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m1

To guess f(x), where x = G1, try special cases. First imagine that m1 be-
comes huge. A quantity with mass cannot be huge on its own, however.
Here huge means huge relative to m2, whereupon x ≈ 1. In this thought
experiment, m1 falls as if there were no m2 so a = −g. Here we’ve cho-
sen a sign convention with positive acceleration being upward. If m2

is huge relative to m1, which means x = −1, then m2 falls like a stone
pulling m1 upward with acceleration a = g. A third limiting case is
m1 = m2 or x = 0, whereupon the masses are in equilibrium so a = 0.

Here is a plot of our knowledge of f:

x

f(x)

1-1

1

-1

The simplest conjecture – an educated guess – is that f(x) = x. Then we
have our result:

a

g
=

m1 − m2

m1 + m2
.

Look how simple the result is when derived in a symmetric, dimensionless
form using special cases!

7.3 Drag
Pendulum motion is not a horrible enough problem to show the full benefit
of dimensional analysis. Instead try fluid mechanics – a subject notorious
for its mathematical and physical complexity; Chandrasekhar’s books [6,
7] or the classic textbook of Lamb [19] show that the mathematics is not for
the faint of heart.
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Density ρfl

Viscosity ν

ρobj

R

v

The next examples illustrate two extremes of fluid flow: ooz-
ing and turbulent. An example of oozing flow is ions trans-
porting charge in seawater (Section 7.3.6). An example of tur-
bulent flow is a raindrop falling from the sky after condensing
out of a cloud (Section 7.3.7).

To find the terminal velocity, solve the partial-differential equa-
tions of fluid mechanics for the incompressible flow of a New-
tonian fluid:

∂v
∂t

+ (v·∇)v = −
1

ρ
∇p + ν∇2v, (3 eqns)

∇·v = 0. (1 eqn)

Here v is the fluid velocity, ρ is the fluid density, ν is the kine-
matic viscosity, and p is the pressure. The first equation is a
vector shorthand for three equations, so the full system is four equations.

All the equations are partial-differential equations and three are nonlinear.
Worse, they are coupled: Quantities appear in more than one equation. So
we have to solve a system of coupled, nonlinear, partial-differential equa-
tions. This solution must satisfy boundary conditions imposed by the mar-
ble or raindrop. As the object moves, the boundary conditions change.
So until you know how the object moves, you do not know the boundary
conditions. Until you know the boundary conditions, you cannot find the
motion of the fluid or of the object. This coupling between the boundary
conditions and solution compounds the difficulty of the problem. It re-
quires that you solve the equations and the boundary conditions together.
If you ever get there, then you take the limit t → ∞ to find the terminal
velocity.

Sleep easy! I wrote out the Navier–Stokes equations only to scare you into
using dimensional analysis and special-cases reasoning. The approximate
approach is easier than solving nonlinear partial-differential equations.

7.3.1 Naive dimensional analysis

To use dimensional analysis, follow the usual steps: Choose relevant vari-
ables, form dimensionless groups from them, and solve for the terminal
velocity. In choosing quantities, do not forget to include the variable for
which you are solving, which here is v. To decide on the other quantities,
split them into three categories (divide and conquer):
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1. characteristics of the fluid,

2. characteristics of the object, and

3. characteristics of whatever makes the object fall.

The last category is the easiest to think about, so deal with it first. Gravity
makes the object fall, so g is on the list.

Consider next the characteristics of the object. Its velocity, as the quantity
for which we are solving, is already on the list. Its mass m affects the ter-
minal velocity: A feather falls more slowly than a rock does. Its radius r

probably affects the terminal velocity. Instead of listing r and m together,
remix them and use r and ρobj. The two alternatives r and m or r and
ρobj provide the same information as long as the object is uniform: You
can compute ρobj from m and r and can compute m from ρobj and r.

Choose the preferable pair by looking ahead in the derivation. The rele-
vant properties of the fluid include its density ρfl. If the list also includes
ρobj, then the results might contain pleasing dimensionless ratios such as
ρobj/ρfl (a dimensionless group!). The ratio ρobj/ρfl has a more obvious
physical interpretation than a combination such as m/ρflr

3, which, except
for a dimensionless constant, is more obscurely the ratio of object and fluid
densities. So choose ρobj and r over m and r.

Scaling arguments also favor the pair ρobj and r. In a scaling argument
you imagine varying, say, a size. Size, like heat, is an extensive quantity:
a quantity related to amount of stuff. When you vary the size, you want
as few other variables as possible to change so that those changes do not
obscure the effect of changing size. Therefore, whenever possible replace
extensive quantities with intensive quantities like temperature or density.
The pair m and r contains two extensive quantities, whereas the preferable
pair ρobj and r contains only one extensive quantity.

Now consider properties of the fluid. Its density ρfl affects the terminal
velocity. Perhaps its viscosity is also relevant. Viscosity measures the ten-
dency of a fluid to reduce velocity differences in the flow. You can ob-
serve an analog of viscosity in traffic flow on a multilane highway. If one
lane moves much faster than another, drivers switch from the slower to
the faster lane, eventually slowing down the faster lane. Local decisions
of the drivers reduce the velocity gradient. Similarly, molecular motion (in
a gas) or collisions (in a fluid) transports speed (really, momentum) from
fast- to slow-flowing regions. This transport reduces the velocity differ-
ence between the regions. Oozier (more viscous) fluids probably produce
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more drag than thin fluids do. So viscosity belongs on the list of relevant
variables.

Fluid mechanicians have defined two viscosities: dynamic viscosity η and
kinematic viscosity ν. [Sadly, we could not use the mellifluous term flu-
id mechanics to signify a host of physicists agonizing over the equations of
fluid mechanics; it would not distinguish the toilers from their toil.] The
two viscosities are related by η = ρflν. Life in Moving Fluids [36, pp. 23–
25] discusses the two types of viscosity in detail. For the analysis of drag
force, you need to know only that viscous forces are proportional to vis-
cosity. Which viscosity should we use? Dynamic viscosity hides ρfl inside
the product νρfl; a ratio of ρobj and η then looks less dimensionless than
it is because ρobj’s partner ρfl is buried inside η. Therefore the kinemat-
ic viscosity ν usually gives the more insightful results. Summarizing the
discussion, the table lists the variables by category.

Var Dim What
ν L2T−1 kinematic viscosity

ρfl ML−3 fluid density
r L object radius
v LT−1 terminal velocity

ρobj ML−3 object density
g LT−2 gravity

The next step is to find dimensionless
groups. The Buckingham Pi theorem
(Section 6.6) says that the six variables
and three independent dimensions re-
sult in three dimensionless groups.

Before finding the groups, consider the
consequences of three groups. Three?!
Three dimensionless groups produce this
form for the terminal velocity v:

group with v = f(other group 1, other group 2).

To deduce the properties of f requires physics knowledge. However, study-
ing a two-variable function is onerous. A function of one variable is repre-
sented by a curve and can be graphed on a sheet of paper. A function of
two variables is represented by a surface. For a complete picture it needs
three-dimensional paper (do you have any?); or you can graph many slices
of it on regular two-dimensional paper. Neither choice is appealing. This
brute-force approach to the terminal velocity produces too many dimen-
sionless groups.

If you simplify only after you reach the complicated form

group with v = f(other group 1, other group 2),

you carry baggage that you eventually discard. When going on holiday to
the Caribbean, why pack skis that you never use but just cart around every-
where? Instead, at the beginning of the analysis, incorporate the physics
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knowledge. That way you simplify the remainder of the derivation. To
follow this strategy of packing light – of packing only what you need –
consider the physics of terminal velocity in order to make simplifications
now.

7.3.2 Simpler approach

terminal velocity

weight drag buoyancy

The adjective terminal in the phrase ‘terminal velocity’
hints at the physics that determines the velocity. Here
‘terminal’ is used in its sense of final, as in after an in-
finite time. It indicates that the velocity has become
constant, which happens only when no net force acts
on the marble. This line of thought suggests that we imagine the forces
acting on the object: gravity, buoyancy, and drag. The terminal velocity
is velocity at which the drag, gravitational, and buoyant forces combine
to make zero net force. Divide-and-conquer reasoning splits the terminal-
velocity problem into three simpler problems.

terminal velocity

weight drag buoyancy

ρspr3g

The gravitational force, also known as the weight, is
mg. Instead of m we use (4π/3)ρobjr

3 – for the same
reasons that we listed ρobj instead of m in the table of
variables – and happily ignore the factor of 4π/3. With
those choices, the weight is

Fg ∼ ρobjr
3g.

The figure shows the roadmap updated with this information.

higher p

buoyant force

lower p

Sphere

The remaining pieces are drag and buoyancy. Buoyancy is easier,
so do it first (the principle of maximal laziness). It is an upward
force that results because gravity affects the pressure in a fluid.
The pressure increases according to p = p0 + ρflgh, where h

is the depth and p0 is the pressure at zero depth (which can be
taken to be at any level in the fluid). The pressure difference
between the top and bottom of the object, which are separated
by a distance ∼ r, is ∆p ∼ ρflgr. Pressure is force per area, and
the pressure difference acts over an area A ∼ r2. Therefore the
buoyant force created by the pressure difference is

Fb ∼ A∆p ∼ ρflr
3g.
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terminal velocity

weight drag buoyancy

ρspr3g ρflr3g

As a check on this result, Archimedes’s principle says
that the buoyant force is the ‘weight of fluid displaced’.
This weight is

mass︷ ︸︸ ︷
ρfl

4π

3
πr3︸ ︷︷ ︸

volume

g.

Except for the factor of 4π/3, it matches the buoyant force so Archimedes’s
principle confirms our estimate for Fb. That result updates the roadmap.
The main unexplored branch is the drag force, which we solve using di-
mensional analysis.

7.3.3 Dimensional analysis for the drag force

The weight and buoyancy were solvable without dimensional analysis, but
we still need to use dimensional analysis to find the drag force. The pur-
pose of breaking the problem into parts was to simplify this dimensional
analysis relative to the brute-force approach in Section 7.3.1. Let’s see how
the list of variables changes when computing the drag force rather than the
terminal velocity. The drag force Fd has to join the list: not a promising
beginning when trying to eliminate variables. Worse, the terminal velocity
v remains on the list, even though we are no longer computing it, because
the drag force depends on the velocity of the object.

However, all is not lost. The drag force has no idea what is inside the
sphere. Picture the fluid as a huge computer that implements the laws of
fluid dynamics. From the viewpoint of this computer, the parameters v and
r are the only relevant attributes of a moving sphere. What lies underneath
the surface does not affect the fluid flow: Drag is only skin deep. The
computer can determine the flow (if it has tremendous processing power)
without knowing the sphere’s density ρobj, which means it vanishes from
the list. Progress!

Var Dim What
Fd MLT−2 drag force
ν L2T−1 kinematic viscosity

ρfl ML−3 fluid density
r L object radius
v LT−1 terminal velocity

Now consider the characteristics of the
fluid. The fluid supercomputer still needs
the density and viscosity of the fluid
to determine how the pieces of fluid
move in response to the object’s mo-
tion. So ρfl and ν remain on the list.
What about gravity? It causes the ob-
ject to fall, so it is responsible for the
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terminal velocity v. However, the flu-
id supercomputer does not care how the object acquired this velocity; it
cares only what the velocity is. So g vanishes from the list. The updated
tabled shows the new, shorter list.

terminal velocity

weight drag buoyancy

ρspr3g ρflr3gDA

group 1 group 2

The five variables in the list are composed of three ba-
sic dimensions. From the Buckingham Pi theorem (Section 6.6),
we expect two dimensionless groups. We find one group
by dividing and conquering. The list already includes
a velocity (the terminal velocity). If we can concoct an-
other quantity V with dimensions of velocity, then v/V

is a dimensionless group. The viscosity ν is almost a
velocity. It contains one more power of length than ve-
locity does. Dividing by r eliminates the extra length:
V ≡ ν/r. A dimensionless group is then

G1 ≡
v

V
=

vr

ν
.

terminal velocity

weight drag buoyancy

ρspr3g ρflr3gDA

group 1 group 2

vR

ν

Our knowledge, including this group, is shown in the
figure. This group is so important that it has a name,
the Reynolds number, which is abbreviated Re. It is
important because it is a dimensionless measure of flow
speed. The velocity, because it contains dimensions,
cannot distinguish fast from slow flows. For example,
1000 m s−1 is slow for a planet, whose speeds are typi-
cally tens of kilometers per second, but fast for a pedes-
trian. When you hear that a quantity is small, fast,
large, expensive, or almost any adjective, your first re-
action should be to ask, ‘compared to what?’ Such a
comparison suggests dividing v by another velocity;
then we get a dimensionless quantity that is propor-
tional to v. The result of this division is the Reynolds number.

Low values of Re indicate slow, viscous flow (cold honey oozing out of a
jar). High values indicate turbulent flow (a jet flying at 600 mph). The ex-
cellent Life in Moving Fluids [36] discusses many more dimensionless ratios
that arise in fluid mechanics.

The Reynolds number looks lonely in the map. To give it company, find a
second dimensionless group. The drag force is absent from the first group
so it must live in the second; otherwise we cannot solve for the drag force.

Instead of dreaming up the dimensionless group in one lucky guess, we
construct it in steps (divide-and-conquer reasoning). Examine the variables
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in the table, dimension by dimension. Only two (Fd and ρfl) contain mass,
so both or neither appear in the group. Because Fd has to appear, ρfl must
also appear. Each variable contains a first power of mass, so the group
contains the ratio Fd/ρfl. A simple choice is

G2 ∝
Fd

ρfl
.

The dimensions of Fd/ρfl are L4T−2, which is the square of L2T−1. Fortune
smiles on us, for L2T−1 are the dimensions of ν. So

Fd

ρflν2

is a dimensionless group.

This choice, although valid, has a defect: It contains ν, which already be-
longs to the first group (the Reynolds number). Of all the variables in the
problem, ν is the one most likely to be found irrelevant based on a physi-
cal argument (as will happen in Section 7.3.7, when we specialize to high-
speed flow. If ν appears in two groups, eliminating it requires recombining
the two groups into one that does not contain ν. However, if ν appears in
only one group, then eliminating it is simple: eliminate that group. Sim-
pler mathematics – eliminating a group rather than remixing two groups
to get one group – requires simpler physical reasoning. Therefore, isolate ν

in one group if possible.

terminal velocity

weight drag buoyancy

ρspr3g ρflr3gDA

group 1 group 2

vR

ν

Fd

ρflr2v2

To remove ν from the proposed group Fd/ρflν
2 notice

that the product of two dimensionless groups is also
dimensionless. The first group contains ν−1 and the
proposed group contains ν−2, so the ratio

group proposed
(first group)2

=
Fd

ρflr2v2

is not only dimensionless but it also does not contain
ν. So the analysis will be easy to modify when we try
to eliminate ν. With this revised second group, our
knowledge is now shown in this figure:

This group, unlike the the proposal Fd/ρflν
2, has a

plausible physical interpretation. Imagine that the sphere travels a distance
l, and use l to multiply the group by unity:

Fd

ρflr2v2︸ ︷︷ ︸
group 1

× l

l︸︷︷︸
1

=
Fdl

ρfllr2v2
.



136 136

136 136

136 7.3. Drag

2009-05-04 23:52:14 / rev bb931e4b905e

The numerator is the work done against the drag force over the distance l.
The denominator is also an energy. To interpret it, examine its parts (divide
and conquer). The product lr2 is, except for a dimensionless constant, the
volume of fluid swept out by the object. So ρfllr

2 is, except for a constant,
the mass of fluid shoved aside by the object. The object moves fluid with a
velocity comparable to v, so it imparts to the fluid a kinetic energy

EK ∼ ρfllr
2v2.

Thus the ratio, and hence the group, has the following interpretation:

work done against drag
kinetic energy imparted to the fluid

.

In highly dissipative flows, when energy is burned directly up by viscosity,
the numerator is much larger than the denominator, so this ratio (which
will turn out to measure drag) is much greater than 1. In highly streamlined
flows (a jet wing), the the work done against drag is small because the fluid
returns most of the imparted kinetic energy to the object. So in the ratio,
the numerator will be small compared to the denominator.

To solve for Fd, which is contained in G2, use the form G2 = f(G1), which
becomes

Fd

ρflr2v2
= f

(vr

ν

)
.

The drag force is then

Fd = ρflr
2v2 f

(vr

ν

)
.

The function f is a dimensionless function: Its argument is dimensionless
and it returns a dimensionless number. It is also a universal function. The
same f applies to spheres of any size, in a fluid of any viscosity or density!
Although f depends on r, ρfl, ν, and v, it depends on them only through
one combination, the Reynolds number. A function of one variable is easier
to study than is a function of four variables:

A good table of functions of one variable may require a page; that of
a function of two variables a volume; that of a function of three vari-
ables a bookcase; and that of a function of four variables a library.

—Harold Jeffreys [25, p. 82]

Dimensional analysis cannot tell us the form of f. To learn its form, we
specialize to two special cases:
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1. viscous, low-speed flow (Re � 1), the subject of Section 7.3.4; and

2. turbulent, high-speed flow (Re � 1), the subject of Section 7.3.7.

7.3.4 Viscous limit

As an example of the low-speed limit, consider a marble falling in vegetable
oil or glycerin. You may wonder how often marbles fall in oil, and why we
bother with this example. The short answer to the first question is ‘not
often’. However, the same physics that determines the fall of marbles in oil
also determines, for example, the behavior of fog droplets in air, of bacteria
swimming in water [26], or of oil drops in the Millikan oil-drop experiment.
The marble problem not only illustrates the physical principles, but also we
can check our results with a home experiment.

In slow, viscous flows, the drag force comes directly from – surprise! –
viscous forces. These forces are proportional to viscosity because viscosi-
ty is the constant of proportionality in the definition of the viscous force.
Therefore

Fd ∝ ν.

The viscosity appears exactly once in the drag result, repeated here:

Fd = ρflr
2v2 f

(vr

ν

)
.

To flip ν into the numerator and make Fd ∝ ν, the function f must have
the form f(x) ∼ 1/x. With this f(x) the result is

Fd ∼ ρflr
2v2 ν

vr
= ρflνv.

Dimensional analysis alone is insufficient to compute the missing magic
dimensionless constant. A fluid mechanician must do a messy and difficult
calculation. Her burden is light now that we have worked out the solution
except for this one constant. The British mathematician Stokes, the first to
derive its value, found that

Fd = 6πρflνvr.

In honor of Stokes, this result is called Stokes drag.

Let’s sanity check the result. Large or fast marbles should feel a lot of drag,
so r and v should be in the numerator. Viscous fluids should produce a
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lot of drag, so ν should be the numerator. The proposed drag force pass-
es these tests. The correct location of the density – in the numerator or
denominator – is hard to judge.

You can make an educated judgment by studying the Navier–Stokes equa-
tions. In those equations, when v is ‘small’ (small compared to what?) then
the (v·∇)v term, which contains two powers of v, becomes tiny compared
to the viscous term ν∇2v, which contains only one power of v. The second-
order term arises from the inertia of the fluid, so this term’s being small says
that the oozing marble does not experience inertial effects. So perhaps ρfl,
which represents the inertia of the fluid, should not appear in the Stokes
drag. On the other hand, viscous forces are proportional to the dynamic
viscosity η = ρflν, so ρfl should appear even if inertia is unimportant.
The Stokes drag passes this test. Using the dynamic instead of kinematic
viscosity, the Stokes drag is

Fd = 6πηvr,

often a convenient form because many tables list η rather than ν.

This factor of 6π comes from doing honest calculations. Here, it comes
from solving the Navier–Stokes equations. In this book we wish to teach
you how not to suffer, so we do not solve such equations. We usually quote
the factor from honest calculation to show you how accurate (or sloppy) the
approximations are. The factor is often near unity, although not in this case
where it is roughly 20! In fancy talk, it is usually ‘of order unity’. Such
a number suits our neural hardware: It is easy to remember and to use.
Knowing the approximate derivation and remembering this one number,
you reconstruct the exact result without solving difficult equations.

Now use the Stokes drag to estimate the terminal velocity in the special
case of low Reynolds number.

7.3.5 Terminal velocity for low Reynolds number
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terminal velocity

weight drag buoyancy

ρspr3g ρflr3gDA

group 1 group 2

vR

ν

Fd

ρflr2v2

Having assembled all the pieces in the roadmap, we
now return to the original problem of finding the ter-
minal velocity. Since no net force acts on the marble
(the definition of terminal velocity), the drag force plus
the buoyant force equals the weight:

νρflvr︸ ︷︷ ︸
Fd

+ ρflgr3︸ ︷︷ ︸
Fb

∼ ρobjgr3︸ ︷︷ ︸
Fg

.

After rearranging:

νρflvr ∼ (ρobj − ρfl)gr3.

The terminal velocity is then

v ∼
gr2

ν

(
ρobj

ρfl
− 1

)
.

In terms of the dynamic viscosity η, it is

v ∼
gr2

η
(ρobj − ρfl).

This version, instead of having the dimensionless factor ρobj/ρfl − 1 that
appears in the version with kinematic viscosity, has a dimensional ρobj −

ρfl factor. Although it is less aesthetic, it is often more convenient because
tables often list dynamic viscosity η rather than kinematic viscosity ν.

We can increase our confidence in this expression by checking whether the
correct variables are upstairs (a picturesque way to say ‘in the numerator’)
and downstairs (in the denominator). Denser marbles should fall faster
than less dense marbles, so ρobj should live upstairs. Gravity accelerates
marbles, so g should live upstairs. Viscosity slows marbles, so ν should
live downstairs. The terminal velocity passes these tests. We therefore
have more confidence in our result, although the tests did not check the
location of r or any exponents: For example, should ν appear as ν2? Who
knows, but if viscosity matters, it mostly appears as a square root or as a
first power.

To check r, imagine a large marble. It will experience a lot of drag and
fall slowly, so r should appear downstairs. However, large marbles are
also heavy and fall rapidly, which suggests that r should appear upstairs.
Which effect wins is not obvious, although after you have experience with
these problems, you can make an educated guess: weight scales as r3, a
rapidly rising function r, whereas drag is probably proportional to a lower
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power of r. Weight usually wins such contents, as it does here, leaving r

upstairs. So the terminal velocity also passes the r test.

Let’s look at the dimensionless ratio in parentheses: ρobj/ρfl − 1. Without
buoyancy the −1 disappears, and the terminal velocity would be

v ∝ g
ρobj

ρfl
.

We retain the g in the proportionality for the following reason: The true
solution returns if we replace g by an effective gravity g′ where

g′ ≡ g

(
1 −

ρfl

ρobj

)
.

So, one way to incorporate the effect of the buoyant force is to solve the
problem without buoyancy but with the reduced g.

Check this replacement in two limiting cases: ρfl = 0 and ρfl = ρobj.
When ρobj = ρfl gravity vanishes: People, whose density is close to the
density of water, barely float in swimming pools. Then g′ should be ze-
ro. When ρfl = 0, buoyancy vanishes and gravity retains its full effect.
So g′ should equal g. The effective gravity definition satisfies both tests.
Between these two limits, the effective g should vary linearly with ρfl be-
cause buoyancy and weight superpose linearly in their effect on the object.
The effective g passes this test as well.

Another test is to imagine ρfl > ρobj. Then the relation correctly predicts
that g′ is negative: helium balloons rise. This alternative to using buoyan-
cy explicitly is often useful. If, for example you forget to include buoyancy
(which happened in the first draft of this chapter), you can correct the re-
sults later by replacing g with the g′.

If we carry forward the constants of proportionality, starting with the magic
6π in the Stokes drag and including the 4π/3 that belongs in the weight, we
find

v ∼
2

9

gr2

ν

(
ρobj

ρfl
− 1

)
.

7.3.6 Conductivity of seawater


