

Fdrag =
1

2
C′Awingρv2.

Alas, this formula is a third convention for drag coefficients, depending
on whether the drag is referenced to the cross-sectional area A, wing area
Awing, or squared wingspan L2.

It is easy to convert between the definitions. Just equate the standard defi-
nition

Fdrag =
1

2
C′Awingρv2.
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to our definition

Fdrag = CL2ρv2

to get

C =
1

2

Awing

L2
C′ =

1

2

l

L
C′,

since Awing = Ll where l is the wing width. For a 747, l ∼ 10 m and
L ∼ 60 m, so C ∼ 1/600.

Combine the values to find the range:

s ∼
βE

C1/2g
∼

0.4× 107 J kg−1

(1/600)1/2 × 10 m s−2
∼ 107 m = 104 km.

The maximum range of a 747-400 is 13, 450 km, so the approximate analysis
of the range is unreasonably accurate.

Problem 4.1 Integrals
Evaluate these definite integrals:

a.
∫10

−10
x3e−x2

dx

b.
∫∞
−∞

x3

1 + 7x2 + 18x8
dx

Problem 4.2 Number sum
Use symmetry to find the sum of the integers between 200 and 300 (inclusive).

Problem 4.3 Heat equation

10◦

10
◦

10◦
10
◦

80 ◦

T =?

In lecture we used symmetry to argue that the temperature at the center of
the metal sheet is the average of the temperatures of the sides.

Check this result by making a simulation or, if you are bold but crazy, by
finding an analytic solution of the heat equation.

Problem 4.4 Symmetry for algebra
Use symmetry to find (a − b)3.

Problem 4.5 Symmetry for second-order systems
This problem analyzes the frequency of maximum gain for an LRC circuit or, equiva-
lently, for a damped spring–mass system. The gain of such a system is the ratio of the
input amplitude to the output amplitude as a function of frequency.


